MYB72-Dependent Coumarin Exudation Shapes Root Microbiome Assembly to Promote Plant Health
MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health Ioannis A. Stringlisa,1,KeYua,1, Kirstin Feussnerb,1, Ronnie de Jongea,c,d, Sietske Van Bentuma, Marcel C. Van Verka, Roeland L. Berendsena, Peter A. H. M. Bakkera, Ivo Feussnerb,e, and Corné M. J. Pietersea,2 aPlant–Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB Utrecht, The Netherlands; bDepartment of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany; cDepartment of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium; dDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; and eDepartment of Plant Biochemistry, Göttingen Center for Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany Edited by Jeffery L. Dangl, University of North Carolina at Chapel Hill, Chapel Hill, NC, and approved April 3, 2018 (received for review December 22, 2017) Plant roots nurture a tremendous diversity of microbes via exudation of leaves do not display abundant transcriptional changes (9). photosynthetically fixed carbon sources. In turn, probiotic members of However, upon pathogen or insect attack, ISR-expressing leaves the root microbiome promote plant growth and protect the host plant develop an accelerated, primed defense response that is associated against pathogens and pests. In the Arabidopsis thaliana–Pseudomonas with enhanced resistance (9–11). In contrast to foliar tissues, simiae WCS417 model system the root-specific transcription factor WCS417-colonized roots show abundant transcriptional changes MYB72 and the MYB72-controlled β-glucosidase BGLU42 emerged as (9, 11–13). Among the WCS417-induced genes, the root-specific important regulators of beneficial rhizobacteria-induced systemic resis- R2R3-type MYB transcription factor gene MYB72 emerged as a tance (ISR) and iron-uptake responses.
[Show full text]