Searching Databases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Venn Diagrams
VENN DIAGRAMS What is it? A Venn diagram or set diagram is a diagram that shows relationships among sets of numbers, information or concepts. In around 1880, John Venn introduced the world to the idea of Venn diagrams. Since then they have been used to teach elementary set theory in mathematics, statistics, linguistics and computer science. Using Venn diagrams for reading and in the English classroom allows students to explore relations among ideas. They can use Venn diagrams to organize information according to similarities and differences. Any level of reader can use a Venn diagram to process their thinking around a text. Venn diagrams are useful for comparing and contrasting ideas and are an excellent way to clearly show an overlap of ideas in texts. Why is it important? There is huge cognitive benefit in examining the similarities and differences among concepts. In such as activities, young children search for patterns to make connections between new information and their own background knowledge and therefore process thoughts more deeply (Dreher & Gray, 2009). Using Venn Diagrams can help students become more active in the reading process because they are being asked to analyse a text in a focused manner. As they organise their responses into the chart, they link information across sentences, paragraphs and the whole text. Venn Diagrams can also be useful when asking students to compare and contrast ideas represented in different texts. This focus helps them interpret information in relation to a broader context. For example, using a Venn Diagram to compare the ideas in two texts that have been written from different perspectives, periods of history or fields of study can lead students to deeper understanding of both texts. -
A Combinatorial Analysis of Finite Boolean Algebras
A Combinatorial Analysis of Finite Boolean Algebras Kevin Halasz [email protected] May 1, 2013 Copyright c Kevin Halasz. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at http://www.gnu.org/copyleft/fdl.html. 1 Contents 1 Introduction 3 2 Basic Concepts 3 2.1 Chains . .3 2.2 Antichains . .6 3 Dilworth's Chain Decomposition Theorem 6 4 Boolean Algebras 8 5 Sperner's Theorem 9 5.1 The Sperner Property . .9 5.2 Sperner's Theorem . 10 6 Extensions 12 6.1 Maximally Sized Antichains . 12 6.2 The Erdos-Ko-Rado Theorem . 13 7 Conclusion 14 2 1 Introduction Boolean algebras serve an important purpose in the study of algebraic systems, providing algebraic structure to the notions of order, inequality, and inclusion. The algebraist is always trying to understand some structured set using symbol manipulation. Boolean algebras are then used to study the relationships that hold between such algebraic structures while still using basic techniques of symbol manipulation. In this paper we will take a step back from the standard algebraic practices, and analyze these fascinating algebraic structures from a different point of view. Using combinatorial tools, we will provide an in-depth analysis of the structure of finite Boolean algebras. We will start by introducing several ways of analyzing poset substructure from a com- binatorial point of view. -
A Boolean Algebra and K-Map Approach
Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018 Reliability Assessment of Bufferless Production System: A Boolean Algebra and K-Map Approach Firas Sallumi ([email protected]) and Walid Abdul-Kader ([email protected]) Industrial and Manufacturing Systems Engineering University of Windsor, Windsor (ON) Canada Abstract In this paper, system reliability is determined based on a K-map (Karnaugh map) and the Boolean algebra theory. The proposed methodology incorporates the K-map technique for system level reliability, and Boolean analysis for interactions. It considers not only the configuration of the production line, but also effectively incorporates the interactions between the machines composing the line. Through the K-map, a binary argument is used for considering the interactions between the machines and a probability expression is found to assess the reliability of a bufferless production system. The paper covers three main system design configurations: series, parallel and hybrid (mix of series and parallel). In the parallel production system section, three strategies or methods are presented to find the system reliability. These are the Split, the Overlap, and the Zeros methods. A real-world case study from the automotive industry is presented to demonstrate the applicability of the approach used in this research work. Keywords: Series, Series-Parallel, Hybrid, Bufferless, Production Line, Reliability, K-Map, Boolean algebra 1. Introduction Presently, the global economy is forcing companies to have their production systems maintain low inventory and provide short delivery times. Therefore, production systems are required to be reliable and productive to make products at rates which are changing with the demand. -
Perceptions of Providence: Doing One’S Duty in Victorian England
Perceptions of Providence: Doing one’s duty in Victorian England Diane Barbara Sylvester Faculty of Arts and Social Sciences The University of Sydney A thesis submitted in fulfilment of requirements for the degree of Doctor of Philosophy. June 2017 Statement of originality This is to certify that to the best of my knowledge, the content of this thesis is my own work. This thesis has not been submitted for any degree or other purposes. I certify that the intellectual content of this thesis is the product of my own work and that all the assistance received in preparing this thesis and sources have been acknowledged. ____________________ Diane Barbara Sylvester i Abstract Intellectual history responds to that most difficult question—‘What were they thinking?’ Intellectual historians who concern themselves with the moral thinking of Victorians often view that thinking through a political lens, focussing on moral norms that were broadly accepted, or contested, rather than the moral thinking of particular Victorians as individuals—each with their own assumptions, sensibilities and beliefs. In this thesis, I interrogate the work of nine individual Victorians to recover their moralities, and discover how they decided what is the right, and what is the wrong, thing to do. My selected protagonists contributed variously to Victorian intellectual life—George Eliot, Elizabeth Gaskell and Charles Dickens, as novelists; Matthew Arnold, John Henry Newman and Charles Haddon Spurgeon, as participants in the public discussion of Christian belief; and William Whewell, John Stuart Mill and Thomas Hill Green, as moral philosophers. I make comparisons between my protagonists’ moralities, but it is not my aim to generalise from them and, by a process of extrapolation, define a ‘Victorian’ morality. -
Orme) Wilberforce (Albert) Raymond Blackburn (Alexander Bell
Copyrights sought (Albert) Basil (Orme) Wilberforce (Albert) Raymond Blackburn (Alexander Bell) Filson Young (Alexander) Forbes Hendry (Alexander) Frederick Whyte (Alfred Hubert) Roy Fedden (Alfred) Alistair Cooke (Alfred) Guy Garrod (Alfred) James Hawkey (Archibald) Berkeley Milne (Archibald) David Stirling (Archibald) Havergal Downes-Shaw (Arthur) Berriedale Keith (Arthur) Beverley Baxter (Arthur) Cecil Tyrrell Beck (Arthur) Clive Morrison-Bell (Arthur) Hugh (Elsdale) Molson (Arthur) Mervyn Stockwood (Arthur) Paul Boissier, Harrow Heraldry Committee & Harrow School (Arthur) Trevor Dawson (Arwyn) Lynn Ungoed-Thomas (Basil Arthur) John Peto (Basil) Kingsley Martin (Basil) Kingsley Martin (Basil) Kingsley Martin & New Statesman (Borlasse Elward) Wyndham Childs (Cecil Frederick) Nevil Macready (Cecil George) Graham Hayman (Charles Edward) Howard Vincent (Charles Henry) Collins Baker (Charles) Alexander Harris (Charles) Cyril Clarke (Charles) Edgar Wood (Charles) Edward Troup (Charles) Frederick (Howard) Gough (Charles) Michael Duff (Charles) Philip Fothergill (Charles) Philip Fothergill, Liberal National Organisation, N-E Warwickshire Liberal Association & Rt Hon Charles Albert McCurdy (Charles) Vernon (Oldfield) Bartlett (Charles) Vernon (Oldfield) Bartlett & World Review of Reviews (Claude) Nigel (Byam) Davies (Claude) Nigel (Byam) Davies (Colin) Mark Patrick (Crwfurd) Wilfrid Griffin Eady (Cyril) Berkeley Ormerod (Cyril) Desmond Keeling (Cyril) George Toogood (Cyril) Kenneth Bird (David) Euan Wallace (Davies) Evan Bedford (Denis Duncan) -
Sets and Boolean Algebra
MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS SETS AND SUBSETS Denitions (1) A set A in any collection of objects which have a common characteristic. If an object x has the characteristic, then we say that it is an element or a member of the set and we write x ∈ A.Ifxis not a member of the set A, then we write x/∈A. It may be possible to specify a set by writing down all of its elements. If x, y, z are the only elements of the set A, then the set can be written as (2) A = {x, y, z}. Similarly, if A is a nite set comprising n elements, then it can be denoted by (3) A = {x1,x2,...,xn}. The three dots, which stand for the phase “and so on”, are called an ellipsis. The subscripts which are applied to the x’s place them in a one-to-one cor- respondence with set of integers {1, 2,...,n} which constitutes the so-called index set. However, this indexing imposes no necessary order on the elements of the set; and its only pupose is to make it easier to reference the elements. Sometimes we write an expression in the form of (4) A = {x1,x2,...}. Here the implication is that the set A may have an innite number of elements; in which case a correspondence is indicated between the elements of the set and the set of natural numbers or positive integers which we shall denote by (5) Z = {1, 2,...}. (Here the letter Z, which denotes the set of natural numbers, derives from the German verb zahlen: to count) An alternative way of denoting a set is to specify the characteristic which is common to its elements. -
The Story of the Four White Sisterit and Their Husbands--Catherine and Governor John Carver, Bridget and Pastor John Robinson
THE BOOK OF WHITE ANCESTRY THE EARLY HISTORY OF THE WHITE FAMILY IN NOTTINGHAMSHIRE, HOLBND AND MASSACHUSETTS • .The Story of the Four White Sisterit and their Husbands--Catherine and Governor John Carver, Bridget and Pastor John Robinson, Jane and Randal1 Tickens, Frances and Francis Jessop-- and of William White, the Pilgrim of Leyden and Plymouth, Father of Resolved and Peregrine; With Notes on the Families of Robinson, Jessup, and of Thomas ~hite of Wey- mouth, Massachusetts. Compiled by DR. CARLYLE SNOW \ffiITE, 6 Petticoat Lane, Guilford, Connecticut. PART ONE: THE WHITE FAMILY IN ENGLAND AND HOLLAND. 1. THOMAS WHITE OF NOTTINGHAMSHIRE. 1 2. THE DESCENDANTS OF THOMAS WHITZ. 5 (1) The Smith Family. (2) Catherine \-Jhite and Governor John Carver. (3) The Ancestry of the Jessup Family. 3. WILLIAM vJHITE, FATHER OF EE30LVED AND PEREGRINE. 7 4. THE WHITES OF STURTON LE STEEPLE IN NOTTINGHAHSHIRE. 8 5. JOHN ROBINSON AND BRIDGET \-JHITE. 11 6. THE FOUNDING OF THE SEPARATIST CONGREGATIONAL CHURCH. 13 7. THE PILGRIMS IN HOLLA.ND. 15 (1) Thomas White and the Separatists 15 of the West. (2) 11A Separated People." 16 8. THE 11MAYFLOWER, 11 1620. 21 (1) Roger White and Francis Jessop. 22 PART TWO: THE FOUNDING OF NEW ENGIAND. l. PURITAN DEMOCRACY .AND THE NEW ENOLA.ND WAY. 26 2. ~ORDS AND RELICS OF THE \-JHITE FA?m.Y • 33 (1) Relics or the 'White Family in Pilgrim Hall and &.sewhere. 35 (2) The Famous 1588 •Breeches Bible1 or William White. 36 3. SUSANNA vlHITE AND GOVERNOR EDWARD WINSLCW. 37 4. RESOLVED \-JHITE AND JUDITH VASSALL OF PLYMOUTH AND MARSHFIEID, MASS. -
Redacted Thesis (PDF, 12Mb)
Victorian Egyptology and the Making of a Colonial Field Science, 1850 – 1906 by Meira Gold Wolfson College Department of History and Philosophy of Science This thesis is submitted for the degree of Doctor of Philosophy Date of Submission: December 2019 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my thesis has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. It does not exceed the prescribed word limit for the History and Philosophy of Science Degree Committee. Abstract Victorian Egyptology and the Making of a Colonial Field Science, 1850-1906 Meira Gold This dissertation provides a new account of the origins of archaeological fieldwork in the Nile Delta. It considers how practitioners from diverse disciplinary backgrounds circulated knowledge about the built environment of pharaonic ruins: monuments, architecture, burials, and soil mounds that remained in situ. I trace the development of Egyptology from an activity that could be practiced long-distance through a network of informants to one that required first-hand field experience. -
Boolean Algebras
CHAPTER 8 Boolean Algebras 8.1. Combinatorial Circuits 8.1.1. Introduction. At their lowest level digital computers han- dle only binary signals, represented with the symbols 0 and 1. The most elementary circuits that combine those signals are called gates. Figure 8.1 shows three gates: OR, AND and NOT. x1 OR GATE x1 x2 x2 x1 AND GATE x1 x2 x2 NOT GATE x x Figure 8.1. Gates. Their outputs can be expressed as a function of their inputs by the following logic tables: x1 x2 x1 x2 1 1 ∨1 1 0 1 0 1 1 0 0 0 OR GATE 118 8.1. COMBINATORIAL CIRCUITS 119 x1 x2 x1 x2 1 1 ∧1 1 0 0 0 1 0 0 0 0 AND GATE x x¯ 1 0 0 1 NOT GATE These are examples of combinatorial circuits. A combinatorial cir- cuit is a circuit whose output is uniquely defined by its inputs. They do not have memory, previous inputs do not affect their outputs. Some combinations of gates can be used to make more complicated combi- natorial circuits. For instance figure 8.2 is combinatorial circuit with the logic table shown below, representing the values of the Boolean expression y = (x x ) x . 1 ∨ 2 ∧ 3 x1 x2 y x3 Figure 8.2. A combinatorial circuit. x1 x2 x3 y = (x1 x2) x3 1 1 1 ∨0 ∧ 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 However the circuit in figure 8.3 is not a combinatorial circuit. -
Boolean Algebra.Pdf
Section 3 Boolean Algebra The Building Blocks of Digital Logic Design Section Overview Binary Operations (AND, OR, NOT), Basic laws, Proof by Perfect Induction, De Morgan’s Theorem, Canonical and Standard Forms (SOP, POS), Gates as SSI Building Blocks (Buffer, NAND, NOR, XOR) Source: UCI Lecture Series on Computer Design — Gates as Building Blocks, Digital Design Sections 1-9 and 2-1 to 2-7, Digital Logic Design CECS 201 Lecture Notes by Professor Allison Section II — Boolean Algebra and Logic Gates, Digital Computer Fundamentals Chapter 4 — Boolean Algebra and Gate Networks, Principles of Digital Computer Design Chapter 5 — Switching Algebra and Logic Gates, Computer Hardware Theory Section 6.3 — Remarks about Boolean Algebra, An Introduction To Microcomputers pp. 2-7 to 2-10 — Boolean Algebra and Computer Logic. Sessions: Four(4) Topics: 1) Binary Operations and Their Representation 2) Basic Laws and Theorems of Boolean Algebra 3) Derivation of Boolean Expressions (Sum-of-products and Product-of-sums) 4) Reducing Algebraic Expressions 5) Converting an Algebraic Expression into Logic Gates 6) From Logic Gates to SSI Circuits Binary Operations and Their Representation The Problem Modern digital computers are designed using techniques and symbology from a field of mathematics called modern algebra. Algebraists have studied for a period of over a hundred years mathematical systems called Boolean algebras. Nothing could be more simple and normal to human reasoning than the rules of a Boolean algebra, for these originated in studies of how we reason, what lines of reasoning are valid, what constitutes proof, and other allied subjects. The name Boolean algebra honors a fascinating English mathematician, George Boole, who in 1854 published a classic book, "An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities." Boole's stated intention was to perform a mathematical analysis of logic. -
Boolean Algebra
Boolean Algebra ECE 152A – Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.5 Boolean Algebra 2.5.1 The Venn Diagram 2.5.2 Notation and Terminology 2.5.3 Precedence of Operations 2.6 Synthesis Using AND, OR and NOT Gates 2.6.1 Sum-of-Products and Product of Sums Forms January 11, 2012 ECE 152A - Digital Design Principles 2 Reading Assignment Brown and Vranesic (cont) 2 Introduction to Logic Circuits (cont) 2.7 NAND and NOR Logic Networks 2.8 Design Examples 2.8.1 Three-Way Light Control 2.8.2 Multiplexer Circuit January 11, 2012 ECE 152A - Digital Design Principles 3 Reading Assignment Roth 2 Boolean Algebra 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative, and Distributive Laws 2.6 Simplification Theorems 2.7 Multiplying Out and Factoring 2.8 DeMorgan’s Laws January 11, 2012 ECE 152A - Digital Design Principles 4 Reading Assignment Roth (cont) 3 Boolean Algebra (Continued) 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operation 3.3 The Consensus Theorem 3.4 Algebraic Simplification of Switching Expressions January 11, 2012 ECE 152A - Digital Design Principles 5 Reading Assignment Roth (cont) 4 Applications of Boolean Algebra Minterm and Maxterm Expressions 4.3 Minterm and Maxterm Expansions 7 Multi-Level Gate Circuits NAND and NOR Gates 7.2 NAND and NOR Gates 7.3 Design of Two-Level Circuits Using NAND and NOR Gates 7.5 Circuit Conversion Using Alternative Gate Symbols January 11, 2012 ECE 152A - Digital Design Principles 6 Boolean Algebra Axioms of Boolean Algebra Axioms generally presented without proof 0 · 0 = 0 1 + 1 = 1 1 · 1 = 1 0 + 0 = 0 0 · 1 = 1 · 0 = 0 1 + 0 = 0 + 1 = 1 if X = 0, then X’ = 1 if X = 1, then X’ = 0 January 11, 2012 ECE 152A - Digital Design Principles 7 Boolean Algebra The Principle of Duality from Zvi Kohavi, Switching and Finite Automata Theory “We observe that all the preceding properties are grouped in pairs. -
Boolean Algebra Computer Fundamentals
CCoommppuutterer FFununddaammenenttaallss:: PPrradadeeepep KK.. SSiinhanha && PPrriititi SSiinhanha Ref. Page Chapter 6: Boolean Algebra and Logic Circuits Slide 1/78 CCoommppuutterer FFununddaammenenttaallss:: PPrradadeeepep KK.. SSiinhanha && PPrriititi SSiinhanha LLeeararnniinngg ObObjjeeccttiivveses In this chapter you will learn about: § Boolean algebra § Fundamental concepts and basic laws of Boolean algebra § Boolean function and minimization § Logic gates § Logic circuits and Boolean expressions § Combinational circuits and design Ref. Page 60 Chapter 6: Boolean Algebra and Logic Circuits Slide 2/78 CCoommppuutterer FFununddaammenenttaallss:: PPrradadeeepep KK.. SSiinhanha && PPrriititi SSiinhanha BBooooleleaann AAllggeebrabra § An algebra that deals with binary number system § George Boole (1815-1864), an English mathematician, developed it for: § Simplifying representation § Manipulation of propositional logic § In 1938, Claude E. Shannon proposed using Boolean algebra in design of relay switching circuits § Provides economical and straightforward approach § Used extensively in designing electronic circuits used in computers Ref. Page 60 Chapter 6: Boolean Algebra and Logic Circuits Slide 3/78 CCoommppuutterer FFununddaammenenttaallss:: PPrradadeeepep KK.. SSiinhanha && PPrriititi SSiinhanha FundamFundameennttalal CCoonncceeppttss ooffBBoooolleeaann AAlglgeebbrara § Use of Binary Digit § Boolean equations can have either of two possible values, 0 and 1 § Logical Addition § Symbol ‘+’, also known as ‘OR’operator, used for logical