Polynomial Factorization and Nonrandomness of Bits of Algebraic and Some Transcendental Numbers Author(s): R. Kannan, A. K. Lenstra and L. Lovász Source: Mathematics of Computation, Vol. 50, No. 181 (Jan., 1988), pp. 235-250 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2007927 Accessed: 20-04-2015 18:58 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/2007927?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
[email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Computation. http://www.jstor.org This content downloaded from 128.2.113.111 on Mon, 20 Apr 2015 18:58:40 UTC All use subject to JSTOR Terms and Conditions MATHEMATICS OF COMPUTATION VOLUME 50, NUMBER 181 JANUARY 1988, PAGES 235-250 Polynomial Factorization and Nonrandomness of Bits of Algebraic and Some TranscendentalNumbers By R. Kannan, A. K. Lenstra, and L. LovAsz Abstract. We show that the binary expansions of algebraic numbers do not form secure pseudorandom sequences; given sufficiently many initial bits of an algebraic number, its minimal polynomial can be reconstructed, and therefore the further bits of the algebraic number can be computed.