Common Source Amplifier VDD

RD C3

C1

C2 RL

vs RG I

-VSS • A discrete common source amplifier can be constructed that is very similar in form to a with a is quite common, particularly for ICs • But IC amplifiers do not include decoupling/bypass capacitors and biasing resistors

Lecture 22-1

Common Source Amplifier

• Design the amplifier for maximum possible output voltage swing

VDD 2 RD K=0.25mA/V C 3 Vt=2V RS C1 VDD=10V RG=500k ( >> RS) C2 R =10kΩ L λ=0.02

vs RG I=1mA

-VSS

Lecture 22-2

Common Source Amplifier

VDD K=0.25mA/V2 RD C3 Vt=2volts VDD=10volts RS C1 RG=500k ( >> RS) Ω C2 RL=10k vs RG I=1mA

-VSS

Lecture 22-3

Common Source Amplifier

• Analyze the circuit --- first solve for the dc bias point:

IC VCC + 10V 1.000 mA

RD 6KΩ

M1-NMOS C1 L=10U 1UF W=10U +- C12 D VOUTAC VD 1UF + + +- S C2 0.000 pV 4.000 V - - 1UF RL VSSIN RG VIN +- 10KΩ + SIN 5E5Ω + 0.000 pV IS - 1mA

VS VSS + + -10V -3.837 V -

Lecture 22-4

Small Signal Model

VDD D RD G C3 C 1 v R R R s G gmvs ro D L C2 RL S vs RG I

-VSS

Lecture 22-5

Small Signal Model

G D v R R R s G gmvs ro D L S

Lecture 22-6

ac Response

• Frequency response with lamda=0.02

frequency e2 e3 e4 e5 e6 e7 12

11

10

9

8

7

6

5

DB(VOUTAC/VIN)

Lecture 22-7 Transient Response

• Time-domain response for a 10kHz, 0.2v peak ac input signal with lamda=0.02

time 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ms 1

V

0

-1 VOUTAC VIN

Lecture 22-8 Transient Response Distortion?

• Vin multiplied by the midband gain, and shifted in phase by 180° demonstrates that there is very little distortion

time 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ms 1

V

0

-1

VOUTAC VIN VIN*(-3.75)

Lecture 22-9 ac Response

• Response for a 10kHz, 0.2v peak ac input signal with lamda=0 • How can we change the design so that lamda is practically zero?

frequency e2 e3 e4 e5 e6 e7 12

11

10

9

8

7

6

5

DB(VOUTAC/VIN)

Lecture 22-10 Improving the Gain

• Assuming that the peak ac output is less than 1.0 volt, we can use a larger value of RD to increase the gain but still keep the out of the triode region

IC VCC + 10V 1.000 mA

RD 10KΩ

M1-NMOS C1 L=10U 1UF W=10U +- C12 D VOUTAC VD 1UF + + +- S C2 0.000 pV 0.000 pV - - 1UF RL VSSIN RG VIN +- 10KΩ + SIN 5E5Ω + 0.000 pV IS - 1mA

VS VSS + + -10V -3.920 V -

Lecture 22-11 Improving the Gain

frequency e2 e3 e4 e5 e6 e7 14

13

12

11

10

9

8

DB(VOUTAC/VIN)

Lecture 22-12 Improving the Gain

• But further increase in RD is not possible

time 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ms 1

V

0

-1

VOUTAC VIN VIN*(-4.7)

Lecture 22-13 Current Mirrors

3.3V

R

M1 M2

Lecture 22-14 Current Mirrors - Output Resistance

3.3V

I R REF Io

ID M1 M2

Lecture 22-15 Current Mirrors-Accuracy

3.3V

I R REF Io

ID M1 M2

Lecture 22-16 Current Steering + V - SG5 M4 M5 3.3V I4 I R REF I2 I5 I3 ID M1 M2 M3

Lecture 22-17