The Se∓H Bond of Benzeneselenols (Arse-H): Relationship Between

Total Page:16

File Type:pdf, Size:1020Kb

The Se∓H Bond of Benzeneselenols (Arse-H): Relationship Between Chemical Physics 415 (2013) 18–25 Contents lists available at SciVerse ScienceDirect Chemical Physics journal homepage: www.elsevier.com/locate/chemphys The Se–H bond of benzeneselenols (ArSe-H): Relationship between bond dissociation enthalpy and spin density of radicals ⇑ Pham Cam Nam a, , Minh Tho Nguyen b,c a Department of Chemistry, Danang University of Technology (DUT), The University of Danang, 54 Nguyen Luong Bang, Lien Chieu, Da Nang, Viet Nam b Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium c Institute for Computational Science and Technology at HoChiMinh City (ICST), Quang Trung Software Park, HoChiMinh City, Viet Nam article info abstract Article history: Bond dissociation enthalpies (BDE) of benzeneselenol (ArSe-H) and its para and meta-substituted deriv- Received 7 December 2012 atives are calculated using the (RO)B3LYP/6-311++G(2df,2p)//(U)B3LYP/6-311G(d,p) procedure. The com- In final form 7 February 2013 puted BDE(Se–H) = 308 ± 8 kJ/mol for the parent PhSe-H is significantly smaller than the experimental Available online 14 February 2013 value of 326.4 ± 16.7 kJ/mol [Kenttamaa and coworkers, J. Phys. Chem. 100 (1996) 6608] but larger than a previous value of 280.3 kJ/mol [Newcomb et al., J. Am. Chem. Soc. 113 (1991) 949]. The substituent Keywords: effects on BDE’s are analyzed in terms of a relationship between BDE(Se–H) and Mulliken atomic spin Benzeneselenol densities at the Se radical centers of ArSe (p radicals). Good correlations between Hammett’s substituent Bond dissociation enthalpies constants with BDE(Se–H) are established. Proton affinity and ionization energy amount to PA(C H Antioxidants 6 5- Mulliken atomic spin densities SeH) = 814 ± 4 kJ/mol and IE(C6H5SeH) = 8.0 ± 0.1 eV. IEs of the substituted benzeneselenols are also Proton affinities determined. Calculated results thus suggest that 4-amino-benzeneselenol derivatives emerge as efficient Ionization energies antioxidants. Hammett’s correlations Ó 2013 Elsevier B.V. All rights reserved. 1. Introduction The homolytic Se–H bond energy of benzeneselenol, BDE(Se–H), was initially estimated to be 280.3 kJ/mol by Newcomb et al. [10]. Chalcogen-containing compounds play an important role in Subsequently, this value was again determined experimentally by chemistry and biochemistry. The selenium element which is one Kenttamaa and coworkers, who reported a value of BDE(Se– of the chalcogens and belongs to the group 16 of the Periodic Table, H) = 326.4 ± 16 kJ/mol (78 ± 4 kcal/mol) [12]. A discrepancy of occurs in four different valence oxidation states, namely Se6+,Se4+, about 46 kJ/mol (or 11 kcal/mol) between both experimental re- Se2À and Se0. Selenium compounds are often used in the glass sults for the BDE(Se–H) is in fact quite large, but it has not been industry as decolorizing agents and in the rubber industry as vul- reevaluated in the last 15 years. The lack of a reliable BDE(Se–H) canizing agents. Selenium is also an essential trace element on hu- value prompts us to reevaluate it using the current and appropriate mans and other species. Organoselenium compounds such as quantum chemical methods. ebselen (1,2-phenyl-1,2-benzisoselenazol-3(2H)-one) [1,2], methyl The structure–antioxidant activity relationships of aromatic selenol [3], dimethyl diselenide [4] and some selenium analogs [5– compounds YC6H4XH, where X = O, S, CH2, SiH2, NH,...have exten- 7] were found to exhibit significant antioxidant activities. Another sively been investigated and correlations between energies and basic selenium compound which has also attracted much interest structural parameters have clearly been established. The effects is benzeneselenol C6H5SeH. The latter is the heavier congener of of the substituents Y on the activities are mainly exerted on the phenol (C6H5OH) and thiophenol (C6H5SH) and well known as stability of the radicals generated [13–15]. Of the latter, the spin one of the most efficient radical traps both in the gas phase and characteristics of the radical center emerge as an interesting in solution, and plays a central role in radical reaction rate mea- parameter. As a matter of fact, homolytic bond dissociation corre- surements [8–12]. The rate of radical trapping by benzeneselenol sponds to the breaking of a bond producing a radical species, and is characterized by the enthalpy change associated with the hydro- the spin density at the radical center has an important role in gen atom transfer reaction. The formation and homolysis of the determining the stability of the resulting radical. The spin density selenium–hydrogen bond in C6H5SeH are thus proved to be an in part describes the electronic structure of a radical and also the important factor in many chemical and biochemical processes. inherent delocalization of the unpaired electron and related conju- gation effects. For the phenol derivatives (YC6H4OH), the changes of the BDE(O–H) with respect to various physical properties ⇑ Corresponding author. including the spin delocalization, were investigated by several E-mail address: [email protected] (P.C. Nam). 0301-0104/$ - see front matter Ó 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.chemphys.2013.02.008 P.C. Nam, M.T. Nguyen / Chemical Physics 415 (2013) 18–25 19 groups [16–20]. Bond dissociation enthalpies and ionization ener- The homolytic Se–H bond dissociation enthalpy value at gies of polyphenols have been the topics of many previous papers. 298.15 K for the molecule Y-C6H4-SeH is calculated from the Eq. The polyphenols are characterized by an extended conjugation and (2): delocalization of the p-electrons involving the aromatic ring(s) and the substituents. They give rise to stable radical species upon the BDEðSe—HÞ¼Hf ðY À C6H4Se ÞþHf ðH ÞHf ðY À C6H4Se—HÞð2Þ removal of a hydrogen atom or an electron. The odd electron ap- pears to be delocalized over the entire molecule thanks to the pla- where Hf are the enthalpies of different species at 298.15 K. The en- nar geometry conformation. The stability of radicals is enhanced by ergy of hydrogen atom is taken from the experimental value of the possibility to establish internal H-bonds between the radical- À0.5 hartree. In all cases considered, the parent C6H5Se radical is ized oxygen atom and vicinal hydroxyl groups [21–24]. However, used as a reference for comparison. the behaviors of benzeneselenol and its derivatives as radical scav- The ionization energy (IE) of Y-C6H4SeH is defined as the small- engers, antioxidants and related properties have not been studied est amount of energy required to remove an electron from a deriv- yet. In this context, we set out to theoretically determine the trend ative. It is computed as the difference between the energies of its of Se–H bond strengths in a series of ArSeH derivatives, along with radical cation and the neutral molecule (Eq. (3)). For both neutral the effects of various substituents at both the para and meta posi- and radical cation species, zero-point energies (ZPE) determined tions of the aromatic ring on the BDE(Se–H) values. from harmonic vibrational frequencies obtained at the B3LYP/6- The purpose of the present study is twofold. First, we calculate 311G(d,p) level are added, without scaling factor, to the electronic energy to obtain the energy E0 at 0 K (Eq (3)). the standard BDE(Se–H) values at 298.15 K of the parent C6H5SeH and two series of 3- and 4-substituted benzeneselenols YC H SeH þ 6 4 IEðY À C6H4SeHÞ¼E0ðY À C6H4 À SeH ÞE0ðY À C6H4SeHÞð3Þ with different Y substituents. In view of the discrepancy of exper- imental results on the BDE(Se–H) of C6H5SeH mentioned above, it is of importance to reevaluate it using reliable computations. Sec- 3. Results and discussion ond, we attempt to find out if there is any relationship between the BDE(Se–H) with the spin densities at the Se centers of the 3.1. Optimized geometry of C6H5SeH and its thermochemical ArSe radicals [19,25]. This could provide us with a better under- parameters standing of the origin of the substituent effect on Se–H bond dis- sociation energy in terms of spin delocalization. To establish such The equilibrium geometry of the parent benzeneselenol is char- a relationship, we make use of the changes of the Mulliken atomic acterized by two lowest-energy conformations shown in Fig. 1a spin density (hereafter denoted as MASD) with respect to the and Fig. 1b. Contrary to phenol and thiophenol, C6H5SeH is not pla- changes of BDE(Se–H) when the substituents Y are placed at the nar. The hydrogen atom (at Se) in both optimized structures is lo- para- and meta-position of the ring. In addition, the classical cated outside the benzene ring. Some selected bond lengths, bond Hammett parameters are also employed to unravel the effects angles and dihedral angles of both conformers obtained using dif- of the electron withdrawing and donating groups on the distribu- ferent functionals are given in the Supplementary information (SI) tion of spin at the selenium center and thereby the stability of the file. radicals. The C–C bond distances within the aromatic ring and the C1– Se bond length obtained by four DFT functionals are quite similar0 2. Computational methods to each other. The length variation is about from 0.001 to 0.005 ÅA when using B3LYP, B3PW91, PBE1PBE and BMK functionals. A sig- Previous studies abundantly showed that density functional nificant difference occurs only on the bond distance of C1–Se and theory (DFT) is one efficient and economic tool to determine with the dihedral angle of C2C1SeH.
Recommended publications
  • Selenium-Epoxy ‘Click’ Reaction and Se-Alkylation—Efficient Access to Organo-Selenium and Selenonium Compounds
    Communication Selenium-Epoxy ‘Click’ Reaction and Se-Alkylation—Efficient Access to Organo-Selenium and Selenonium Compounds Taejun Eom and Anzar Khan * Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3290-4859 Received: 3 September 2020; Accepted: 29 September 2020; Published: 5 October 2020 Abstract: This work establishes the ‘click’ nature of the base-catalyzed oxirane ring opening reaction by the selenolate nucleophile. The ‘click’-generated ß-hydroxy selenide can be alkylated to afford cationic selenium species. Hemolytic studies suggest that selenonium cations do not lyse red blood cells even at high concentrations. Overall, these results indicate the future applicability of the developed organo-selenium chemistry in the preparation of a new class of cationic materials based on the seleno-ether motif. Keywords: ‘click’ chemistry; oxirane ring opening reaction; organo-selenium; organo-selenonium 1. Introduction Selenium was discovered in early 1800 [1,2]. The chemistry of organo-selenium nucleophiles, however, only began in 1973 with Sharpless and Lauers’ report on the preparation of phenylselenolate and its application in converting epoxides into allylic alcohols [3]. Since then a wide range of reactions based on nucleophilic selenium reagents have been developed for use in organic synthesis [1,2]. Inspired by Sharpless’ selenium reagent and the growing interest in organoselenium materials [4], we began to examine the full scope of the ring opening reaction of epoxides by the selenolates in context of ‘click’ chemistry—another area of research pioneered by Sharpless [5]. ‘Click’ chemistry entails modular and wide in scope reactions that can be carried out under simple experimental conditions and produce quantitative yields and inoffensive byproducts [6].
    [Show full text]
  • FULL PAPER Alkyl and Aryl Thiol Addition to [1.1.1]Propellane – Scope and Limitations of a Fast Conjugation Reaction
    FULL PAPER Alkyl and aryl thiol addition to [1.1.1]propellane – scope and limitations of a fast conjugation reaction Robin M. Bär,[a] Stefan Kirschner,[a] Martin Nieger,[b] Stefan Bräse*,[a],[c] Abstract: Herein we report the addition of different thiols to the medicinal chemistry as bioisoster of para-substituted benzene[10] strained carbon-carbon bond of [1.1.1]propellane (1). We investigated and alkyne moieties.[11] With similar length and angle proportions, the reaction pathway, performed the addition with substituted thiols, the rigid group can alter the physicochemical properties such as hydrogen sulfide and protected cysteine and verified further solubility and permeability and increase the three-dimensionality. modifications of the products. The clean reaction proceeds probably Driven by the exploration of novel chemical space for drug through a radical chain process as we confirmed with different development, Bunker et al. developed a facile route to deuterium labelling experiments. It shows great functional group bicyclo[1.1.1]pentylamine, a useful building block, in four steps tolerance as halogen-, hydroxy-, methoxy-, carboxy-, amino- and from 1.[12] The group of Baran reported a method for direct nitro-substituted thiols could be added to 1 with few by-products in “propellerization” of amines by strain-release amination.[13] This 16–90% yield. Oxidation of the products offers a tuning of the polarity click-like reaction[14] enables the late-stage modification of amines and subsequent reactions of the products. The “click”-type reaction via the turbo-amides. proceeds even faster with selenols as we show in a proof-of-concept.
    [Show full text]
  • Selenium Redox Biochemistry of Zinc–Sulfur Coordination Sites in Proteins and Enzymes
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 1910–1914, March 1999 Biochemistry Selenium redox biochemistry of zinc–sulfur coordination sites in proteins and enzymes CLAUS JACOB,WOLFGANG MARET, AND BERT L. VALLEE* Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Seeley G. Mudd Building, 250 Longwood Avenue, Boston, MA 02115 Contributed by Bert L. Vallee, December 31, 1998 ABSTRACT Selenium has been increasingly recognized pounds can oxidize thiols under reducing conditions such as as an essential element in biology and medicine. Its biochem- those found in the cytosol. Selenium compounds are redox istry resembles that of sulfur, yet differs from it by virtue of fined-tuned owing to the many different oxidation states of both redox potentials and stabilities of its oxidation states. selenium as well as the protein environment in which the Selenium can substitute for the more ubiquitous sulfur of element resides and in which it is found catalytically active in cysteine and as such plays an important role in more than a peroxidative reactions (6), thiolydisulfide interchange (7), and dozen selenoproteins. We have chosen to examine zinc–sulfur reduction of cytochrome c (8) or molecular oxygen to super- centers as possible targets of selenium redox biochemistry. oxide (9) by thiols. These multiple catalytic potentials may be Selenium compounds release zinc from zincythiolate- among the reasons that selenium compounds are so effective coordination environments, thereby affecting the cellular thiol while acting at concentrations much lower than the corre- redox state and the distribution of zinc and likely of other sponding sulfur analogues. metal ions.
    [Show full text]
  • The Journal of Organic Chemistry 1959 Volume 24 No.7
    THE JOURNAL OF Organic Chemistry Volume 24 JULY-DECEMBER 1959 (Pages 897-2108) George H. Coleman, Editor Detroit, Mich. R. Martin Stiles, Assistant Editor Ann Arbor, Mich. BOARD OF EDITORS William J. Bailey Harlan L. Goering W. E. Parham Virgil B oekelheide George S. Hammond C. C. Price F. G. B ordwell H enry B. Hass John D. R oberts Herbert C. Brown R. G. Jones H arold Shechter Marvin Carmack N elson J. Leonard J. C. Sheehan Alsoph H. Corwin Leo Marion Gilbert Stork D. J. Cram Frank C. McGrew R. B. T urner William G. D auben George P. M ueller W. H. Urry Carl D jerassi Milton Orchin Bernhard Witkop Foreign rs: R obert R obinson, P. Karrer EASTON, PENNSYLVANIA MACK PRINTING CO. THE JOURNAL OF Organic Chemistry © Copyright J959 Volume 24, Number 7 by the American Chemical Society July 30, 1959 [Contribution from the P harmaceutical L aboratory, M edical School, K eio U n iversity ] Santonin and Related Compounds. XIX.1 Some Transformation Reactions of 2-Bromo-a-tetrahydrosantonin KOJI YAMAKAWA Received November 25, 1958 The 2-bromo structure (II) for the monobromo derivative of a-tetrahydrosantonin (I) was definitely proved by the reaction sequence (II —*■ IV —► VI —► VIII). The 2-bromoketone (II) on acetolysis afforded the more stable epimer (IX) of the ketol acetate, which was also prepared from I with lead tetraacetate in reflux acetic acid. When the latter reaction was performed at the lower temperature, the other epimer (X) was obtained almost quantitatively. Epimerization of X to IX was effected by refluxing with acetic acid.
    [Show full text]
  • New Reagents for Fluoroalkylchalcogenations : Applications to Hot Chemistry Ermal Ismalaj
    New Reagents For Fluoroalkylchalcogenations : applications To Hot Chemistry Ermal Ismalaj To cite this version: Ermal Ismalaj. New Reagents For Fluoroalkylchalcogenations : applications To Hot Chemistry. Or- ganic chemistry. Université de Lyon, 2017. English. NNT : 2017LYSE1021. tel-01522960 HAL Id: tel-01522960 https://tel.archives-ouvertes.fr/tel-01522960 Submitted on 15 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2017LYSE1021 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale ED 206 (Ecole Doctorale de Chimie) Spécialité de doctorat : Chimie Discipline : Chimie Organique Soutenue publiquement 10/02/2017, par : (Ermal Ismalaj) New Reagents For Fluoroalkylchalcogenations. Applications To Hot Chemistry Devant le jury composé de : Popowycz Florence Professeur INSA Lyon Présidente Gouverneur Véronique Professeur University of Oxford Rapporteur Magnier Emmanuel, DR CNRS Université de Versailles-Saint-Quentin Rapporteur Zimmer Luc, Professeur, Université Claude Bernard Lyon-1, Examinateur Billard Thierry DR CNRS Université Lyon 1 Directeur de thèse Le Bars Didier, MCU-PH, Universite Lyon 1. Membre invite UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M. le Professeur Frédéric FLEURY Président du Conseil Académique M.
    [Show full text]
  • Page 1 Note: Within Nine Months from the Publication of the Mention
    Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 0 954 558 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C10L 1/14 (2006.01) C10L 1/10 (2006.01) 14.06.2006 Bulletin 2006/24 C10L 1/02 (2006.01) (21) Application number: 97954909.4 (86) International application number: PCT/US1997/022046 (22) Date of filing: 08.12.1997 (87) International publication number: WO 1998/026028 (18.06.1998 Gazette 1998/24) (54) FUEL COMPOSITIONS EXHIBITING IMPROVED FUEL STABILITY VERBESSERTE BRENNSTOFFESTABILITÄT AUFWEISENDE BRENNSTOFFEZUSAMMENSETZUNGEN COMPOSITIONS DE CARBURANT CARACTERISEES PAR UNE STABILITE AMELIOREE DUDIT CARBURANT (84) Designated Contracting States: (56) References cited: DE FR GB IT NL WO-A-95/23836 WO-A-95/33022 WO-A-96/40844 DE-C- 508 917 (30) Priority: 09.12.1996 US 763696 US-A- 4 390 344 US-A- 4 397 655 US-A- 4 929 252 (43) Date of publication of application: 10.11.1999 Bulletin 1999/45 • DATABASE WPI Section Ch, Week 7626 Derwent Publications Ltd., London, GB; Class E11, AN (73) Proprietor: ORR, William C. 76-48473X XP002065173 & JP 51 052 403 A Denver, (ADACHI M) , 10 May 1976 Colorado 80210 (US) Remarks: (72) Inventor: ORR, William C. The file contains technical information submitted after Denver, the application was filed and not included in this Colorado 80210 (US) specification (74) Representative: Weydert, Robert Dennemeyer & Associates Sàrl P.O. Box 1502 1015 Luxembourg (LU) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Selenium-Epoxy 'Click' Reaction and Se-Alkylation
    Selenium-Epoxy ‘Click’ Reaction and Se-Alkylation: Efficient Access to Organo- Selenium and Selenonium Compounds Taejun Eom and Anzar Khan* *Email: [email protected] General Methods and Materials Glycidol, glycidyl methacrylate, allyl glycidyl ether, glycidyl propargyl ether, epichlorohydrin, aniline, benzoic acid, phenol, thiophenol, benzeneselenol, lithium hydroxide monohydrate (LiOH), 1,8,-diazabicyclo[5.4.0]undec-7-ene (DBU), triethylamine (TEA), acetic anhydride, 3-bromopropane-1,2-diol, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI), 4-dimethylaminopyridine (DMAP), acetic acid, iodomethane, silver tetrafluoroborate (AgBF4), red blood cells (sterile defibrinated sheep’s blood, RBC), were purchased from commercial sources. NMR spectra were recorded on a Varian NMR system 500 MHz spectrometer, using CDCl3, DMSO-d6 and D2O as the solvents. HRMS was carried out on a JMS-700 from JEOL in EI and FAB mode. FT-IR spectrometer with ATR (attenuated total reflection) was carried out on Agilent Cary 630 FTIR. Hemolysis assay were performed using a microplate reader (Spectra Max 340, Molecular Devices, Sunnyvale, CA USA). Synthesis of 3 in water: To a solution of freshly obtained benzeneselenol 1 (471 mg, 3.0 mmol) and glycidol 2 (222 mg, 3.0 mmol) in 3 mL water was added TEA, DBU, or LiOH (0.01, 0.03 or 0.05 eq., respectively, per selenol unit) at 0 °C. The cooling was removed and the reaction mixture was stirred at room temperature for time shown in Table 2. After this time, 100 L of the reaction mixture was removed and diluted with 1 mL of CDCl3, dried over sodium sulfate, and studied with the help of NMR spectroscopies.
    [Show full text]
  • CRC Handbook
    4:.#0-4"/%5&3.*/0-0(:'031):4*$"-"/%$)&.*$"-26"/5*5*&4 5IF *OUFSOBUJPOBM 0SHBOJ[BUJPO GPS 4UBOEBSEJ[BUJPO *40 5IFTZNCPMGPSBQIZTJDBMRVBOUJUZJTBMXBZTHJWFOJOJUBMJD TMPQ *OUFSOBUJPOBM6OJPOPG1VSFBOE"QQMJFE$IFNJTUSZ *61"$ BOE JOH UZQF XIJMFTZNCPMTGPSVOJUTBSFHJWFOJOSPNBOUZQF$PMVNO UIF*OUFSOBUJPOBM6OJPOPG1VSFBOE"QQMJFE1IZTJDT *61"1 IBWF IFBEJOHTJOUBCMFTBOEBYJTMBCFMTPOHSBQITNBZDPOWFOJFOUMZCF KPJOUMZEFWFMPQFEBTFUPGSFDPNNFOEFETZNCPMTGPSQIZTJDBMBOE XSJUUFOBTUIFQIZTJDBMRVBOUJUZTZNCPMEJWJEFECZUIFVOJUTZN DIFNJDBMRVBOUJUJFT$POTJTUFOUVTFPGUIFTFSFDPNNFOEFETZN CPM FH CPMTIFMQTBTTVSFVOBNCJHVPVTTDJFOUJGJDDPNNVOJDBUJPO5IFMJTU CFMPXJTSFQSJOUFEGSPN3FGFSFODFXJUIQFSNJTTJPOGSPN*61"$ 5, 'VMMEFUBJMTNBZCFGPVOEJOUIFGPMMPXJOHSFGFSFODFT 7DN $Q+NPM , *BO.JMMT &E 2VBOUJUJFT 6OJUT BOE4ZNCPMTJO1IZTJDBM $IFNJTUSZ #MBDLXFMM 4DJFOUJGJD 1VCMJDBUJPOT 0YGPSE 5IF WBMVFT JO UIF UBCMF PS HSBQI BYJT BSF UIFO QVSF OVNCFST 4VCTDSJQUTUPTZNCPMTGPSQIZTJDBMRVBOUJUJFTTIPVMECFJUBMJDJGUIF &3$PIFOBOE1(JBDPNP 4ZNCPMT 6OJUT /PNFODMBUVSF TVCTDSJQUSFGFSTUPBOPUIFSQIZTJDBMRVBOUJUZPSUPBOVNCFS FH BOE 'VOEBNFOUBM $POTUBOUT JO 1IZTJDT %PDVNFOU $ oIFBUDBQBDJUZBUDPOTUBOUQSFTTVSF *61"1o BMTP QVCMJTIFE JO 1IZTJDB " o Q # oOUIWJSJBMDPFGGJDJFOU O *40 4UBOEBSET )BOECPPL 6OJUT PG .FBTVSFNFOU 4VCTDSJQUTXIJDIIBWFPUIFSNFBOJOHTTIPVMECFJOSPNBOUZQF *OUFSOBUJPOBM 0SHBOJ[BUJPO PG 4UBOEBSEJ[BUJPO (FOFWB NQoNBTTPGUIFQSPUPO &LoLJOFUJDFOFSHZ (&/&3"-36-&4 5IFGPMMPXJOHUBCMFTHJWFUIFSFDPNNFOEFETZNCPMTGPSUIFNB KPSDMBTTFTPGQIZTJDBMBOEDIFNJDBMRVBOUJUJFT5IFFYQSFTTJPOJO 5IFWBMVFPGBQIZTJDBMRVBOUJUZJTFYQSFTTFEBTUIFQSPEVDUPGB
    [Show full text]
  • Radical Cyclization Approaches to Pyrrolidines
    ! " # $ %& '#() %*+*, ## )-,*!-#- $#.-*)- $$#.# 1 CONTENTS 1. INTRODUCTION. ...........................................................................................................................................2 1.1 PYRROLIDINES. ............................................................................................................................................2 1.1.1 Some recent synthetic pathways to pyrrolidines....................................................................................3 1.2 RADICAL CHAIN REACTIONS AND THE TIN HYDRIDE METHOD.................................................................10 1.2.1 The chain reaction. ..............................................................................................................................12 1.2.2 The tin hydride method. .......................................................................................................................14 1.2.3 The 5-hexenyl radical. .........................................................................................................................15 1.2.4 The Beckwith-Houk model...................................................................................................................17 1.2.4.1 1-substituted hexenyl radicals.........................................................................................................................19 1.2.4.2 2-substituted hexenyl radicals.........................................................................................................................19
    [Show full text]
  • Reaction of Acyl Chlorides with in Situ Formed Zinc Selenolates: Synthesis of Selenoesters Versus Ring-Opening Reaction of Tetrahydrofuran
    Hindawi Publishing Corporation Journal of Chemistry Volume 2016, Article ID 2849140, 8 pages http://dx.doi.org/10.1155/2016/2849140 Research Article Reaction of Acyl Chlorides with In Situ Formed Zinc Selenolates: Synthesis of Selenoesters versus Ring-Opening Reaction of Tetrahydrofuran Gemma Bellino,1 Marialaura Scisciani,1 Jaqueline Pinto Vargas,2 Luca Sancineto,1 Luana Bagnoli,1 Francesca Marini,1 Diogo Seibert Lüdtke,2 Eder Joao Lenardao,3 and Claudio Santi1 1 Group of Catalysis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy 2Instituto de Qu´ımica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonc¸alves 9500, 91501-970 Porto Alegre, RS, Brazil 3Laboratorio´ de S´ıntese Organicaˆ Limpa (LASOL), Centro de Cienciasˆ Qu´ımicas, Farmaceuticasˆ e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, RS, Brazil Correspondence should be addressed to Claudio Santi; [email protected] Received 2 March 2016; Accepted 24 May 2016 Academic Editor: Matthias D’hooghe Copyright © 2016 Gemma Bellino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Attempting to apply the in situ production of PhSeZnSePh to the synthesis of selenoesters, an unexpected reaction involving the solvent (tetrahydrofuran) was observed and studied. We reported here some evidences about the mechanism and the possibility to control the chemoselectivity of this new reaction that afforded the formation of interesting selenoderivatives in which the selenium moiety and the carboxylic one are spaced by four carbon units.
    [Show full text]
  • Water and Aqueous Mixtures As Convenient Alternative Media for Organoselenium Chemistry
    Review Water and Aqueous Mixtures as Convenient Alternative Media for Organoselenium Chemistry Claudio Santi 1,*, Raquel G. Jacob 2, Bonifacio Monti 1, Luana Bagnoli 1, Luca Sancineto 1 and Eder J. Lenardão 2 1 Department of Pharmaceutical Sciences, Group of Catalysis and Organic Green Chemistry, University of Perugia, Via del Liceo 1, Perugia 06100, Italy; [email protected] (B.M.); [email protected] (L.B.) [email protected] (L.S.) 2 Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA-Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; [email protected] (R.G.J.) [email protected] (E.J.L.) * Correspondence: [email protected]; Tel.: +39-75-585-5102; +39-75-585-5116: Academic Editors: Joaquín García Álvarez and Jonathan Sperry Received: 20 October 2016; Accepted: 2 November 2016; Published: 6 November 2016 Abstract: Even if water is the natural environment for bioorganic reactions, its use in organic chemistry is often severely limited by the high insolubility of the organic derivatives. In this review, we introduce some examples of the use of water to perform organoselenium chemistry. We mainly discuss the advantages of this medium when the recyclability is demonstrated and when the water can control the selectivity of a reaction or enhance the reaction rate. Keywords: on-water reactions; water; selenium; epoxide; zinc; michael addition; coupling; catalysis; oxidation 1. Introduction During the last two decades, the use of water as an alternative solvent for organic reactions has been debated. Water is the natural medium for all biochemical reactions and is often claimed as an ideal green solvent [1,2] because it is non-toxic and non-flammable, has a high heat capacity in adsorbing the energy produced during a chemical reaction, and has low cost and large availability.
    [Show full text]