MNRAS 000,1– ?? () Preprint 12 June 2018 Compiled using MNRAS LATEX style file v3.0

Type II supernovae in low luminosity host

C. P. Guti´errez1?, J. P. Anderson2, M. Sullivan1, L. Dessart3, S. Gonz´alez-Gaitan4, L. Galbany5, G. Dimitriadis6, I. Arcavi7,8 , F. Bufano9, T.-W. Chen10 , M. Dennefeld11, M. Gromadzki12, J. B. Haislip13, G. Hosseinzadeh† 7,8, D. A. Howell7,8,‡ C. Inserra1, E. Kankare14, G. Leloudas15, K. Maguire14, C. McCully7,8; N. Morrell16, F. Olivares E.17,18, G. Pignata19,17, D. E. Reichart13, T. Reynolds20, S. J. Smartt14, J. Sollerman21, F. Taddia21, K. Tak´ats17,19, G. Terreran22, S. Valenti23, D. R. Young14 1Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK 2European Southern Observatory, Alonso de C´ordova 3107, Casilla 19, Santiago, Chile 3Unidad Mixta Internacional Franco-Chilena de Astronom´ıa(CNRS, UMI 3386), Departamento de Astronom´ıa,Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 4CENTRA, Instituto Superior T´ecnico - Universidade de Lisboa, Portugal 5PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA 6Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 7Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA 8Las Cumbres Observatory, 6740 Cortona Dr Ste 102, Goleta, CA 93117-5575, USA 9INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia, 78, 95123, Catania, Italy 10Max-Planck-Institut f¨urExtraterrestrische Physik, Giessenbachstraße 1, 85748, Garching, Germany 11IAP/CNRS, UMR7095, and Sorbonne Universit´e98bis, Boulevard Arago, F-75014 Paris 12Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland 13University of North Carolina at Chapel Hill, Campus Box 3255, Chapel Hill, NC 27599-3255, USA 14Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK 15Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, 2100 Copenhagen, Denmark 16Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile 17Millennium Institute of Astrophysics, Vicuna Mackenna 4860, 7820436 Macul, Santiago, Chile 18Departamento de Astronom´ıa,Universidad de Chile, Camino el Observatorio 1515, Santiago, Chile 19Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Rep´ublica 252, Santiago, Chile 20Tuorla Observatory, Department of Physics and Astronomy, University of Turku, V¨ais¨al¨antie20, FI-21500 Piikki¨o,Finland 21The Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm , Sweden 22Center for Interdisciplinary Exploration and Research in Astrophysics CIERA, Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA 23Department of Physics, University of California, Davis, CA 95616, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V band, together with expansion velocities and pseudo- equivalent-widths (pEWs) of− several absorption lines in the SN spectra. For the SN arXiv:1806.03855v1 [astro-ph.HE] 11 Jun 2018 host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host . SNe II exploding in low luminosity galaxies dis- play weaker pEWs of Fe ii λ5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expan- sion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity. Key words: c The Authors supernovae: general – galaxies: general

? E-mail: [email protected] 2 C. P. Guti´errez et al.

1 INTRODUCTION This restricted range in host-galaxy luminosity has now been overcome with new surveys that scan large areas of Type II supernovae (SNe II) are the terminal explosions of the sky without preference to the location of bright, nearby massive (> 8 M ) that have retained a significant frac- galaxies. Such searches have found new trends with respect tion of their hydrogen envelopes and, hence, have optical to the ratios of different SN types as a function of galaxy spectra that exhibit strong Balmer lines (Minkowski 1941). luminosity (see Arcavi et al. 2010), but detailed studies of Initially, SNe II were separated into two groups: those with the properties of SNe II located in low-luminosity hosts are faster declining light curves were classified as SNe IIL, while still generally lacking. those with a plateau in their light curves (a quasi-constant A recent exception is Taddia et al.(2016, hereafter luminosity for a period of a few months) were classified as T16), who analysed a further 39 SNe II taken from the as SNe IIP (Barbon et al. 1979). This distinction has re- (intermediate) Palomar Transient Factory sample of Rubin cently been refined with larger samples of events that show et al.(2016), extending the sample to lower-metallicity with a continuum in their photometric properties (e.g., Anderson 18 events. These events showed smaller pEW(Fe ii 5018), et al. 2014; Sanders et al. 2015). This continuum suggests with a weak correlation between the inferred host-galaxy that SNe II1 events all come from the same progenitor pop- metallicity (using an average luminosity–colour–metallicity ulation. The direct identification of the progenitors on pre- relationship) and pEW(Fe ii 5018). In addition, T16 showed explosion images (Smartt 2015) has shown this population that SNe II with brighter peak magnitudes tend to occur at to be red supergiants (RSGs). lower metallicity. However, a significant diversity in the properties of This paper builds on these earlier studies, analysing a SNe II is observed. Large samples of events have begun to larger number of SNe II in low-luminosity hosts and their provide some understanding of this diversity (e.g., Arcavi properties. Of particular interest is the duration of the et al. 2012; Anderson et al. 2014; Faran et al. 2014a,b; Pe- ‘plateau’ phase in SN II light curves (P ). This has long jcha & Prieto 2015a,b; Gonz´alez-Gait´anet al. 2015; Valenti d been linked to the mass of the hydrogen-rich envelope of et al. 2016; Galbany et al. 2016; Rubin et al. 2016; Guti´errez the progenitor at the time of explosion (e.g., Popov et al. 2017a,b). It has been found that SNe II with faster 1993, and recent discussion in Guti´errezet al. 2017b), as P decline rates exhibit a shorter plateau duration (Anderson d is believed to be directly related to the time the hydrogen et al. 2014; Valenti et al. 2016; Guti´errezet al. 2017b). In envelope takes to fully recombine. The hydrogen envelope addition, they are brighter at 50 days from explosion and mass is itself related to the mass-loss suffered by the pro- during the radioactive tail phase, and have broader spectral genitor star during its lifetime and the amount of hydrogen absorption features (e.g., Hamuy 2003; Pastorello et al. 2003; that has been fused into higher mass elements in the core. Faran et al. 2014b; Pejcha & Prieto 2015a,b; Guti´errezet al. Given the metallicity dependence of mass-loss for hot single 2017b). These results suggest that the diversity is produced stars (e.g. Vink et al. 2001; Mokiem et al. 2007), most stellar by differences in the progenitor and the explosion mecha- models predict a strong dependence of core-collapse SN type nisms (e.g., the amount of the hydrogen envelope mass, the on progenitor metallicity (e.g. Heger et al. 2003; Chieffi & explosion energy, the radius, metallicity, and mass loss). Limongi 2013). This metallicity dependence of mass loss is SNe II have been proposed as environmental metallicity also presumed to affect the hydrogen envelope mass retained probes. Dessart et al.(2013, 2014, hereafter D14) presented by SN II progenitors, leading to a predicted dependence of SN II spectral models produced from progenitors with dif- the P on progenitor metallicity. ferent metallicities: 0.1, 0.4, 1 and 2 times solar metallicity d It should be noted, however, that the majority of the (Z ). With these models, they predict that the strength of mass loss suffered by a SN II progenitor will happen during the metal lines during the recombination phase should be re- the RSG phase, and currently there is no strong observa- lated to the metallicity of the SN progenitor. They also note tional evidence that the strength of RSG mass loss corre- a lack of SNe II at metallicities below 0.4 Z , supporting the lates with metallicity. A recent study by Chun et al.(2017) results of Stoll et al.(2013). Using a sample of 119 SNe II showed that metallicity dependence of mass loss is only ap- and gas-phase metallicity estimates derived from emission parent when the Schwarzschild criterion for convection is line measurements, Anderson et al.(2016, hereafter A16) employed; using the Ledoux criterion, the envelope mass at confirmed this prediction by showing a correlation between the epoch of explosion for SNe II was almost independent gas-phase metallicity and SN II pseudo-equivalent-widths of progenitor metallicity. This result is supported by Gold- (pEWs) of the Fe ii λ5018 line (pEW(Fe ii 5018)): SNe II man et al.(2017), who found no metallicity dependence of exploding in higher-metallicity galaxies have stronger iron mass-loss for RSGs in the (LMC) lines in their spectra compared to those in lower-metallicity between half and twice solar metallicity. Within this con- environments. However, no trend was seen with any other text, observations of SNe II arising from a large range of SN II property, and A16 therefore concluded that progen- environmental (and therefore progenitor) metallicity could itor metallicity likely plays only a minor role in driving be highly constraining for stellar models. SN II diversity. However, they noted that the range in host-galaxy luminosity sampled was not particularly large This paper presents 30 new SNe II in low-luminosity (−18 M host −22). host galaxies. Using measurements of the SN photometric & B & and spectroscopic properties, our aim is to further test the validity of using SNe II as metallicity indicators, and to con- 1 Throughout the remainder of the manuscript we use SNe II to strain massive star models and SN II progenitors by search- refer to all SNe which would historically have been classified as ing for correlations of SN II parameters with host galaxy SN IIP or SN IIL. Type IIn, IIb and 87A-like events are excluded properties. The paper is organised as follows. In Section2 from our analysis. we describe our sample and observations. The measurements

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 3 are presented in Section3, while the results and discussion obtained by LCO, either as part of PESSTO, or as part are presented in Section4 and Section5, respectively. We of the LCO key projects, and reduced following the pre- conclude in Section6. Throughout, we assume a flat ΛCDM scriptions described by Firth et al.(2015). 21 of these SNe −1 −1 universe, with a Hubble constant of H0 = 70 km s Mpc , were observed in BV gri filters, while the remaining four 0 0 0 0 and Ωm =0.3. in gri. SN 2017vp was observed in the g r i z JHK bands with the Gamma-Ray Burst Optical/Near-Infrared Detec- tor (GROND; Greiner et al. 2008), at the 2.2-m MPG tele- 2 DATA SAMPLE AND OBSERVATIONS scope at the European Southern Observatory (ESO) La Silla Observatory in Chile. The images were reduced with the In this paper, we present a new sample of 30 SNe II in GROND pipeline (Kr¨uhleret al. 2008), which applies de- low-luminosity host galaxies, and combine with a further bias and flat-field corrections, stacks images and provides an 108 events sampling a range of host galaxy luminosities and astrometric calibration. SN 2015bs was observed in BV ri taken from the literature (A16, Guti´errezet al. 2017a, and using the Swope telescope at the Las Campanas Obser- references therein). Our new SNe II were selected so that vatory. The reduction procedure is presented in Anderson they were i) located in galaxies with an absolute magni- et al.(2018). SN 2009lq, ASASSN-14kp and SN 2014cw were host host tude in the B-band (MB ) of MB & −18.5 mag, or were observed in BVRI with the PROMPT telescopes located apparently hostless, and ii) younger than 20 days post ex- at Cerro Tololo Interamerican Observatory. SN 2009lq was, plosion. This absolute magnitude limit was chosen as it is in addition, observed with the TRAPPIST telescope at La around the brightness of the LMC, and because very few Silla. The reduction of the images of these three SNe were SN II were observed in the sample used by D14 with im- performed following standard procedures (including bias, plied metallicities below that of the LMC. In this section dark, and flat-field corrections), and calibrated using obser- we present the data on the new sample of events, including vations of standard-star fields (Landolt 1992, 2007; Smith their optical photometry and spectroscopy, and the data on et al. 2002). ASASSN-15rp has no photometric information. their host galaxies. Details of the literature sample can be found in Anderson et al.(2014). Table2 presents a summary of all the observations ob- 2.1 SN sample tained for the new low-luminosity host SNe II in our sam- Observations for the new low-luminosity host sample of 30 ple. The photometric data for SN 2016X and SN 2015bs objects are drawn from several sources. We took data on are presented by Huang et al.(2018) and Anderson et al. SNe II from the Public ESO Spectroscopic Survey for Tran- (2018), respectively, while the data for ASASSN-14dq and sient Objects (PESSTO; Smartt et al. 2015, and the ex- SN 2015W were published in Valenti et al.(2016). Pub- tended PESSTO, ePESSTO), which specifically targeted lished data have been re-reduced and calibrated here for SNe II in faint host galaxies, and from the Las Cum- homogeneity within sample. Data (both photometric and bres Observatory (LCO; Brown et al. 2013) Key spectroscopic) for ASASSN-15oz will be presented in a sep- Project and the LCO Global Supernova Project. These arate study by Bostroem (in preparation), for SN 2016B in events were generally observed photometrically with a three Rui et al. (in preparation), for SN 2016blz in Johansson et day cadence, and with spectral observations every few al. (in preparation), for SN 2016dbm in Terreran et al. (in weeks. Finally, one additional SN II was detected and ob- preparation), for SN 2016egz in Hiramatsu (in preparation), served in 2009 by the CHilean Automated Supernova sEarch for SN 2016enp in Reynolds et al. (in preparation), and for (CHASE; Pignata et al. 2009). Our comparison literature SN 2016gsd in Reynolds et al. (in preparation). Photometry SNe II are taken from the various samples observed between and spectroscopy for the remaining unpublished SNe in the 1986 and 2009 and compiled in Anderson et al.(2014). These sample will be presented in a future data paper. comprise: the Cerro Tololo Supernova Survey (CTSS), the Throughout the paper, all magnitudes in our sample Cal´an/Tololo survey (CT, Hamuy et al. 1993), the Super- have been corrections for extinction taken from nova Optical and Infrared Survey (SOIRS), the Carnegie Schlafly & Finkbeiner(2011). K-corrections were not ap- Type II Supernova Survey (CATS) and the Carnegie Super- plied because at low the results are not affected. nova Project (CSP-I, Hamuy et al. 2006). Table1 gives the See Anderson et al.(2014) for more details. host SN host galaxy information: recession velocity, MB (used for the sample selection) and the reddening due to dust in our Galaxy (E(B−V )MW), as well as details of the discovery 2.1.2 Spectroscopy date and explosion epoch of each SN. host host In this paper, we make use of spectroscopic measurements In Fig.1 we present the MB and Mr distribu- at (or close to) 50 days after the SN explosion. These spec- tions of our sample in comparison to A16 and T16. Our tra come from a range of difference sources. Details of the 30 new SNe extend the host-galaxy luminosity distribution host instruments used for the spectral observations of the new to fainter hosts, with a mean Mr = −16.42 ± 0.39 mag host host sample are listed in Table2, and all spectra from which we (cf. Mr = −20.26 ± 0.14 mag in A16, and Mr = make the +50 d measurements in this paper are available −19.18 ± 0.27 mag in T16). through the WISeREP2 archive (Yaron & Gal-Yam 2012). Spectroscopic data for SN 2015bs is presented in Anderson 2.1.1 Photometry et al.(2018), and for SN 2016X in Huang et al.(2018). The Optical photometry was acquired for 29 of the 30 new low- luminosity host SNe II. The light curves of 24 SNe II were 2 http://wiserep.weizmann.ac.il/home

MNRAS 000,1– ?? () 4 C. P. Guti´errez et al.

35 30 A16 Sample (96 SNe) A16 Sample (78 SNe) 30 Our sample (17 SNe) T16 Sample (35 SNe) 25 Our sample (25 SNe) Mean= 20.50 25 Mean= −17.66 − 20 Mean= 20.26 − 20 Mean= 19.18 − 15 Mean= 16.42 − 15

Number of SNe 10 10

5 5

0 0 16 18 20 22 12 14 16 18 20 22 − − host − − − − − host − − − MB [mag] Mr [mag]

Figure 1. Distribution of the host-galaxy absolute magnitudes for our sample (magenta), and for the A16 (blue) and T16 (black) host host samples. The left panel shows the distribution of MB , and the right panel the distribution of Mr . The vertical lines indicate the mean for each sample (dashed: A16, dotted: T16, and dot-dashed: our sample). Note that not all of our 30 SNe II have host information in both filters (see Section 2.2 for further details).

PESSTO spectra up to May 2016 can also be retrieved from selection for spectroscopic and photometric follow-up) was the ESO Science Archive Facility as Phase 3 data products3. collected from the HyperLEDA6 (Makarov et al. 2014) host Spectroscopic observations were performed with the database. For SN 2015bs, Mr was obtained from An- ESO Faint Object Spectrograph and Camera (EFOSC, derson et al.(2018), while for SN 2009lq, ASASSN-15oz, Buzzoni et al. 1984) at the 3.5-m ESO New Technology ASASSN-15rp, and SN 2016drl, where no host galaxy is vis- Telescope (NTT), and the twin FLOYDS spectrographs ible, we determine an upper limit on the luminosity of the on the Faulkes Telescope South (FTS) and the Faulkes host using a circular aperture centered on the SN location. Telescope North (FTN). The NTT spectra were reduced The host galaxy magnitudes can be found in Table3. using the PESSTO pipeline (Smartt et al. 2015), while the FLOYDS data were reduced using the PyRAF-based floydsspec pipeline. Data for SN 2014cw were acquired 3 MEASUREMENTS with the Low Resolution Spectrograph (LRS) at the 3.6-m Telescopio Nazionale Galileo (TNG), the Ohio State Multi- We now turn to the measurements that we make on the SN Object Spectrograph (OSMOS) at the 2.4-m Hiltner Tele- photometry and spectra, and the host galaxies. scope, and the Goodman Spectrograph at the SOAR 4.1-m telescope. For SN 2009lq, two spectra were obtained with 3.1 SN measurements the Wide Field CCD Camera (WFCCD) at the 2.5-m du Pont Telescope and the Low Dispersion Survey Spectro- We measure several photometric and spectroscopic parame- graph (LDSS3) on the Magellan Clay 6.5-m telescope at Las ters in our SN II sample. These spectral and photometric Campanas Observatory. For ASASSN-14kp one spectrum measurements were performed following the prescriptions was obtained with WFCCD. The reductions for LRS, TNG, presented in Anderson et al.(2014) and Guti´errezet al. OSMOS, Goodman, WFCCD and LDSS3 spectra were per- (2017a). From the photometry, we measure in the V -band formed using the standard routines (bias subtraction, flat- the magnitude at maximum light(Mmax), the plateau de- field correction, 1D extraction, and wavelength calibration). cline rate (s2), the optically-thick duration phase (OPTd) Details on the literature spectra are presented by Guti´errez and the plateau duration (Pd). Here, we define Pd as in An- et al.(2017a). derson et al.(2014): the duration from the inflection point (ttran) between the initial decline (s1) and the plateau de- cline (s2), until the end of the plateau (tend). We measured 2.2 Host galaxy data OPTd between the explosion (t0) and the end of the plateau Photometry for the SN host galaxies in the ugriz filters were (tend), while s2 was measured by fitting a straight line dur- collected from the (SDSS) Data ing the plateau phase. Given that Pd is estimated over the Release 134 (Albareti et al. 2017) and the Pan-STARRS15 interval [ttran, tend], the number of SNe with available esti- (Flewelling et al. 2016; Chambers et al. 2016) data archive. mates is significantly smaller compared to OPTd or s2. This In addition, B−band photometry (used in our initial SN is because a better photometric coverage is necessary to cal- culate the ttran and the tend, compared to s2. Fig.2 presents an example light curve indicating these parameters. 3 See http://www.pessto.org for access instructions. 4 http://skyserver.sdss.org/dr13/en/home.aspx 5 https://panstarrs.stsci.edu/ 6 http://leda.univ-lyon1.fr/

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 5

t0 ttran tend 17.5 The final spectroscopic and photometric properties are pre- − Measurements: sented in Table4. M 17.0 max − *Mmax s 1 * s2 16.5 s2 3.2 Galaxy measurements − * P d = tend - ttran * OP T d = tend - t0 16.0 We characterise the global properties of the SN II hosts us- − Pd ing the stellar mass (Mstellar). We use a custom galaxy SED 15.5 fitting code, following Sullivan et al.(2010). The code is sim- −

band magnitude [mag] ilar to z-peg (Le Borgne & Rocca-Volmerange 2002), with − 15.0 OPTd V − an expanded set of templates based on the galaxy spectral synthesis code pegase´ .2 (Fioc & Rocca-Volmerange 1997). 14.5 − Specifically, the code uses a set of 15 exponentially declining Absolute star formation histories (SFHs), each with 125 age steps, as- 14.0 − suming a Salpeter(1955) initial mass function (IMF). The

13.5 internal pegase´ .2 dust prescription is not included in the − 0 25 50 75 100 125 150 175 200 templates, but instead extinction is included as a foreground Time post-explosion [days] dust screen with E(B − V )=0 to 0.3 mag in steps 0.05 mag. 0.0 The code determines the best-fitting SED model by min- imisation of the χ2 using data in the uBgriz filters. The 0.5 redshift in the fit is fixed to the value of the SN redshift. Sc II λ6247 The Mstellar of the host galaxy is calculated by inte- Fe II λ5018 Ba II grating the star formation history of the best-fitting SED λ6142 1.0 model, subtracting the mass of the stars that have died. The Mstellar uncertainties are calculated by performing a Monte NaID λ5893

) +1 Constant .5 Carlo simulation on the observed galaxy fluxes according ν Fe II λ5169 to the uncertainties retrieved from SDSS. Table3 gives the final information on the host galaxies. 2.0 Hα λ6563

Hβ λ4861

-2.5 Log(F 2.5 4 RESULTS 3.0 In this section, we compare the SNe II in low-luminosity 4000 5000 6000 7000 8000 9000 galaxies with those located in high-luminosity hosts, search- Rest Wavelength [A]˚ ing for significant differences in SN properties between the two samples. All spectral comparisons are performed at +50 d. Figure 2. Definition of the measurements for our sample. The upper panel shows the light-curve parameters measured for each SN in the V -band. The lower panel shows the absorption lines 4.1 SNe II in fainter galaxies vs. SNe II in for which we measure pEWs, shown in the photospheric +41 d brighter galaxies spectrum of SN 2016aqf. We split our full sample into two: 35 SNe II located within ‘faint’ host galaxies, defined as Mr & −18.5 mag (or MB & From the spectra, we measure the expansion velocities −18.5 mag, where no r-band data is available), and 103 SNe II in ‘bright’ host galaxies, defined as M < −18.5 mag and the pEWs for 7 lines: Hα,Hβ, Fe ii λ5018, Fe ii λ5169, r (or M < −18.5 mag). This absolute magnitude limit is Na i D, Ba ii λ6142 and Sc ii λ6247. We estimated the ex- B pansion velocities using the relativistic Doppler equation around the brightness of the well-studied LMC. This was and the rest wavelength of each line. Further details are chosen as the separation limit because very few SN II were presented in Guti´errezet al.(2017a). The pEWs were mea- observed in the sample used by D14 with inferred metallic- sured by tracing a straight line across the absorption fea- ities below that of the LMC, hence we investigate whether ture to mimic the continuum flux, as shown in the lower SNe II dimmer than this limit are distinct from those in brighter hosts. Details about the characteristics of low- and panel of Fig.2. Note that in this paper, Na i D refers to the high-luminosity groups are presented in Table5. Doppler-broadened Na i D line forming in the SN ejecta, and not the narrow line caused by any surrounding circumstel- lar material or interstellar material along the line-of-sight in 4.1.1 SN photometric properties the SN host. The spectral parameters are measured at (or interpolated to) 50 days from explosion (+50 d). We esti- The photometric properties for our sample are shown in mate the explosion epochs using the prescriptions described Fig.3. Our SNe II cover a wide range of observed prop- in Guti´errezet al.(2017a), and the epochs are listed in Ta- erties, with no clear distinction between those in low- and max ble1 together with the technique employed to determine high-luminosity hosts for MV , Pd and OPTd. However, the −1 them. Details about the explosion epoch estimates for the mean s2 in high-luminosity hosts is 1.19 ± 0.09 mag 100d , literature events can be found in Guti´errezet al.(2017a). compared to 0.72±0.13 mag 100d−1 in low-luminosity hosts.

MNRAS 000,1– ?? () 6 C. P. Guti´errez et al.

1 Mmax [mag] s2 [mag.100d− ] 12 14 16 18 20 1 0 1 2 3 4 1.−0 − − − − 1.0−

0.5 n=93 0.5 n=96 n=26 n=25 ρKS=0.174 ρKS=9.63e-4

Fraction of0 SNe .0 0.0 40 SNe II in HLH (93) 25 SNe II in HLH (96 SNe) SNe II in LLH (26) SNe II in LLH (25 SNe)

30 20 Mean= 1.19 0.09 ± Mean= 16.67 0.10 Mean= 0.72 0.13 ± Mean= −17.06 ± 0.22 15 20 − ± 10

Number of10 SNe 5

0 0 16 12.5 SNe II in HLH (28 SNe) SNe II in HLH (59 SNe) SNe II in LLH (14 SNe) 14 SNe II in LLH (19 SNe) Mean= 49.88 2.16 12 10.0 ± Mean= 46.69 3.89 ± Mean= 83.98 2.03 10 Mean= 86.62 ± 3.72 ± 7.5 8 5.0 6

Number of SNe 4 2.5 2 0.0 0 1.0 1.0

0.5 n=28 0.5 n=59 n=14 n=19 ρKS=0.370 ρKS=0.770

Fraction of0 SNe .0 0.0 20 40 60 80 10 30 50 70 90 110 130 Pd [days] OPTd [days]

max Figure 3. The distribution of the SN II light curve properties MV (top left), s2 (top right), Pd (bottom left) and OPTd (bottom right) in low-luminosity hosts (LLH; orange) and high-luminosity hosts (HLH; green). The upper row shows the histograms of each property, and the lower row shows the cumulative distributions. The vertical lines indicate the mean for each distribution. In the lower panels, the number of events (n) and the ρKS are given.

This suggests that SNe II in lower luminosity hosts have a distributions. The mean values and corresponding KS test shallower decline during the recombination phase. results are in Table6.

Fig.3 also shows the cumulative distributions for the three photometric parameters. Throughout this paper, we compare such cumulative distributions of SN parameters for 4.1.2 SN spectral properties events in low- and high-luminosity host galaxies. For this we use the Kolmogorov-Smirnov (KS) test, a nonparamet- We see no significant differences in the velocities of SNe II ric test that compares the cumulative distributions of two located in low- and high-luminosity hosts. An example is data sets under the null hypothesis that both groups are shown in Fig.4, showing the expansion velocity for Na i D. sampled from populations with identical distributions. We Only small differences of ∼ 50 km s−1 are observed. The fig- reject this null hypothesis when ρKS < 0.01. In this case ure also shows that both groups have a similar velocity dis- (Fig.3), the KS test shows that we can reject the null hy- tribution, with a large range of velocity values. Similar be- pothesis that both s2 samples (in high- and low-luminosity haviour is observed for the rest of the SN velocities, suggest- hosts) are drawn from parent populations with the same ing that the SN explosion energy is not significantly affected

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 7

Fig.6 shows the temporal evolution of pEW(Fe ii 5018), SNe II in HLH (70) compared to the synthetic spectra at four different metallici- 20 SNe II in LLH (21) ties (see D14). pEW(Fe ii 5018) for SNe II in high-luminosity hosts lies around the model with solar metallicity (Z ), Mean= 4815 170 ± while SNe II in low-luminosity hosts are closer to the 0.4 Z Mean= 4860 390 model. This is again consistent with the low-luminosity host 15 ± group sampling SN II progenitors of lower metallicity than the high-luminosity group. Fig.6 also shows that the pEW(Fe ii 5018) for SNe II 10 in high-luminosity hosts evolves faster at early phases. To quantify this, we measure the rate of change of the pEW (∆pEW) over the intervals [+10, +35] d, [+35, +55] d and Number of SNe [+55, 90] d. For low-luminosity hosts, ∆pEW is 0.24 ± 0.04, 5 0.29 ± 0.07 and 0.20 ± 0.08 A˚ d−1, while in high-luminosity hosts the values are 0.39 ± 0.03, 0.25 ± 0.05 and 0.16 ± 0.04 A˚ d−1: at early phases, the pEW evolves ∼ 40 per cent faster in SNe II in high-luminosity hosts than in low- 0 luminosity host, but becomes consistent at later phases. In the models, for the 0.4 Z model, the ∆pEW is 0.42± −1 0.8 0.05, 0.13 ± 0.05 and 0.30 ± 0.0.06 A˚ d , while for the Z model they are 0.53±0.03, 0.27±0.04 and 0.29±0.05 A˚ d−1. n=70 0.4 n=21 In the first two intervals, the pEW at Z evolves faster than ρKS=0.587 the pEW at 0.4Z , but in the last interval, they are almost 0.0 the same. Comparing the models with the observed SNe, Fraction of total SNe 1000 3000 5000 7000 the Z model displays a faster evolution at all epochs in 1 Na I D velocity at 50 days [km s− ] comparison with observed SNe II, however for the model at lower metallicity, the evolution is faster only in the first interval. Figure 4. The distribution of Na i D velocity at 50 days from explosion (upper panel) and the cumulative distribution (lower panel). SNe II in low-luminosity hosts are in orange, and those in high-luminosity hosts in green. The vertical lines indicate the 4.2 Correlations between SN II properties and mean for each distribution. In the cumulative distribution panel, host-galaxy parameters the number of SNe and the ρKS are shown. We next investigate any dependence of SN II diversity on environmental parameters, specifically the absolute magni- by metallicity. A complete set of measurements can be found tudes and stellar masses of the host galaxies. In particu- in Table6. lar, we examine pEW(Fe ii 5018) and pEW(Na I D) for our Fig.5 shows the pEW distributions for Fe ii λ5018, Hα SNe II in the context of the SN host galaxies. We use absorption, Na i D and Sc ii λ6247 for the high- and low- pEW(Fe ii 5018) as the models show it is mainly affected by luminosity host samples. In general, the pEWs for SNe II the metallicity of the progenitor, and we use pEW(Na I D) in low-luminosity hosts are shifted to smaller values. The due to the significance of the relations seen in Fig.5 and result obtained for pEW(Fe ii 5018) is consistent with the presented in Table6. prediction of D14, who found that the strength of the metal Fig.7 shows the relation between the host-galaxy lines increases with increasing progenitor metallicity; SNe II absolute magnitudes in different filters (riz), and with metal-poor progenitors should have weaker iron lines. pEW(Fe ii 5018) and pEW(Na I D). In general, SNe II Using host luminosity as a proxy for host metallicity con- in lower luminosity hosts have smaller pEW values. Using firms this prediction observationally. The Na i D line shows the Pearson correlation test, we find weak anti-correlations a similar behaviour, but, for the Hα line, the opposite to for pEW(Fe ii 5018) of ρ = −0.34, −0.23 and −0.37, and that predicted by D14 is observed, where higher metallicity moderate anti-correlations for pEW(Na I D): ρ = −0.46, models show weaker Hα absorption. The comparison of the −0.44, and −0.52. The strongest correlations are observed pEWs of Hβ, Fe ii λ5169 and Ba ii λ6142 for SNe II for low- in the z-band. and high-luminosity hosts showed similar results to those in Fig.8 shows the relation between pEW(Fe ii 5018) and Fig.5. pEW(Na I D) with Mstellar. The correlation between Mstellar The cumulative distributions for the pEW differences and pEW(Fe ii 5018) is weak (ρ = 0.31), while the corre- are also shown in Fig.5. KS tests reject the null hypoth- lation between Mstellar and pEW(Na I D) is moderate (ρ = esis that the distributions of the pEWs in low- and high- 0.44). SNe II with a smaller pEW(Na I D) preferentially oc- luminosity hosts are drawn from populations with the same cur in low Mstellar galaxies. By contrast, SNe II with a higher distribution for all four lines. The differences are most signif- pEW(Na I D) are found in galaxies with a larger Mstellar. To icant for Na i D and Sc ii λ6247, with ρKS less than ∼ 0.0001 test the significance of the correlation between pEW(Na I D) 5 and ∼ 0.002, respectively. The mean pEWs obtained for all and Mstellar, we use a Monte Carlo resampling with 10 ran- 7 lines in the low- and high-luminosity hosts, and the corre- dom draws. Varying both parameters according to their 1-σ sponding KS test values, are presented in Table6. uncertainties and a Gaussian distribution, we estimate the

MNRAS 000,1– ?? () 8 C. P. Guti´errez et al.

pEW(Fe II 5018 A)˚ at 50 days from explosion pEW(Hα absorption) at 50 days from explosion 0 10 20 30 0 50 100 1.0 1.0

0.5 n=71 0.5 n=72 n=27 n=25 ρKS=7.54e-3 ρKS=7.69e-3 Fraction SNe 0.0 0.0 25 SNe II in HLH (71) SNe II in HLH (72) 20 SNe II in LLH (27) 20 SNe II in LLH (25) Mean= 16.52 0.63 ± Mean= 52.37 2.65 Mean= 12.21 1.36 Mean= 39.12 ± 4.10 15 ± 15 ±

10 10 Number of SNe 5 5

0 0 25 30 SNe II in HLH (72) SNe II in HLH (71) 20 SNe II in LLH (25) 25 SNe II in LLH (22) Mean= 28.14 1.63 ± Mean= 4.65 0.50 Mean= 14.02 2.11 20 Mean= 2.09 ± 0.68 15 ± ± 15 10 10 Number of SNe 5 5

0 0 1.0 1.0

0.5 n=72 0.5 n=71 n=25 n=22 ρKS=1.08e-4 ρKS=1.99e-3 Fraction SNe 0.0 0.0 0 20 40 60 0 5 10 15 pEW(NaID) at 50 days from explosion pEW(Sc II 6247 A)˚ at 50 days from explosion

Figure 5. Distribution of the pEW absorption measurements for SNe II in the low-luminosity host sample (orange) in comparison to those in the high-luminosity host sample (green). The vertical lines indicate the mean for each distribution: pEW(Fe ii 5018), pEW(Hα), pEW(Na I D) and pEW(Sc ii 6247). The upper and lower panels show the cumulative distributions of each pEW in the two host categories: pEW(Fe ii 5018) (upper left), pEW(Hα) (upper right), pEW(Na I D) (lower left) and pEW(Sc ii 6247) (lower right). Also shown are the number of events (n), and ρKS.

Pearson coefficient (ρ) for each iteration. The median of ρ Surprisingly we find the opposite: correlations decrease in is 0.47, which is consistent with our findings. strength when removing the fastest decliners. Using a KS test, we probe the differences between SNe II in low/high Mstellar. The KS test rejects the null hypoth- esis that the distributions of the pEW(Fe ii 5018) in low- 5 DISCUSSION and high- Mstellar are drawn from populations with the same distribution. The differences are more significant for Using a sample of SNe II and their host galaxies, we have pEW(Na I D). To test this result and using a Monte Carlo examined various relationships between SN II properties resampling (varying the pEW values using 1-σ uncertainties and their host galaxies to probe the role of metallicity in according to a Gaussian distribution), we find a statistically SN II evolution and diversity. Following D14, we tested the significant difference between the Mstellar when comparing influence of metallicity on the strength of the SN metal the pEW(Na I D). lines. Our main result is that SNe II in lower-luminosity Given that our comparison models produce SN II light hosts display weaker metal lines (specifically pEW(Na I D), curves and spectra that are qualitatively similar to observed pEW(Fe ii 5169), pEW(Sc ii 6247), pEW(Fe ii 5018)). Given SN IIP (slow decliners), we may expect stronger correla- the strong correlation between galaxy stellar mass (or lumi- tions when restricting our sample to slow-declining events. nosity) and galaxy metallicity, this supports the potential

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 9

40 SNe II in HLH 2Z 2Z SNe II in LLH 35 D14 Z Z 30

) 0.4Z 0.4Z ˚ A 25

20 0.1Z 0.1Z 15 pEW(FeII5018 10

5

0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 Time past explosion (days) Time past explosion (days)

Figure 6. Temporal evolution of pEW(Fe ii 5018) from explosion to +90 d, in both the data and models at four different metallicities. The observational data are binned in time. Left: Comparison between the SNe II in high-luminosity hosts. The green solid line represent the mean of the pEW within each time bin, while the dashed green lines indicate the standard deviation. Right: The comparison with SNe II in low-luminosity hosts, with the mean of the pEW orange solid line and the standard deviation in dashed orange lines. In both panels, the brown solid lines represent the D14 models as labelled. for using SN II spectral diagnostics as proxies for progenitor mass of the host galaxy (derived from host photometry) and metallicity. In this section we compare our results with those find a weaker correlation. When A16 use their ‘gold’ sample found in previous studies to attempt to understand the role (i.e., SNe IIP), their correlations increased. By contrast, in −1 of galaxy properties in SN II transient behaviour. our plateau sample (i.e., SNe II with s2 < 1.5 mag 100d ), the correlations are weaker. The differences between these two studies are most 5.1 Comparison to previous studies likely due to the use, in the current study, of integrated stellar mass as a proxy for metallicity, while A16 derived Using a sample of 119 events, A16 found no evidence of a metallicities of host H ii regions directly through emission- metallicity influence in the diversity of SNe II. They exam- line spectroscopy. Obtaining such data for our sample will ined potential correlations between metallicity and various be the focus of a future project. max photometric parameters (MV , s2 and OPTd), but no sig- D14 further found that, in their models, higher- nificant trend was found. metallicity SNe display weaker Hα absorption. Even though Employing Pd as a proxy for the hydrogen envelope the differences in these values are small, they show an mass, instead of OPTd, we similarly find no significant cor- opposite behaviour to that found in this work, where relations. However, a KS test reject the null hypothesis that SNe II in low-luminosity (low metallicity) hosts present a both s2 samples (in high- and low-luminosity hosts) are lower pEW(Hα). According to D14, the differences in the drawn from parent populations with the same distributions: pEW(Hα) do not originate from metallicity, but are instead slower declining SNe II preferentially occur in low-luminosity probably more sensitive to time dependent effects, density galaxies. Unlike T16, we do not find a statistically signifi- profile, mixing, clumping. cant difference between the samples when we compare their absolute magnitudes. Turning to the spectral parameters, A16 found moder- ate correlations between the pEW(Fe 5018) and gas-phase ii 5.2 Populating the metal-poor region with SNe II metallicity as measured through host H ii region emission line analysis. Their results indicate that SNe II with stronger Stoll et al.(2013), D14, and more recently A16 found a lack iron lines explode in more metal-rich regions. As we do not of SNe II in low-metallicity environments. Although this gap have direct metallicity measurements of the SN host galax- is expected because of an observational bias, some results ies, we instead compare the pEW(Fe ii 5018) with the stellar have shown that SNe II in lower-metallicity environments

MNRAS 000,1– ?? () 10 C. P. Guti´errez et al.

30

20 ˚ A) at 50 days

10 n=74 n=71 n=69 ρ = 0.34 ρ = 0.23 ρ = 0.37 P=3.32− e 3 P=0.056− P=1.95− e 3 − −

pEW(FeII 5018 0

60 SNe II in HLH SNe II in LLH n=74 n=71 n=69 ρ = 0.44 ρ = 0.52 ρ = 0.46 − − P=3.83− e 5 P=1.12e 4 P=4.76e 6 40 − − −

20 pEW(NaID) at 50 days 0 15 20 15 20 15.0 17.5 20.0 22.5 − − − − − − − − Mr Host [mag] Mi Host [mag] Mz Host [mag]

Figure 7. Correlations between pEW(Fe ii 5018) (upper panels) and pEW(Na I D) (lower panels), and the galaxy absolute magnitudes: Mr (left), Mi (centre) and Mz (right). Green stars represent SNe in high-luminosity hosts, while yellow stars are SNe II in low luminosity hosts. In each panel, n is the number of events, ρ is the Pearson’s correlation coefficient, and P is the probability of detecting a correlation by chance. present smaller pEWs of the iron lines and no significant 5.3 Na I D as metallicity indicator? differences in their Pd (A16). Recent studies (e.g., A16, T16) have shown the effects of environmental metallicity in the strength of the iron lines in T16 showed how the observational gap found in the SNe II spectra. However, these studies did not examine the SN II models at different metallicities was partially filled potential influence of metallicity on the strength of other with their iPTF sample. However, when they compared the metal lines, such as Sc ii, Ba ii, Na i D. pEW(Fe ii 5018) with the metallicity of the host galaxy, they We test the relations between host-galaxy properties found a correlation with a weak significance, which could and the pEW(Hα) absorption component, pEW(Hβ), suggest that the observed lack of SNe II is still visible. pEW(Na I D), pEW(Fe ii 5018), pEW(Fe ii 5169), pEW(Ba ii 6142) and pEW(Sc ii 6247). We find that, Our sample probes lower-luminosity hosts and therefore with the exception of Na i D, these lines have only weak lower inferred metallicities (Fig.8). These lower metallici- correlations with host galaxy properties (see Table7). The ties are also evident when we compare our spectral measure- Na i D line shows a significant correlation with host galaxy ments with the SN models at different metallicities. Repro- luminosity and Mstellar. Fig.7 and Fig.8 present these ducing Figure 6 of D14 (the distribution of pEW(Fe ii 5018) results. Additionally, using the KS test, we also find that around 80 days from explosion), it is possible to see how Na i D display statistically significant differences between our sample fills the region between 0.1 and 0.4 Z (Fig.9). the low- and high- luminosity groups. This figure includes the A16 sample, the T16 dataset and This analysis suggests that Na i D may be a good indi- our SNe II (magenta). Following the process employed by cator of global properties of the galaxies, such as metallicity. D14, we measure the pEW for SNe II with available spectra This is surprising as, given the lightness of sodium, signif- between 65 and 100 days post-explosion. A total of 19 SNe II icant contamination of the hydrogen envelope with sodium are incorporated in the pEW distribution plot. From T16, created from nuclear burning during the star’s life is ex- we also select SNe II within this range of time. Fig.9 shows a pected. These results suggest that either the mixing of such significant number of SNe II are consistent with progenitors material to the outer envelope is very low, or that the degree with a metallicity lower than 0.1 Z . of mixing also depends on progenitor metallicity, with higher

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 11

Inferred metallicity (log (O/H) + 12) 0 8.2 8.4 8.6 8.8 16egz 0.1 x Z 16gsd 15W 30 16enp 16dbm 10 15oz 13dqy 13dkk − 11qax 09fma

) 11ajz 0.4 x Z 11hsj15bm 16hmq 15aq ˚ A 13dla 10osr 16X 14dq 03E 04fc 20 20 1 x Z 07il 05dz 17pn − 04fx 03bn 16O ˚ A) at 50 days 16aqf 15kz16B 02gw 15lx 14cw 92ba 05J 02gd 2 x Z 03iq 03B 07aa 15V 03T 99em pEW(FeII5018 30 10 09N 06ee 07W 12bvh − 13aaz 08ag n=68 08in ρ = 0.31 A16 Sample

pEW(FeII 5018 P=0.010 14aoi 40 T16 Sample 0 − Our Sample 60 70 80 90 100 SNe II in HLH Days since Explosion SNe II in LLH

Figure 9. Comparison of the pEW(Fe ii 5018) at around 80 days 40 post-explosion between observed and model SN II explosions. In light blue is shown the CSP SNe II with s2 < 1.5 (A16), in grey the (i)PTF sample (T16) and in magenta our SNe II. The n=68 ρ = 0.44 solid lines represent the pEW(Fe ii 5018) for four different models: 0.1Z in black, 0.4Z in red, Z in dark green and 2Z in blue. P=1.5e-4 20 (i.e., a large stellar mass) display stronger metal lines in their pEW(NaID) at 50 days photospheric spectra. This is in agreement with the predic- tion from the models of D14. We found stronger correlations 0 with pEW(Na I D) than with pEW(Fe ii 5018). • There is a commonly held view that the degree of 6 8 10 12 hydrogen-envelope mass-stripping is strongly dependent on Log(Stellar Mass) [M ] progenitor metallicity in single star evolution. We do not de-

tect any signature of this, but it is likely that our RSG pro- Figure 8. The correlations between pEW(Fe ii 5018) and Mstellar genitors are drawn mostly from the 8 - 15M range due to (upper panel) and between pEW(Na I D) and Mstellar (lower IMF statistics. At these masses and luminosities, the mass- panel). Green stars represent SNe II in high-luminosity hosts, loss rates on the main sequence are not high enough to have while yellow stars are SNe II in low-luminosity hosts. In each significant effect on the plateau (∼ 1 − 2 M lost; Eldridge panel, n is the number of events, ρ is the Pearson correlation co- & Tout 2004), which is consistent with our measurements. efficient, and P is the probability of detecting a correlation by chance. • We find that all absorption lines in the spectra of SNe II located in low-luminosity galaxies have smaller pEWs then those SNe II in high-luminosity hosts. Comparing these re- metallicity progenitors undergoing more vigorous mixing sults with models at different metallicities, we found that during their lifetimes. However, a theoretical study on the the Hα absorption feature shows the opposite behaviour. production of sodium in massive stars at difference metal- We found weak absorption in SNe II in low luminosity hosts, licity is needed in order to understand these results. while D14 found stronger Hα absorption for low metallicity models. • We find no evidence that expansion velocities (and 6 CONCLUSIONS therefore explosion energy) are affected by metallicity of the host. This suggests there is physically little difference be- In this work we have presented an analysis of SNe II in low- tween the progenitor structure and explosions at low- and luminosity galaxies, and compared to those SNe in high- high-metallicity for RSGs that explode as SNe II. luminosity hosts. A total of 138 SNe II were analysed using spectral diagnostics (velocities and pEWs) and photometric max (MV , s2 and Pd) properties, and compared with their host galaxy absolute magnitudes and stellar masses, which we use ACKNOWLEDGEMENTS as a proxy for galaxy metallicity. Our main results are: This work is based (in part) on observations collected at • We find that SNe II in more metal-rich environments the European Organisation for Astronomical Research in the

MNRAS 000,1– ?? () 12 C. P. Guti´errez et al.

Southern Hemisphere, Chile as part of PESSTO, (the Public nia State University, Shanghai Astronomical Observatory, ESO Spectroscopic Survey for Transient Objects Survey) United Kingdom Participation Group, Universidad Nacional ESO program 188.D-3003, 191.D-0935, 191.D-0935, 197.D- Aut´onoma de M´exico, University of Arizona, University 1075, 199.D-0143. This work makes use of data from Las of Colorado Boulder, University of Oxford, University of Cumbres Observatory, the Supernova Key Project, and the Portsmouth, University of Utah, University of Virginia, Uni- Global Supernova Project. Part of the funding for GROND versity of Washington, University of Wisconsin, Vanderbilt (both hardware as well as personnel) was generously granted University, and Yale University. from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA The Pan-STARRS1 Surveys (PS1) have been made pos- 1850/28-1). sible through contributions of the Institute for Astronomy, We thank the annonymous referee for the useful sugges- the University of Hawaii, the Pan-STARRS Project Office, tions. We are grateful to Andrea Pastorello, Jos´eLuis Pri- the Max-Planck Society and its participating institutes, the eto, Avet Harutyunyan and R. Mark Wagner for performing Max Planck Institute for Astronomy, Heidelberg and the some of the observations used in this work. Max Planck Institute for Extraterrestrial Physics, Garch- C.P.G. and M.S. acknowledge support from EU/FP7- ing, The Johns Hopkins University, Durham University, ERC grant No. [615929]. L.G. was supported in part by the the University of Edinburgh, Queen’s University Belfast, US National Science Foundation under Grant AST-1311862. the Harvard-Smithsonian Center for Astrophysics, the Las Support for I.A. was provided by NASA through the Ein- Cumbres Observatory Global Telescope Network Incorpo- stein Fellowship Program, grant PF6-170148. T.-W.Chen rated, the National Central University of Taiwan, the Space acknowledgments the funding provided by the Alexander Telescope Science Institute, the National Aeronautics and von Humboldt Foundation. D.A.H., G.H., and C.M. are sup- Space Administration under Grant No. NNX08AR22G is- ported by NSF grant AST-1313484. G.L. was supported by sued through the Planetary Science Division of the NASA a research grant (19054) from VILLUM FONDEN. M.G. Science Mission Directorate, the National Science Founda- is supported by the Polish National Science Centre grant tion under Grant No. AST-1238877, the University of Mary- OPUS 2015/17/B/ST9/03167. Support for F.O.E. is pro- land, and Eotvos Lorand University (ELTE). vided by FONDECYT through grant 11170953 and by the Ministry of Economy, Development, and Tourism’s Millen- nium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. Support for REFERENCES G.P. is provided by the Ministry of Economy, Development, Albareti F. D., et al., 2017, ApJS, 233, 25 and Tourism’s Millennium Science Initiative through grant Anderson J. P., et al., 2014, ApJ, 786, 67 IC120009, awarded to The Millennium Institute of Astro- Anderson J. P., et al., 2016, A&A, 589, A110 physics, MAS. S.J.S. acknowledges funding from ERC Grant Anderson J. P., et al., 2018, Nature Astronomy, 291222 and STFC grant Grant Ref: ST/P000312/1 Arcavi I., et al., 2010, ApJ, 721, 777 This research has made use of the NASA/IPAC Ex- Arcavi I., et al., 2012, ApJ, 756, L30 tragalactic Database (NED) which is operated by the Barbon R., Ciatti F., Rosino L., 1979, A&A, 72, 287 Brown T. M., et al., 2013, PASP, 125, 1031 Jet Propulsion Laboratory, California Institute of Tech- Buzzoni B., et al., 1984, The Messenger, 38, 9 nology, under contract with the National Aeronautics. Chambers K. C., et al., 2016, preprint, (arXiv:1612.05560) We acknowledge the usage of the HyperLeda database Chieffi A., Limongi M., 2013, ApJ, 764, 21 (http://leda.univ-lyon1.fr) Chun S.-H., Yoon S.-C., Jung M.-K., Kim D. U., Kim J., 2017, Funding for the Sloan Digital Sky Survey IV has been preprint, (arXiv:1711.03965) provided by the Alfred P. Sloan Foundation, the U.S. De- Dessart L., Hillier D. J., Waldman R., Livne E., 2013, MNRAS, partment of Energy Office of Science, and the Participating 433, 1745 Institutions. SDSS-IV acknowledges support and resources Dessart L., et al., 2014, MNRAS, 440, 1856 from the Center for High-Performance Computing at the Eldridge J. J., Tout C. A., 2004, MNRAS, 353, 87 University of Utah. The SDSS web site is www.sdss.org. Faran T., et al., 2014a, MNRAS, 442, 844 Faran T., et al., 2014b, MNRAS, 445, 554 SDSS-IV is managed by the Astrophysical Research Con- Fioc M., Rocca-Volmerange B., 1997, A&A, 326, 950 sortium for the Participating Institutions of the SDSS Col- Firth R. E., et al., 2015, MNRAS, 446, 3895 laboration including the Brazilian Participation Group, the Flewelling H. A., et al., 2016, preprint, (arXiv:1612.05243) Carnegie Institution for Science, Carnegie Mellon Univer- Galbany L., et al., 2016,AJ, 151, 33 sity, the Chilean Participation Group, the French Par- Goldman S. R., et al., 2017, MNRAS, 465, 403 ticipation Group, Harvard-Smithsonian Center for Astro- Gonz´alez-Gait´anS., et al., 2015, MNRAS, 451, 2212 physics, Instituto de Astrof´ısica de Canarias, The Johns Greiner J., et al., 2008, PASP, 120, 405 Hopkins University, Kavli Institute for the Physics and Guti´errezC. P., et al., 2017a, ApJ, 850, 89 Mathematics of the Universe (IPMU) / University of Tokyo, Guti´errezC. P., et al., 2017b, ApJ, 850, 90 Lawrence Berkeley National Laboratory, Leibniz Institut f¨ur Hamuy M., 2003, ApJ, 582, 905 Astrophysik Potsdam (AIP), Max-Planck-Institut f¨urAs- Hamuy M., et al., 1993,AJ, 106, 2392 Hamuy M., et al., 2006, PASP, 118, 2 tronomie (MPIA Heidelberg), Max-Planck-Institut f¨urAs- Heger A., Fryer C. L., Woosley S. E., Langer N., Hartmann D. H., trophysik (MPA Garching), Max-Planck-Institut f¨urEx- 2003, ApJ, 591, 288 traterrestrische Physik (MPE), National Astronomical Ob- Huang F., et al., 2018, MNRAS, servatories of China, New Mexico State University, New Kr¨uhlerT., et al., 2008, ApJ, 685, 376 York University, University of Notre Dame, Observat´ario Landolt A. U., 1992,AJ, 104, 372 Nacional / MCTI, The Ohio State University, Pennsylva- Landolt A. U., 2007,AJ, 133, 2502

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 13

Le Borgne D., Rocca-Volmerange B., 2002, A&A, 386, 446 Makarov D., Prugniel P., Terekhova N., Courtois H., Vauglin I., 2014, A&A, 570, A13 Minkowski R., 1941, PASP, 53, 224 Mokiem M. R., et al., 2007, A&A, 473, 603 Pastorello A., Ramina M., Zampieri L., Navasardyan H., Salvo M., Fiaschi M., 2003, ArXiv Astrophysics e-prints, Pejcha O., Prieto J. L., 2015a, ApJ, 799, 215 Pejcha O., Prieto J. L., 2015b, ApJ, 806, 225 Pignata G., Maza J., Hamuy M., Antezana R., Gonzales L., 2009, in Revista Mexicana de Astronomia y Astrofisica Conference Series. pp 317–+ Popov D. V., 1993, ApJ, 414, 712 Rubin A., et al., 2016, ApJ, 820, 33 Salpeter E. E., 1955, ApJ, 121, 161 Sanders N. E., et al., 2015, ApJ, 799, 208 Schlafly E. F., Finkbeiner D. P., 2011, ApJ, 737, 103 Smartt S. J., 2015, Publ. Astron. Soc. Australia, 32, e016 Smartt S. J., et al., 2015, A&A, 579, A40 Smith J. A., et al., 2002,AJ, 123, 2121 Stoll R., Prieto J. L., Stanek K. Z., Pogge R. W., 2013, ApJ, 773, 12 Sullivan M., et al., 2010, MNRAS, 406, 782 Taddia F., et al., 2016, A&A, 587, L7 Valenti S., et al., 2016, MNRAS, 459, 3939 Vink J. S., de Koter A., Lamers H. J. G. L. M., 2001, A&A, 369, 574 Yaron O., Gal-Yam A., 2012, PASP, 124, 668

MNRAS 000,1– ?? () 14 C. P. Guti´errez et al. (2.5) (5) (2) (4) (5) (2) (0.5) (4) (1) (1.5) (8) (0.6) (1) (0.5) (3) (7) (1.5) (2) (2) (11) (9.5) (1.5) (4) (3) (3) (6) (9) (9) (4) (5) (10 (7) (9) (6) (3) (6) (9) (5) (6) (8) (8) (6) (7) (5) (7) (4) (6) (8) (4) (8) n n s n n s s s n n n n n n n n n n n n n ? n n n n s n n s n n n s s s s n n s n s s s n n s s s n n Discovery Source Discovery Explosion MW ) V − B ( E B 34 0.026 46711.1 Robert Evans IAUC 4260 46708.0 308750 0.0626251 0.012 0.034 56847.0 0.12306 0.015 56974.028 57117.0 57035.0 0.053 57287.048 ASAS-SN 0.0505853 ASAS-SN 57185.666 0.019 LOSS 57199.675 0.034 LOSS56 MASTER ATEL 0.020 6301 0.049 57384.0 56841.0 ATEL 0.042 6736 57395.6 ASAS-SN 0.090 57406.636 ASAS-SN 56971.6 ATEL 7345 57444.601 ATEL 8077 CBET 4168 57453.8 57113.0 57488.5 ASAS-SN 57253.9 Pan-STARRS1 0.013 57004.4 39 ATEL 7625 0.022 ASAS-SN ATEL 7719 ASAS-SN 57183.6 57590.5 ASAS-SN 57198.0 0.063 57600.5 ASAS-SN ATEL 8502 – 57382.5 ATEL 8566 57685.527 ATEL 8736 ASAS-SN40 57406.0 ATEL 8784 57389.3 ASAS-SN18 57443.6 ATEL 893068 57453.3 0.022 Pan-STARRS140 57485.5 0.01399 0.05490 ATEL 9262 0.046 47937.785 ATEL 9305 0.046 48037.354 57588.5 ATEL 9686 0.051 48453.744 57598.5 0.153 C. 48802.839 57674.0 Pennypacker et 0.056 al. 48829.839 0.014 Marina 48896.273 Wischnjewsky Robert 0.021 Evans 49004.614 0.096 Roberto IAUC Antezana 4965 49075.5 0.086 Roberto Antezana 49133.7 IAUC 5310 0.104 47935.1 Marina 51281.082 Wischnjewsky Robert 0.036 Evans 51296.0 IAUC 48442.5 5022 IAUC 5554 Williams, 51249.7 Martin98 IAUC Roberto 5570 Antezana 51455.599 IAUC 48001.5 5693 0.059 48798.8 51481.0 48813.9 IAUC 48995.5 5625 0.102 Roberto IAUC LOSS Antezana 5733 IAUC 0.048 PARG 5812 Mark 52552.7 Armstrong 48884.9 49065.5 49130.8 52568.0 IAUC 7210 LOSS 52589.7 Alain Klotz, IAUC et 7275 al. 51246.5 IAUC 7141 Nearby IAUC SN 7158 Factory 51449.5 51276.7 51277.5 IAUC 7986 IAUC SDSS 7294 IAUC 8006 52551.5 51476.5 52562.5 IAUC 8015 52582.5 ...... – 0.027 55158.5 CHASE CBET 2039 55156.1 – 0.045 56925.6–– CRTS 0.077– 0.069– 57368.5 57433.5 – 0.082 0.014 57658.5 56920.5 ASAS-SN GaiaAlerts 57686.5 Koichi Itagaki ATEL 8436 TNS ASAS-SN 57367.0 TNS 57434.0 ATEL 9697 57649.0 57685.0 Table 1: SN II sample 21 18 16 18 18 16 18 18 16 15 18 17 17 17 16 18 18 19 20 21 19 21 17 18 20 20 19 20 20 20 19 19 17 20 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ) type (mag) date MJD discovery Reference Epoch 1 − 1 1 1 1 1 1 1 1 1 1 Host Recession Host M SN2009lq Anonymous 13290 SN1986L NGC 1559 1305 SNASASSN-14dqSN2014cwASASSN-14kpSN2015V GALEXASC J003952.48-380347.3SN2015WSN2015aq UGC 11860SN2015bmSN2015bs 6900 PGCASASSN-15kz Galaxy 68414ASASSN-15lxASASSN-15oz UGC 11000ASASSN-15rp UGC 3617SN2016B UGC GALEXASC 5015 Anonymous J000337.23-343323.1SN2016O 3125 SN2016X ESO Anonymous IC 047-G004 HIPASS velocity 4303 J1919-33 (km s SN2016aqfSN2016ase 1800 8682SN2016blzSN2016dbm 1369 2dFGRSSN2016dpd N109Z338 PGC 037392 3984 SN2016drl 4500 1650 SDSSSN2016egz J154029.29+005437.4 2078 – UGC 3785 8100 8041 – NGCSN2016enk 2101 ESO 504-G9SN2016enp 2405 GALEXASC J000403.88-344851.6SN2016gsd AnonymousSN2016hmq Anonymous 3000 – 0.052SN2016hpt 3517 0.014 – SDSS AnonymousSN2017pn 1287 J233425.10-063441.4 6955 SN2017vp 2MASX GALEXASC J04250492-0733581 UGC J215436.98-425103.9 9857 56899.0 57298.5 1321 1204 0.026 4380 Anonymous 0.080 18900SN1990E 9000 7800 6450 SN1990K 5217 57385.0 AnonymousSN1991al 18000 MASTER 57266.0 ASAS-SN AnonymousSN1992afSN1992am –SN1992ba 2338 – 19500 SN1993A 2MASX Blaz J194221915506275 MikuzSN1993K ATEL NGC ASAS-SN 6435 1035 ATELSN1993S 8199 NGC 0150SN1999br 0.056 56892.6 ESO 4200 MCG 0.032 340-G038 57296.5 SN1999ca -01-04-039 15000 2MASX J073918226203095SN1999cr CBAT TOCP 4575 SN1999eg NGC 2MASX 2082 57343.5 57384.1 J22522390-4018432 ATELSN1999em 7989 57601.5SN2002ew NGC 2223 57262.0 –SN2002fa – 8790 1241 SN2002gd NGC 4900 14397 1584 SN2002gw 5541 NGC 3120 ESO 9903 GaiaAlerts 576-G034SN2002hj NEAT J205430.50-000822.0 ATLASSN2002hx NEAT J205221.51+020841.9 0.120 IC 0.040 NGC 1861 1637 1185 2724 57779.5 8975 NGC 7537 57779.5 TNS 17988 NPM1G +04.0097 NGC ATEL 922 9318 960 6069 2793 PGC 023727 57590.2 57336.0 Pan-STARRS1 ATLAS – 717 6708 – 7080 2676 3084 0.091 TNS 0.088 9293 TNS 57760.0 52510.8 52510.8 – 57775.3 Nearby SN Nearby Factory SN Factory 0.017 IAUC 7964 IAUC 7967 52500.6 52560.7 52502.5 Takao Doi; Berto Monard IAUC 7995 52553.5

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 15 (3) (8) (8) (5) (5) (10 (8) (2) (10 (2) (2) (1) (4) (9) (9) (4) (5) (6) (4) (3) (1) (7) (4) (4) (1) (5) (11 (4) (4) (5) (8) (9) (5) (10 (9) (5) (4) (7) (4) (9) (7) (17 (6) (6) (6) (7) (7) (8) (10 (5) (9) (10 (6) (8) (10 (5) (6) s s s n n s s n s s s n s s s s n n s n s n n n s n s n n s s s s n n s n n s s s n s n s s n n s n n s s s s n n 4214 0.0246152 0.053 52645.099 0.01926 0.016 52720.087 0.043 52728.089 Robert Evans58 0.046 52739.773 0.017 52645.041 0.16239 LOTOSS 0.062 52776.7 IAUC06 LOTOSS 8042 Nearby 0.011 SN Factory 52779.785 0.033 52796.078 52613.5 0.064 52803.247 LOTOSS 0.013 52861.039 IAUC IAUC 0.034 8117 8097 52871.672 LOTOSS IAUC 0.043 8101 52872.079 LOTOSS 52731.5 0.058 52711.5 52877.255 LOTOSS Robert 0.064 52717.5 Evans 52851.9 Tom35 Boles; 0.028 IAUC LOTOSS 8044 52898.788 LOTOSS 0.045 52913.751 0.061 IAUC 52629.5 8134 52921.5 LOTOSS Robert 0.023 IAUC Evans 8134 52665.0 CBET54 IAUC 41 Berto 8150 0.056 IAUC Monard 52764.5 8143 53242.562 0.023 52775.5 53258.574 52755.5 LOTOSS Mike 52866.8 IAUC Schwartz, 52772.5 LOTOSS 8179 53274.003 LOTOSS JM 0.156 Llapasset 53286.294 IAUC 8186 0.083 IAUC 52855.9 8184 53295.2 IAUC12 IAUC 8186 8058 0.04375 52866.5 Berto 0.048 Monard 52868.5 LOSS 53409.785 52848.5 52654.5 0.025 IAUC Lulin 8201 Observatory 53432.710 0.020 IAUC CBET 8214 48 LOSS 53604.041 0.021 52891.5 53609.525 0.072 52896.5 LOSS 53614.7 52919.5 IAUC41 8405 IAUC 0.076 8420 53612.7 Tenagra52 Observatory 0.025 Ceamig IAUC 53623.0 839522 53223.9 0.035 53258.6 LOSS 53623.789 0.022 IAUC 53240.5 53643.7 841262 IAUC 0.025 BRASS 8586 53387.004 0.113 IAUC LOSS 53271.8 53386.0 842210 53601.5 0.181 LOSS 53728.274 IAUC 8482 0.026 Tim LOSS Puckett 53293.5 53402.0 Tenagra34 Observatory 0.045 CBET 53784.0 Tenagra24 113 53320.8 Observatory 0.087 LOSS 53819.132 IAUC 8589 0.044 53819.0 53431.8 17 Berto IAUC 0.031 8467 Monard CBET 53829.5 Tenagra26 213 53602.6 Observatory IAUC 0.040 CBET 8468 222 CBET 54009.519 219 53379.8 0.115 Perth Observatory LOSS CBET 54011.5 53605.6 50 220 53369.8 0.023 53619.5 54046.2 53603.6 87 CBET 0.235 406 IAUC 54070.0 8608 CBET 53611.8 59 333 0.032 LOSS 53770.0 Tom Boles CBET 0.059 53781.6 446 53638.7 54149.7 53717.9 0.042 LOSS 54150.7 Berto 0.103 53815.5 Monard IAUC SDSS 54180.2 8476 Tenagra Observatory 54343.7 53396.7 LOSS 54354.0 CBET 462 CBET 54357.5 Takao 449 Doi Berto IAUC 8668 Monard CBET 725 Nearby 53822.7 SN Ron CBET Factory Arbour 53802.8 660 53766.5 CBET 663 54028.5 54006.5 Robert Evans CBET LOSS CBET 54010.7 766 CBET 851 CBET 1050 848 CBET 54062.8 901 54336.6 54123.9 54126.7 CBET 54173.8 1065 CBET 1062 54348.5 54349.8 ...... – 0.034 52576.7 SDSS IAUC 8020 52570.5 – 0.024– 52701.0 0.041 LOTOSS 52770.7 IAUC 8086 LOTOSS 52696.5 IAUC 8131 52757.5 21 22 20 17 17 22 20 20 20 21 21 22 21 19 20 19 22 20 21 21 20 20 19 20 18 19 21 20 21 20 19 21 20 20 21 20 19 20 18 21 21 18 21 20 16 21 21 20 18 20 19 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 2 2 1 1 1 1 1 1 1 SN2002ig SDSS J013637.22+005524.9 23100 SN2003BSN2003blSN2003bnSN2003ciSN2003cnSN2003cxSN2003dq 2MASX J10023529-2110531SN2003E NGC 1097SN2003ef NGC 5374SN2003eg NEAT J135706.53-170220.0SN2003ej MAPS-NGP UGC O4320786358 6212SN2003fb 3828 ICSN2003gd 849SN2003hd MCG -4-12-004SN2003hk 11100SN2003hl NGC 13800 4708 1272 SN2003hn NGC 4377 – 4727SN2003ho UGC 7820SN2003ib UGC 11522 9111 SN2003ip MCG – -04-05-010SN2003iq M74 5433 4470 SN2003T 0.057 NGC 1085SN2004dy NGC 772SN2004ej NGC 1448 4440 ESO 0.083 235-G58SN2004er 4388 52698.0 MCG -04-48-15SN2004fb 5094 SN2004fc 11850 5262 UGC 327SN2004fx 52730.0 NGC Nearby 772SN2005af SN Factory UGC 4864SN2005an 6795 IC 657 SN2005dk 5090 NGC Nearby MCG 3095 SNSN2005dn -01-7-24 Factory 2475 4314 1170 IAUCSN2005dt 7446 ESO 8088 340-G7SN2005dw NGC MCG 52694.5 SN2005dx 701 -02-14-3 IAUC 8105SN2005dz 5403 NGC ESO 4945 506-G11SN2005es 2475 52725.5 8373 SN2005J ICSN2005K 4882 NGC 4411 6861 9352 MCG 2723 -03-59-6SN2005me MCG -05-52-49SN2005Z 6100 MCG -03-11-9SN2006ai 2673SN2006bc UGC 1831 MCG 12717 +01-59-79SN2006be 3206 SN2006bl 563 NGC 4012SN2006it NGC 2923 ESOSN2006iw 244-31 7695 4708 2829 5269 –SN2006ms NGC ESO 3363 005-G009SN2006qr 8012 SN2006Y NGC 11287 2397 2MASXSN2007aa 5696 J23211915+0015329 MCG IC +02-40-9SN2007ab 4582 0.090SN2007av NGC 6956SN2007hm 4183 8204 6726 SN2007il NGC MCG 6935 -02-22-023 53307.0SN2007it 9226 4571 5766 SDSS J205755.65-072324.9 NGC anon MCG 4030 1363 -01-43-2 9708 NGC 3279 2145 LOSS 4650 4350 IC 1704 7540 4543 NGC 5530 7056 1465 10074 IAUC 8431 1394 53303.5 1193 6454

MNRAS 000,1– ?? () 16 C. P. Guti´errez et al. (3) (10 (5) (6) (9) (9) (5) (5) (3) (2) (9) (7) (4) (4) (4) (6) (7) (5) (5) (8) (8) (6) (7) (6) (7) (6) (8) (8) (8) (5) n s s s s s n n s s n n s s s n s s n n n n n s n n n s n s band magnitudes (taken from the LEDA database: http://leda.univ-lyon1.fr/); (5) the reddening − B 86 0.014 54396.5 CHASE CBET 1114 54388.5 22914584 0.18347 0.04529 0.06093 0.525 54443.049 0.074 54146.598 0.036 54146.518 0.020 54148.786 0.017 54499.560 0.023 54528.033 Berto 0.061 Monard LOSS 54549.0 Berto 0.083 Monard 54550.701 0.376 54554.755 LOSS; Berto Robert 0.044 Monard Evans 54558.754 LPL 54564.281 CBET LOSS; 844 CHASE 0.060 54574.048 CBET Berto 844 0.012 Monard CBET CBET 1170 54477.5 127960 54130.8 0.057 CBET36 1252 54143.5 0.017 54422.8 54517.8 CRTS 54752.0 T.38 Berto Puckett CHASE 0.029 CBET and Monard 1311 G. 54477.9 54768.760 Sostero CBET 0.015 847 CBET 54481.023 1315 0.020 54543.5 T. LOSS 54796.5 Puckett67 CBET and 1207 0.040 54135.6 R. Gagliano 54540.9 54812.708 0.086 CBET 54827.783 54469.6 1332 0.130 CBET CBET 1320 LOSS 1557 CBET 54827.235 1326 0.034 54555.7 54480.728 0.081 54522.8 54769.6 LOSS 54551.7 54502.7 CHASE 0.022 CBET 1341 54887.0 CHASE 0.035 54895.0 Koichi CHASE 0.019 Itagaki 54566.8 54902.0 CBET CHASE; 1539 54916.2 Tim Puckett BRASS et al. 54920.0 CBET 54742.7 LOSS CBET 1210 54856.3 1587 CHASE CBET CBET CBET 1711 1636 1619 54432.8 CBET 54792.7 1634 CHASE 54890.7 54825.4 54807.8 CROSS 54825.6 CBET Koichi 1214 Itagaki LOSS CBET CBET 1238 54471.7 1704 54483.8 CBET 54880.5 1719 CBET CBET 1670 1740 54897.5 CBET 54846.8 1748 54901.9 54915.8 ...... 19 22 20 20 22 21 22 20 18 19 20 20 21 20 20 20 21 20 20 20 20 20 20 19 20 20 20 19 20 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ). ? SN2007oc NGC 7418 1450 SN2007sqSN2007WSN2007XSN2007ZSN2008agSN2008awSN2008bh MCG -03-23-5SN2008bkSN2008bm NGC 5105 ESOSN2008bp 385-G32SN2008br PGC 016993SN2008bu ICSN2008F 4729 NGC 4939SN2008ga NGC 2642SN2008gi CGCG NGC 4579 071-101 7793SN2008grSN2008H NGC 3095 2902 2837 SN2008ho IC ESOSN2008if 2522 586-G2 5277 MCGSN2008il -01-8-15 LCSB L0250NSN2008in 3110 CGCG 4439 415-004SN2008M 4345 9563 SN2008W ESO 499- 227 ICSN2009aj G 1579 005SN2009ao NGC 2723 MCG 922SN2009au -01-24-10 6630 SN2009bu ESO 355-G4 5506 3019 SN2009bz 4639 NGC 4303SN2009N 7328 ESO 121-26 MCG -03-22-7 ESO 221- G 018 4287 NGC 2939 6831 ESO 3440 443-21 – 3082 NGC 7408 6276 UGC 9814 NGC 4487 1566 2267 5757 0.582 2883 3339 2819 54734.0 3494 3231 1034 CRTS CBET 1526 54711.5 Explosion epoch estimation from SN non-detection. Discovery epoch. Redshift obtained from theTaken from SN the spectrum. Asiago supernova catalog: http://graspa.oapd.inaf.it/ ( Explosion epoch estimation through spectral matching. SNe and host galaxy information. Columns: (1) SN name; (2) galaxy name; (3) the host galaxy heliocentric recession velocity. These are taken from1 the2 Nasa Extragalactic? Databases (NED: n http://ned.ipac.caltech.edu/) unless indicated bydue a superscript to (sources dust in inAll-Sky table our notes); Galaxy Automated (4) ( Schlafly hosthttp://w.astro.berkeley.edu/bait/kait.html), & Survey galaxy Catalina Finkbeiner absolute )2011 Real-Time forSystem taken Transient from Supernovae (http://ogle.astrouw.edu.pl/ogle4/transients/2015/transients.html), Survey NED; Pan-STARRS1 (6) (ASAS-SN; (CRTS;ATLAS discovery (https://panstarrs.stsci.edu/), http://nesssi.cacr.caltech.edu/CRTS/), date; http://www.astronomy.ohio-state.edu/), (http://fallingstar.com/home.php); Optical (7) Gaia(http://alain.klotz.free.fr/snalert/); MASTER source Gravitational Photometric Perth of Lensing Global Takao discovery: Science CHileanservatory Experiment Astronomical Doi Automatic Robotic Alerts (OGLE-IV), and sEarch Research Net (http://iss.jaxa.jp/en/astro/biographies/doi/index.html); (GaiaAlerts, Transient2004-gill-medal/); (CHASE; Detection http://www.das.uchile.cl/proyectoCHASE/), http://gsaweb.ast.cam.ac.uk/alerts/), Tenagra (http://observ.pereplet.ru/), Group Sloan Tomgra Lick Observatory Digital (PARG; Boles Observatory Observatory Supernova http://www.parg.asn.au/); SkyRon Supernova (http://www.coddenhamobservatories.org/); Survey Search Nearby (http://www.tenagraobservatories.com/); Search Arbourhttp://www.cortinastelle.it/snindex.htm); Lulin Collaboration (8) Supernova (LOTOSS; (LOSS; Brazilian (http://mstecker.com/pages/apparbour.htm); discovery Observatory (SDSS; reference; Factoryet http://w.astro.berkeley.edu/bait/lotoss.html); (9) al. ( 2017a ). Supernovae Lunar (http://www.lulin.ncu.edu.tw/); http://www.sdss.org/collaboration/); (SNFactory; explosion Berto epoch. Search and CEAMIG/REA Lick https://snfactory.lbl.gov/); They Monard are Alain Ob- (BRASS; Planetary Supernovae estimated (http://assa.saao.ac.za/about/awards/gill-medal/berto-monard-awarded- using Klotz Laboratory the Search http://brass.astrodatabase.net/index.htm); SN non-detection (http://www.ceamig.org.br/); (LPL; Perth or through Tena- https://www.lpl.arizona.edu/); Observatory the spectral Col matching. (https://www.wa.gov.au/perthobs/); More details Drusci´e can Remore be found Observatory in Guti´errez Supernovae Search (CROSS;

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 17 Ohio FLOYDS OSMOS: FLOYDS: Spectra # Source of Spectra ∗ Goodman Spectrograph at the SOAR 4.1-m telescope; GS: ESO Faint Object Spectrograph and Camera at the 3.5-m ESO New Technology : Wide Field CCD Camera at the 2.5-m du Pont Telescope; WFCCD EFOSC2: 40 FLOYDS 96 5 – 63 EFOSC2+FLOYDS 390 30 EFOSC2 73 EFOSC2+FLOYDS33 390 EFOSC2+FLOYDS5028 21 326 EFOSC2+FLOYDS FLOYDS 29 FLOYDS 179 EFOSC2 34 190 EFOSC2 8 FLOYDS 62 FLOYDS 150 17 FLOYDS 42 FLOYDS 276 15 FLOYDS /  . • ? ♣ 5 4 80 10 EFOSC2 59 7 EFOSC2 904070 20 6 13 EFOSC2+FLOYDS EFOSC2 110 EFOSC2 9 59 91 EFOSC2 3 5 EFOSC2 EFOSC2 35 18 EFOSC2+WFCCD 76 10 EFOSC2 8090 16 30 EFOSC2 FLOYDS 81 82 8 8 EFOSC2 FLOYDS 110190150 14150 46110130 45 34 EFOSC2+FLOYDS 25 EFOSC2 23150 EFOSC2+FLOYDS110 141 FLOYDS 22 EFOSC2 147110 FLOYDS 18 94 29 12 16 EFOSC2 143 EFOSC2 8 107 EFOSC2 53 FLOYDS 14 EFOSC2 EFOSC2 18 104 8 FLOYDS 100 EFOSC2 11 FLOYDS 50 8 EFOSC2 4 EFOSC2 EFOSC2 140350 17210120 8 28 LDSS3+WFCCD EFOSC2+LRS+GS+OSMOS 58 114 120 FLOYDS FLOYDS 4 2 GS 215 96 – 13 13 FLOYDS FLOYDS 140 30 EFOSC2 109 11 EFOSC2 510 400 290 300 300 390 340 257 JHK 0 z gri gri gri gri 0 i BV ri BVRI BVRI BVRI 0 BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri BV gri r 0 g source coverage (d) Points source coverage (d) Spectra around 50 days 150 days. 69 days. 150 days. ∼ 140 days. 100 days. 130 days. 70 days. 100 days. ∼ ∼ ∼ ∼ ∼ ∼ ∼ Low Resolution Spectrograph at the 3.6m Telescopio Nazionale Galileo (TNG); SN Photometry Filters Photometry # Spectroscopic LRS: Low Dispersion Survey Spectrograph at the Magellan Clay 6.5-m telescope; SN2016B LCO SN2016X LCO SN2015V LCO SN2016O LCO SN2009lq PROMPT1,3,5 SN2015bs CSP II SN2015W LCO SN2015aq LCO SN2017vp GROND SN2017pn LCO SN2014cw PROMPT1,3,5 SN2016drl LCO SN2016blz LCO SN2016aqf LCO SN2016ase LCO SN2016egz LCO SN2015bm LCO SN2016gsd LCO SN2016hpt LCO SN2016enk LCO SN2016enp LCO SN2016dpd LCO SN2016hmq LCO SN2016dbm LCO ASASSN-15lx LCO ASASSN-15oz LCO ASASSN-15rp – – – – EFOSC2 77 3 EFOSC2 ASASSN-15kz LCO ASASSN-14dqASASSN-14kp LCO PROMPT1,3,5 Observation details Break in the observations n for Break in the observations for Break in the observations for Break in the observations for Break in the observations for Break in the observations for Break in the observations for Break in the observations for Note that ASASSN-15rp does not have Photometric information. Notes: LDSS3: State Multi-Object Spectrograph at the 2.4-m Hiltner? Telescope. ♣ 4  / Telescope (NTT); . • 5 spectrographs on the Faulkes Telescope South (FTS) and the Faulkes Telescope North (FTN); Table 2.

MNRAS 000,1– ?? () 18 C. P. Guti´errez et al. ) 06 19 17 10 39 03 22 36 09 40 12 12 34 25 21 10 36 19 47 09 34 10 10 10 41 05 08 19 ...... 0 0 0 0 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 stellar

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± M 21 06 32 17 38 56 01 70 69 58 40 31 53 99 72 71 43 43 26 56 72 73 81 88 71 72 97 98 ...... Log( 34 7 02 8 08 8 74 8 07 8 02 9 01 9 11 7 05 8 21 9 04 9 04 8 03 10 0105 8 7 13 8 11 8 01 10 02 11 13 7 01 8 03 8 08 6 10 9 01 8 13 10 ...... z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 37 36 01 94 43 46 43 59 42 63 09 48 49 03 40 82 95 11 62 60 78 74 07 80 33 20 ...... Host M 19 16 15 17 17 17 18 17 16 15 18 20 18 20 19 19 17 16 14 20 17 22 15 17 12 19 − − − − − − − − − − − − − − − − − − − − − − − − − − 01 02 16 01 11 – 8 01 02 03 14 10 02 03 10 16 09 11 04 07 01 01 02 01 – 9 01 22 04 01 01 13 ...... i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 98 85 62 31 45 31 38 22 28 28 55 32 34 15 11 06 31 52 53 70 03 82 20 37 45 43 67 72 ...... Host M 17 17 19 16 14 19 19 14 18 13 17 18 17 15 17 13 19 17 20 18 20 17 19 22 21 16 15 17 − − − − − − − − − − − − − − − − − − − − − − − − − − − − 10 – – – 1010 – – – – – – 10 – – – . . . . 01 01 07 02 01 01 07 03 14 13 01 10 06 04 1004 – – – 05 01 03 02 10 10 – – – 19 01 04 10 02 13 06 04 0 0 0 0 ...... r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 44 29 34 39 . . . . 27 87 05 25 23 01 81 64 03 10 73 02 91 42 97 81 72 20 00 26 17 28 57 99 76 29 54 23 08 30 ...... 17 16 17 14 Host M 17 14 14 17 17 16 18 19 17 15 17 18 20 18 19 17 14 19 22 20 19 16 17 14 17 12 17 13 18 20 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − > > > > 03 09 02 01 02 12 04 02 23 01 01 01 09 01 02 03 01 11 01 10 04 06 07 10 03 ...... g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 92 79 54 09 70 55 58 17 56 54 18 62 89 93 01 99 25 45 81 27 57 78 55 36 54 ...... Host M 17 16 16 18 15 17 16 14 18 16 14 19 18 21 17 14 17 16 14 16 16 18 17 19 18 − − − − − − − − − − − − − − − − − − − − − − − − − Table 3: Host galaxy information 09 08 57 09 15 01 02 11 42 02 ...... u 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± 97 62 52 71 08 20 84 77 09 88 ...... Host M 13 15 15 15 14 19 17 16 15 16 − − − − − − − − − − 41 51 – 5038 – – – – – – 53 – – – – – – 51 – 04 – – – – – – 23 – – 28 32 – 50 – 2133 –14 – – – – – – 2909 – – – – – – 12 10 – – 08 – – – – – – 20 – – – – – – 11 – 03 21 – – – – – – 20 – 50 – 14 – – – – – – 10 52 – – – – – – 36 – 12 – 12 – – ...... B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 39 36 01 81 39 39 73 51 58 85 53 54 44 90 28 99 06 48 66 75 56 30 34 27 87 50 40 62 18 68 40 ...... (mag) (mag) (mag) (mag) (mag) (mag) (M 18 18 17 17 17 18 16 16 18 20 18 21 20 20 20 16 15 19 21 18 20 19 20 18 18 17 16 18 18 21 19 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −   •  SN2016enpSN2016gsd – – – SN2016hmq SN2016hpt SN2017pn – – SN2017vp – SN1999ca SN1999cr SN1999eg SN2016O SN2016X SN2016aqf SN2016ase SN2016blz SN2016dbm – – SN2016dpd – – SN2016enk SN2016drlSN2016egz – – – SNSN2009lqASASSN-14dq Host M – – – SN1986L SN1990E SN2014cw – – – ASASSN-14kp SN2015V SN1990K SN2015W SN1991al SN2015aq SN1992af SN1992am SN1993K SN1999br SN1993S ASASSN-15lx SN1993A SN1992ba ASASSN-15oz – – – SN2015bm –ASASSN-15rpSN2016B – – – – ASASSN-15kz SN2015bs – – –

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 19 18 23 25 09 09 07 22 08 07 42 14 06 17 14 13 29 16 08 38 36 23 34 20 25 03 14 08 05 04 12 07 02 15 11 13 17 18 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 47 05 05 13 13 35 52 60 99 14 45 66 10 50 15 30 35 24 75 14 62 38 36 02 26 07 00 87 80 09 93 92 37 36 04 48 80 ...... 01 11 00 11 01 10 03 10 01 10 0102 10 10 01 10 10 10 14 10 10 – 02 10 0111 11 11 01 9 02 10 10 – 01 10 06 9 01 11 01 10 02 10 02 11 03 10 01 9 02 9 01 10 08 8 12 8 01 10 06 9 01 10 10 11 03 9 07 11 04 10 01 9 01 9 02 10 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 43 89 69 27 69 69 38 52 46 01 94 69 86 90 14 21 01 18 09 96 14 46 35 78 34 92 43 89 34 68 01 46 16 67 22 59 76 15 21 ...... 21 20 22 19 19 21 20 22 21 20 19 22 20 21 22 22 20 21 22 19 23 21 22 18 22 21 21 18 22 17 17 21 20 18 22 20 21 19 19 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 01 01 01 01 01 01 02 06 01 01 07 12 06 01 01 02 12 01 07 02 01 03 01 03 01 01 01 03 15 02 03 01 06 02 10 04 03 01 10 – – 01 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 11 25 72 36 52 64 11 32 84 22 84 88 41 66 76 25 24 84 90 71 94 74 36 19 10 35 20 29 02 75 91 64 63 09 67 12 49 23 61 96 ...... 22 21 20 22 20 19 19 21 21 20 20 20 19 21 22 20 22 21 21 20 21 19 21 21 22 21 18 22 21 18 17 18 20 19 20 19 18 20 19 21 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 01 05 02 01 01 01 10 01 10 03 02 01 02 03 02 01 09 01 01 09 09 05 01 16 02 03 01 12 04 14 06 02 03 01 01 01 01 01 04 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 97 75 46 99 14 68 92 47 68 25 72 85 25 83 42 70 32 38 42 99 98 43 25 49 38 95 01 74 22 58 38 92 17 00 91 41 69 62 53 ...... 20 21 18 20 21 20 21 20 21 19 21 19 19 21 20 22 20 21 18 20 21 21 22 22 20 21 20 18 17 17 20 19 21 17 18 20 18 21 19 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 02 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 03 08 02 01 05 04 01 01 02 02 24 01 01 01 04 01 01 06 01 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 24 97 83 80 95 26 78 09 70 15 69 40 23 60 75 60 14 51 39 64 00 67 05 13 56 45 31 01 37 40 35 89 12 26 96 40 56 16 ...... 21 19 20 19 22 19 20 18 19 21 21 20 18 20 20 20 21 18 21 20 20 20 17 17 17 20 18 20 17 18 18 21 19 20 19 20 18 20 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 02 01 01 01 01 01 01 01 01 01 01 01 01 02 04 01 09 03 01 02 02 04 01 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 66 33 20 85 53 00 03 09 85 35 01 85 28 73 15 35 83 12 16 03 15 57 51 ...... 19 19 18 18 18 18 18 19 20 19 18 17 20 19 18 17 17 19 16 20 17 18 19 − − − − − − − − − − − − − − − − − − − − − − − 1240 – – – – – – 20 – – – – – – 201123 – – – – – – – – – – – – – 41 30 28 – 4332 – 49 54 20 – – – – – – 07 70 20 – – – – – – 19 – 27 1950 – – – – – – 32 – 09 – – – – – – 26 – 20 – – – – – – 20 – 54 32 39 – 52 29 36 – – 27 20 – 38 06 15 – – – – – – 40 50 50 – 15 – – – ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± –– –– – 22 10 41 12 75 85 25 41 52 88 51 54 62 79 55 35 74 03 94 06 85 58 78 39 47 73 41 39 72 26 87 99 52 89 42 14 98 99 61 14 82 ...... 20 21 20 19 20 18 19 21 20 21 20 21 20 19 19 22 20 19 20 20 21 21 20 20 21 19 20 20 22 21 21 22 20 22 17 17 19 21 17 20 19 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − • • • • • SN2005es SN2005J SN2005K SN2005me SN2005Z SN2006ai SN2004fb SN2004fc SN2004fx – – SN2005af SN2005an SN2005dk SN2005dn SN2005dt SN2005dw SN2005dx SN2005dz SN2003hn SN2003ho SN2003ib SN2003ip SN2003iq SN2003T SN2004er SN2004dy SN2004ej SN2003eg SN2003ef – – SN2003ej SN2003fb SN2003gd SN2003hl SN2003hd SN2003hk SN2003B SN2003bl – SN2003bn SN2003ci SN2003cn SN2003E SN2003cx SN2003dq SN1999em SN2002ew – SN2002fa – SN2002gd SN2002gw – – SN2002ig SN2002hj SN2002hx

MNRAS 000,1– ?? () 20 C. P. Guti´errez et al. 09 05 11 26 05 04 08 18 05 16 08 16 12 20 14 20 44 14 39 06 13 12 09 35 11 42 16 12 04 21 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 00 09 60 52 22 11 42 08 92 72 50 57 25 33 67 52 99 36 30 18 09 33 66 46 77 95 60 68 76 73 ...... 02 10 01 10 01 10 02 9 01 9 14 9 02 10 10 10 02 10 01 10 04 10 02 10 02 10 05 9 01 10 12 9 10 11 01 11 06 11 08 9 01 9 05 10 07 11 10 10 05 10 04 9 01 10 02 9 01 10 01 10 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 55 72 31 05 02 23 85 20 85 27 67 16 86 03 50 94 77 92 32 52 29 94 63 51 75 34 35 85 82 11 ...... 19 19 20 20 19 19 21 21 20 20 20 21 20 22 20 19 21 21 22 20 19 21 21 22 22 20 20 19 20 19 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 06 04 12 06 01 01 01 03 13 03 01 02 12 02 11 01 01 08 – – 02 10 12 03 01 01 12 06 01 10 02 01 01 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 44 35 00 90 94 49 53 82 83 00 03 68 94 57 18 22 62 00 83 57 46 22 61 06 21 26 60 60 18 38 63 ...... 19 19 20 20 20 19 19 20 20 21 20 20 22 20 21 19 20 19 21 21 21 20 21 20 19 21 21 19 22 20 20 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 03 01 14 01 01 01 04 12 05 03 01 01 02 16 04 01 10 14 15 02 10 06 02 01 01 01 01 01 01 06 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 89 17 30 52 37 63 45 53 81 44 65 98 93 58 83 00 23 61 75 62 19 97 34 94 17 93 35 74 97 790 ...... 19 20 18 18 19 20 20 20 20 20 20 20 21 20 19 18 20 21 20 20 21 21 21 19 21 18 20 20 18 19 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 01 02 01 04 10 02 06 01 13 01 01 01 01 10 02 05 01 05 01 01 01 01 01 01 03 01 01 16 01 02 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 51 22 92 04 08 40 65 10 67 77 15 46 65 28 89 06 37 90 64 55 42 10 41 34 13 85 91 46 42 55 ...... 18 20 18 19 18 20 20 20 20 18 20 20 18 20 19 20 20 20 19 19 18 18 20 18 19 19 20 18 20 20 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 01 01 01 01 01 01 02 01 06 01 01 01 01 19 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± 69 14 30 57 07 64 25 00 05 88 15 52 65 89 ...... 16 17 18 19 19 19 18 18 17 16 17 17 16 19 − − − − − − − − − − − − − − 0306 – – – – – – 23 – – – – – – 34 50 – 20 –19 – – – – – – 30 – 39 10 – – – – – – 09 – 10 – 38 – 50 09 – 50 – – – – – – 17 – – – – – – 63 44 – 32 27 – – – 16 – – – – – – 50 – 11 0811 – – – – – – – 0715 – – – – – – – 10 – 71 20 – – – – – – 33 – 28 50 25 – 50 19 5015 – – – – – – – 09 – – – – – – 08 – – – – – – 32 33 ...... 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 83 35 60 08 38 28 67 23 54 55 81 33 60 86 48 01 60 36 86 59 22 93 47 91 29 49 98 84 45 18 19 74 26 50 17 24 32 34 87 89 62 04 10 ...... 20 20 20 20 20 20 19 20 20 20 20 19 18 19 20 21 20 20 21 20 20 18 20 19 19 22 20 21 22 20 22 20 21 21 20 21 18 21 20 16 21 20 18 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − • • SN2009bu SN2009bz SN2009N SN2008H SN2008gr SN2008ho SN2008if SN2008il SN2008in SN2009au SN2008W SN2008M SN2009ao SN2009aj SN2008bh SN2008aw SN2008bk SN2008bm SN2008bp SN2008F SN2008bu SN2008br SN2008ga – – SN2008gi SN2007av SN2007ab SN2007hm SN2007il SN2007oc SN2007it SN2007sq SN2008ag SN2007W SN2007Z SN2007X SN2006bc SN2006be SN2006bl SN2006it SN2006iw SN2007aa SN2006Y SN2006qr SN2006ms SNe II from A16 includedSNe in II the from low-luminosity our group. sample included in the high-luminosity group. • 

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 21 ) D) 1 560 700 730 820 520 500 700 250 320 730 500 310 560 600 650 760 420 660 273 304 345 337 224 451 663 477 663 876 847 520 620 759 486 391 i − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 1 3406 8 6825 0 1519 3 6000 0 4476 70 5000 6000 0 6534 0 – 0 – 6 2300 29 7800 01 4610 2700 5159 0 – 0 3100 50 3889 5239 02 4504 0 3722 5741 1 5408 1 5488 0 4000 0 – 8 3780 0 3220 2 7835 9 4325 0 – 09 5512 6363 ...... 6247) vel(Na 2 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 2 1 0 0 0 0 0 0 0 1 0 1 0 0 0 ii ± ± ± ˚ A) (km.s ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0 6 2 5 0 0 0 0 0 0 5 0 3 0 0 0 0 0 8 0 0 5 0 3 1 8 0 8 0 1 0 0 9 ...... 6 14 1 3 0 0 00 0 5 0 0 5 0 0 0 0 5 700 3 0 2 00 0 0 06 0 – 4100 9 2 10 3 0 00 0 06 7 0 2 11 1 91 4 7 4 11 4 5 0 0 0 0 0 0 . 6142) pEW(Sc ...... 1 3 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 ii ± ± ˚ A) ( ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 8 9 . 5 0 0 0 8 0 0 7 0 0 0 6 5 0 0 0 1 0 1 0 7 0 8 0 4 9 4 0 0 4 ...... 3 1 041 0 –0 –4 0 1 – 1 – – 7500 7800 – 6500 3 5 9 0 1 8 5 – 9 21 – 0 – 5700 8 7 5 3 3 3 841 6 0 3 72 0 7 6 9 7 91 3 12 5 5 6 02 – 0 – – 0 0 555 2 0 0 80 0 – 0 2 0 0 0 1 0 0 0 ...... 2 4 3 3 4 3 5 2 2 2 2 1 1 1 1 4 1 2 5 1 3 1 1 2 2 2 0 1 0 1 2 1 1 0 2 0 1 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ˚ A) ( ± ± ± ± ± ± ± ± ± ± ± ± 0 2 1 0 1 0 1 0 6 5 1 6 4 1 1 0 0 0 0 2 4 2 1 7 7 3 0 1 0 1 2 3 1 0 0 3 1 0 ...... 7 10 5 15 14 17 6 –1 18 8 8 0 – – – – 6 34 9 12 62 21 55 9 9 5 12 32 35 13 9 0 4 29 2 18 70 13 53 85 9 4 30 2 42 27 99 34 1 27 9 20 33 3 0 0 11 4 4 5 0 8 29 8 20 1 50 0 0 5 0 0 – – – – ...... 5169) pEW(Na I D) pEW(Ba 3 2 3 3 2 3 2 3 1 3 2 3 2 2 3 4 3 2 3 1 2 2 4 3 1 3 2 3 3 3 2 1 4 3 3 2 0 1 0 ii ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ˚ A) ( ± ± ± 2 0 5 1 1 3 1 1 2 2 1 3 1 3 2 4 0 3 8 0 3 5 2 9 6 5 3 1 7 1 1 2 8 1 0 7 2 0 0 ...... 01 30 25 8 27 9 18 9 80 3 28 3 38 8 32 26 33 35 9 40 12 31 35 7 24 15 36 59 8 43 853 28 43 64 1 29 1 41 0 30 5 30 5 19 5 27 8 36 7 27 7 38 5 11 22 12 7 0 0 2 24 0 0 3 36 1 47 3 12 5 41 ...... 5018) pEW(Fe 1 0 1 1 1 1 1 1 2 2 2 3 3 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 0 0 2 2 0 1 0 1 1 1 1 ii ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ˚ A) ( ± ± ± ± ± ± ± ± ± ± 1 5 0 1 0 5 5 1 0 3 5 5 2 8 4 5 9 2 8 9 2 6 1 2 1 0 7 0 9 7 7 0 1 0 0 7 2 5 1 ...... ) pEW(Fe 0 0 56 14 2 7 10 1 5 96 7 – – 35 18 0 –5 – 12 25 9 0 2 10 5 26 2 9 16 9 20 0 14 5 19 905 5 14 18 5 16 68 18 20 1 12 23 15 24 9 20 6 23 78 18 9 25 17 5 11 2 13 2 8 0 20 2 10 3 13 6 14 2 13 4 10 ...... β 3 3 2 3 2 2 4 3 2 3 3 2 2 4 3 2 2 2 4 3 5 4 4 4 7 3 2 4 3 5 2 2 3 3 3 3 3 4 3 5 4 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ˚ A) ( 0 0 2 0 2 0 0 0 3 0 0 0 0 1 0 0 0 0 0 1 0 0 0 7 8 0 4 0 6 0 4 8 8 8 9 3 5 0 5 2 9 ...... ) pEW(H 3 37 7 27 15 15 64 5 58 32 32 68 0 46 1 51 3 33 90 52 42 1 55 8 55 31 71 73 6 58 93 52 39 1 40 8 75 2 64 8 76 63 45 42 0 70 1 73 0 54 2 47 2 37 6 62 8 42 17 33 78 1 48 8 67 8 71 0 12 ...... α . 3 3 2 3 5 4 3 3 5 4 2 4 2 4 5 6 3 3 2 2 4 2 3 3 4 2 4 4 3 5 3 3 3 2 4 5 3 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ˚ A) ( ± 2 1 1 0 8 2 3 2 0 4 1 2 0 0 3 2 4 4 1 8 7 4 7 8 8 0 3 1 1 1 2 0 9 0 8 1 7 1 ...... pEW(H 2 35 5 61 2 –5 11 38 0 35 26 40 58 65 70 88 0 60 0 42 68 35 23 8 61 1 80 6 31 6 45 7 – –8 75 – – – – – – 6 48 7 – – – – – – – – 9 – – – – – –7 32 – – ...... 0 8 4 0 4 0 0 1 5 0 0 5 7 9 1 7 7 6 5 0 7 2 6 d ± ± Table 4: Photometric and spectroscopic (+50 days) measurements ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 7 0 0 7 3 7 3 3 2 0 3 0 5 5 9 5 1 4 0 5 6 8 7 ...... OPT 4 80 6 66 3 71 26 86 79 1 113 1 96 4 90 16 78 8 72 98 7 79 2 96 9 79 1 75 7 93 ...... 0 0 3 0 0 0 1 4 0 0 1 2 1 0 2 0 d ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± P 8 7 0 4 1 5 2 7 5 1 5 9 5 6 7 6 ...... ) (days) (days) ( 1 08 43 12 – – – – – – – – – – . . − 0101 48 01 – 35 – – 13 13 – – 27 02 34 0101 – 73 – 33 01 59 02 34 0401 39 01 45 49 01 – – 24 030503 – – – 88 90 68 0202 – –08 107 – 43 – – – – – – – – 060225 67 11 –04 – – – – 68 – – – – 21 – – – – – – – – – – – – – – 01 68 0303 –080402 – 47 06 – – 40 – – – – – 27 – 56 – – – – – – – – – – – – – – 6071 04 – – 62 08 – – 42 10 – 88 05 33 03 59 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± 2 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± s 08 76 . . 73 59 53 64 64 52 22 57 51 15 68 34 86 33 37 50 49 98 72 49 72 30 87 56 31 58 51 36 34 14 65 10 45 27 26 39 ...... 0 0 − − 0610 0 10 0 10 – 0 10 – – – – 12 – 6 1010 1 – – – 13 06 0 10 0 10 0 1010 0 10 0 0511 0 10 0 0 2310 0 07 1 1 0580 0 0 10 0 1007 1 08 0 04 2 28 1 0 10 0 12 0 0723 0 07 2 40 2 21 0 1 10 1 15 1 10 0 20 1 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± max V 07 71 57 36 93 77 00 47 09 43 76 91 00 42 95 43 80 62 99 54 08 16 34 06 90 86 76 92 74 33 44 52 77 48 70 51 44 19 ...... (mag) (mag 100d M 18 19 18 18 17 18 17 17 17 15 16 17 17 16 15 17 17 17 15 15 18 16 16 16 17 16 15 17 15 17 16 17 13 17 16 17 17 18 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − SN2016gsd – – – – 40 SN2016enkSN2016hmq – – – – – – – – 56 28 SN2016blz SN2016dbm SN2016dpd SN2016drlSN2016egz SN2016enp –SN2016hpt SN2017pn SN2017vp – – – – – – 20 – 37 SN2016ase ASASSN-15oz ASASSN-15rpSN2016B SN2016OSN2016X –SN2016aqf – – – – – – – – 35 – – – – – – – SN2015aq SN2015bmSN2015bs ASASSN-15kz ASASSN-15lx – 0 SN2015W – – – – 30 SN2002gw SN2002hj SN2002hx SN1992ba SN1992am SN1999cr SN1999eg SN1999em SN2002ew SN2002fa SN2002gd SN1993K SN2014cwASASSN-14kpSN2015V – – – – – – – – 60 – 45 SN1992af SN1993A SN1993S SN1999br SN1999ca SN1990ESN1991al – SN1990K – 2 ASASSN-14dq SN SN2009lq SN1986L

MNRAS 000,1– ?? () 22 C. P. Guti´errez et al. 735 386 560 434 668 554 404 605 262 769 389 560 709 627 724 613 321 541 506 340 292 695 610 484 468 600 668 234 286 318 339 248 413 360 292 326 397 582 228 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 9 4738 2 4844 3 7285 2 4798 2 3996 03 7397 4994 00 7375 0 6184 4431 500 3957 5278 4798 90 6317 6518 0 5074 06 7004 3864 4 2884 8 4194 28 4316 2 6993 0 4749 02 4725 8 5767 0 4527 4470 1 5010 0 6501 5123 77 4005 5771 22 5907 3836 1 4077 059 4051 – 2712 ...... 0 1 2 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 5 6 0 4 2 0 9 0 0 0 3 0 0 6 0 0 0 7 8 6 6 5 1 0 0 1 3 0 9 0 9 6 2 1 5 0 8 1 ...... 0 10 7 10 4 9 07 0 0 3 00 0 0 0 900 8 0 0 209 4 0 10 4 0 090 0 91 12 0 5 12 1 6 45 4 7 918 9 6 00 7 69 0 0 0 1 6 5 2 0 5 6 6 6 5 2 0 2 9 8 ...... 1 6 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 8 7 7 0 0 8 0 0 3 6 0 7 0 2 0 0 8 0 1 0 0 9 4 4 4 7 4 9 1 0 0 0 6 3 0 2 9 ...... 1 0 49 4 12 0 0 5 22 7 0 286 2 4 0 4 0 49 8 1 91 3 383 6 0 10 5 5 18 87 7 7 36 7 31 9 56 0 9 0 5 6 4 0 4 263 3 11 3 0 0 ...... 21 0 0 2 8 1 1 . 1 1 2 2 1 3 2 1 1 1 2 2 2 2 2 2 3 2 1 1 1 1 2 1 2 2 1 2 2 2 2 1 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 9 1 8 2 . . . . 6 4 3 2 2 4 0 3 4 1 7 6 8 3 2 2 6 1 5 1 2 1 1 2 4 0 4 3 9 6 3 1 0 ...... 3 15 84 0 23 71 49 1 35 20 61 12 5 15 3 29 22 921 18 32 30 25 33 4 31 32 1 32 3 37 0 11 9 18 41 24 58 617 44 2 35 31 36 6 35 841 16 41 23 3 28 6 55 81 19 16 ...... 32 25 15 7 33 . . 6 2 2 3 4 2 1 3 2 3 3 3 4 2 3 2 3 4 2 3 1 2 3 3 3 3 2 4 3 2 2 3 1 1 2 3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 9 ± ± . 2 4 6 1 8 0 0 3 9 1 8 7 0 0 1 2 7 9 2 7 0 1 3 6 6 5 1 7 2 3 2 0 1 3 ...... 5 28 3 34 6 36 43 43 29 5 36 17 36 7 26 16 6 77 2 32 98 44 35 6 42 1 30 87 37 44 75 28 38 3959 34 39 39 42 93 38 1 34 46 81 40 33 8 28 4 35 8 46 5 38 5 38 6 36 8 16 1 48 2 43 ...... 2 1 3 1 3 2 1 2 2 0 0 1 1 1 3 2 1 1 1 1 1 2 2 2 1 1 2 3 0 2 0 2 2 2 1 1 2 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3 7 4 9 0 1 0 8 6 4 4 1 7 5 6 4 4 6 1 3 7 1 1 5 9 9 7 7 7 1 8 4 5 3 7 9 3 ...... 1 20 3 12 8 6 2 13 5 15 40 15 15 3 10 39 21 16 755 15 13 3 38 22 4 20 17 3 18 24 20 14 79 17 22 82 9 21 7 20 24 18 16 46 17 16 1 22 748 10 18 18 7 21 2 15 5 23 15 26 17 ...... 4 4 2 3 3 3 2 4 3 5 3 4 5 5 5 5 3 4 3 2 3 5 6 4 4 4 4 4 3 4 3 4 4 3 4 2 6 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 4 8 0 5 1 1 5 4 4 2 4 6 9 9 7 5 6 9 6 9 6 1 2 6 2 2 2 1 2 6 8 0 1 6 0 1 3 ...... 4 66 3 56 51 52 84 4 50 4 56 5 64 6 38 3 68 2 38 9 25 8 74 7 55 31 57 77 6 61 8 48 1 32 26 71 46 72 59 2 59 16 08 60 69 9 52 3 27 5 64 3 55 4 39 2 56 3 53 34 37 55 1 60 ...... 6 46 6 27 . . 4 5 3 3 5 2 3 4 2 3 4 3 4 4 6 5 3 4 4 5 5 7 6 2 7 3 2 6 2 4 5 5 4 5 1 6 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 5 ± . 2 9 2 4 2 6 4 1 9 0 6 7 5 4 9 6 4 4 1 7 6 4 4 9 2 4 1 8 1 7 6 1 0 7 4 ...... 3 – – – – – – –– 0 63 5 – – –4 – 72 – – – – 8 50 6 – –4 61 –0 74 2 – 34 – – – – 4 58 4 60 . 0 77 7 65 66 – 77 78 – – 15 7 62 – –0 10 – – – – – – – – – – – 0 51 5 – – – – – – – – 77 49 66 6 69 0 70 5 57 06 60 84 08 43 5 – 91 – – – – – – 5993 87 73 –0 32 – – – – – – 6244 5 50 8 78 22 58 77 ...... 5 9 5 5 3 7 5 6 7 7 6 5 6 5 5 9 15 6 6 7 5 5 5 9 8 5 6 5 5 3 8 5 4 4 10 10 10 11 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 4 0 4 9 1 1 9 9 0 0 6 3 2 5 6 7 2 7 8 0 4 1 7 9 9 8 8 0 3 0 4 5 8 0 ...... 7 1 6 2 ...... 5 93 4 103 8 81 9 97 5 80 5 63 3 76 6 47 6 92 65 74 3 82 78 27 – 120 7 106 – – – – – – – – 6 90 0 69 3 87 ...... 2 2 1 1 0 1 0 2 0 1 3 5 1 2 4 2 1 10 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 4 0 9 3 8 7 7 1 0 8 0 0 3 5 3 1 9 0 ...... 05 – – – – – – – – – – 4502 – – – – – 74 – – – – – – – 03 – 101 . . . 10 32 01 – 78 050502 –14 53 10 – 43 90 04 – 38 0206 – 43 1003 – – –18 – – 24 – – – – – – – 40 – – – – – – – – – – – – – – – – – – – – – – – – – – – 01040414 – 68 – – – – – 97 44 – – – – – – – – 07 56 0507 36 04 39 06 45 – 113 02 – 96 06 – 71 05 – 107 02 – 68 0705 68 – – 70 02 – 92 04 – 97 0404 48 16 –13 –0406 90 – –06 – –01 59 69 – 88 – – 9 108 – – – – – – – 0711 58 030301 –02 –09 – – 25 02 – – 57 80 – 84 90 68 – – – – – – – – 0504 – – 84 – – – – – – – – – 04 – 92 03 63 03 – 86 12 – – – – – – – – 0 02 – 95 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 1 67 05 05 . . . . 52 12 33 36 76 26 98 04 45 55 05 63 41 14 00 11 92 98 85 10 48 58 40 18 40 25 04 64 03 72 69 83 52 26 50 25 78 34 61 12 73 29 46 61 76 52 22 93 65 91 20 35 32 0 ...... 0 0 0 − − − − 12 0 11 1 08 1 0614 0 08 1 10 1 1 1426 2 2907 0 15 2 07 1 1 06 2 2209 0 11 1 50 0 1 13 0 1814 1 24 1 09 1 0 15 14 1 27 09 3 24 0 1131 1 0 14 0 21 1 1106 1 06 0 15 2 1312 1 12 3 0 1030 1 0 10 2 0913 1 30 2 08 0 07 0 0 16 0 06 0 07 1 16 0 28 0 03 2 14 0 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 27 47 78 55 57 17 28 83 47 20 89 05 98 57 06 18 23 97 49 07 99 52 01 39 18 32 98 58 62 10 75 69 54 03 74 19 21 72 70 26 79 69 81 66 56 02 91 74 29 36 83 66 35 80 ...... 16 17 16 17 17 16 16 16 16 16 16 16 18 15 18 17 16 16 16 17 15 17 17 16 16 16 16 15 16 17 17 16 16 16 16 16 16 16 15 16 16 16 17 17 15 17 15 16 17 15 16 17 15 16 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − SN2005dz SN2005Z SN2005J SN2005me SN2006be SN2006it SN2006iw SN2005dx SN2005es SN2005K SN2006ai SN2006bc SN2006bl SN2006Y SN2007av SN2007hm SN2007il SN2007it SN2005dw SN2005an SN2006qr SN2005afSN2005dk SN2005dn SN2005dt – 0 SN2006ms SN2007aa SN2007ab SN2004fx SN2004fb SN2004fc SN2003ef SN2004ej SN2003E SN2003cn SN2003cx SN2003dq SN2003eg SN2003ej SN2003fb SN2003gdSN2003hk SN2003hl SN2003hn SN2003ho –SN2003ib SN2003ip SN2003iq SN2003T 2 SN2004dy –SN2004er 2 SN2003hd SN2003ci SN2003bn SN2003B SN2002ig SN2003bl

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 23 88 96 240 335 470 118 308 186 426 760 633 321 280 186 708 478 378 171 663 708 450 1056 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 8 4669 1 2019 0 4378 1 2705 08 3026 4687 7 5244 3 1949 98 7404 1 2917 4793 38 6436 0 4683 5 1762 1922 00 4785 7487 034 5662 2618 2 6170 4215 0 5019 ...... 1 1 0 1 1 1 0 1 0 1 1 0 2 0 0 0 1 1 1 1 0 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0 5 6 0 6 0 1 6 7 3 6 1 5 6 2 0 7 0 0 0 1 9 ...... 6 9 2 14 2 10 00 0 9 46 4 0 5 0 549 3 8 1 039 0 8 4 6 9 9 5 0 3 5 1 0 0 6 0 0 0 5 2 ...... 1 2 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3 0 8 0 0 5 3 0 2 4 5 0 6 6 3 6 2 0 4 0 0 5 ...... 6 0 7 3 52 0 10 38 6 2 2 1 922 0 1 4 9 5 97 3 3 5 11 71 9 51 0 0 15 8 3 8 3 6 0 6 0 ...... 1 1 1 1 2 2 3 0 2 1 2 2 1 1 0 2 2 3 1 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 2 9 1 5 8 3 3 0 9 1 4 5 9 4 8 7 1 4 6 7 9 4 ...... 75 24 7 81 15 24 1 1 798 38 30 45 3 48 81 13 6 22 41 38 5 38 1 16 20 3 16 55 2 30 54 5 22 6 43 8 12 ...... 2 1 2 2 3 2 1 2 3 2 1 1 3 2 2 2 3 2 2 3 4 2 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 8 2 9 4 4 9 9 0 2 5 4 9 8 2 7 8 1 1 0 8 5 7 ...... 96 26 34 47 41 17 9 36 94 42 34 416 37 43 19 5 35 0 36 7 51 697 36 49 38 9 13 3 30 1 9 9 34 9 31 9 46 ...... 1 1 1 1 2 1 3 0 1 1 1 2 2 2 1 2 0 1 1 0 1 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 9 2 4 5 4 9 2 4 6 6 9 3 2 0 2 7 5 3 3 2 8 0 ...... 7 11 19 14 25 4 18 4 16 18 26 20 7 9 69 12 3 24 2 11 7 72 13 6 22 16 36 17 7 1 22 9 21 9 8 ...... 2 8 4 6 . 3 3 3 2 3 3 3 4 3 5 3 1 3 2 3 3 5 4 3 6 2 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3 ± . 5 8 9 1 4 9 6 1 8 1 1 3 4 9 2 3 0 6 0 1 ...... 1 54 2 60 3 55 1 39 5 72 3 36 3 61 0 22 5 56 1 33 68 38 77 3 47 2 39 28 54 31 2 48 8 70 4 12 6 13 2 19 ...... 7 60 . . . . 3 4 5 3 5 7 2 5 3 2 2 3 5 4 4 3 4 2 1 1 0 5 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 6 7 2 7 0 8 8 8 1 6 8 5 5 3 2 2 5 5 9 1 6 ...... 4 17 7 60 72 57 4 . 0 40 8 75 7 46 5 54 7 54 8 26 68 67 45 56 –0 – 85 – – – – – – – – – – – – – – 0 37 8 35 ...... 6 6 5 5 6 9 10 6 7 5 5 9 7 5 5 5 26 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3 2 7 8 8 3 6 8 6 7 1 6 1 6 6 . . 0 ...... 82 . . 5 89 3 75 3 75 9 75 60 83 98 4 87 6 71 ...... 0 0 0 0 2 1 2 0 ± ± ± ± ± ± ± ± 7 9 0 3 7 9 7 8 ...... 12 – 41 . 02 – – 5 040301 – 66 – – – 84 – – – – – – – – 04 – 85 05 37 070205 51 01 –02 – 58 – – 89 – – – – – – – – – – – – – – – – – 041007 – – – – 73 – 15 – – – – – – – – 0403 56 53 010401 –03 – – 105 – 107 – 87 55 1318 –11 –03 58 – 44 – – – 35 – – – – – – – – 08 44 01 42 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 01 . 03 13 36 22 10 32 99 71 91 94 10 38 48 10 00 37 12 20 26 50 79 37 63 61 29 78 ...... 0 − 20 21 3 2019 –19 0 40 0 0 – – 8 11 1 19 2 2317 0 11 1 47 0 28 0 0 20 0 1214 0 1 2021 0 1 15 0 1405 1 07 0 2 21 2 10 2 0910 2 1 13 1 15 1 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 79 34 25 07 05 46 60 11 94 61 40 75 31 95 71 30 67 45 80 84 96 06 86 12 00 14 33 68 ...... 15 16 15 18 16 16 16 15 17 16 15 16 17 15 15 16 15 17 16 16 14 18 14 17 17 17 15 16 − − − − − − − − − − − − − − − − − − − − − − − − − − − − SN2009ao SN2009au SN2009N SN2009aj SN2009bu SN2009bz SN2008W SN2008aw SN2008ho SN2008if SN2008il SN2008in SN2008M SN2008br SN2008F SN2008ga SN2007W SN2007X SN2007ZSN2008ag SN2008bh SN2008bk SN2008bm –SN2008bp SN2008bu SN2008gi –SN2008gr SN2008H – – – – – – – – – 63 – – – – – SN2007sq SN2007oc

MNRAS 000,1– ?? () 24 C. P. Guti´errez et al.

Table 5. Sample details

SNe II in LLH SNe II in HLH Total Full Sample 35 103 138 New SNe 27 3 30 SNe from A16 8 100 108 SNe with light curve in V −band 29 103 132 SNe with spectra around 50 days 28 72 100 host SNe with MB data 19 95 114 host SNe with Mr data 28 74 102

Table 6. Mean values and KS test results

Parameter Mean values in the Mean values in the ρKS high-luminosity low-luminosity host group host group

max MV −16.67 ± 0.10 mag (93) −17.06 ± 0.22 mag (26) 0.174 −1 −4 s2 1.19 ± 0.09 mag 100d−1 (96) 0.72 ± 0.13 mag 100d (25) 9.63×10 Pd 49.88 ± 2.16 days (28) 46.69 ± 3.89 days (14) 0.369 OPTd 83.98 ± 2.03 days (59) 86.62 ± 3.72 days (19) 0.769

vel(Hα) 7040 ± 195 km s−1 (75) 7625 ± 410 km s−1 (26) 0.153 vel(Hβ) 5640 ± 175 km s−1 (75) 5960 ± 280 km s−1 (28) 0.728 vel(Fe ii 5018) 3965 ± 130 km s−1 (73) 3695 ± 235 km s−1 (25) 0.281 vel(Fe ii 5169) 3880 ± 115 km s−1 (73) 3755 ± 240 km s−1 (25) 0.184 vel(Na i D) 4815 ± 170 km s−1 (70) 4860 ± 390 km s−1 (21) 0.587 vel(Ba ii 6142) 3685 ± 180 km s−1 (50) 3630 ± 865 km s−1 (6) 0.746 vel(Sc ii 6247) 3530 ± 135 km s−1 (50) 4020 ± 650 km s−1 (8) 0.716

pEW(Hα) 52.37 ± 2.65 A˚ (72) 39.12 ± 4.10 A˚ (25) 7.7×10−3 pEW(Hβ) 51.26 ± 2.04 A˚ (72) 48.19 ± 3.15 A˚ (28) 0.444 pEW(Fe ii 5018) 16.52 ± 0.63 A˚ (71) 12.21 ± 1.36 A˚ (27) 7.55×10−3 pEW(Fe ii 5169) 36.60 ± 1.24 A˚ (71) 27.51 ± 3.14 A˚ (27) 1.18×10−3 pEW(Na I D) 28.14 ± 1.63 A˚ (72) 14.02 ± 2.11 A˚ (25) 1.01×10−4 pEW(Ba ii 6142) 4.04 ± 0.49 A˚ (71) 2.13 ± 0.76 A˚ (20) 0.024 pEW(Sc ii 6247) 4.65 ± 0.50 A˚ (71) 2.09 ± 0.68 A˚ (22) 1.99×10−3

The number of events used for each measurement are given in parenthesis.

ρKS lower than 0.01 are presented in bold.

MNRAS 000,1– ?? () SNe II in low luminosity host galaxies 25

Table 7. Pearson correlation coefficients

Parameter Host MB Host Mr Host Mi Host Mz Mstellar

max MV −0.04 (101; 0.73) −0.22 (88; 0.04) −0.14 (85; 0.19) −0.12 (82; 0.29) 0.19 (82; 0.08) s2 −0.19 (104; 0.06) −0.22 (90; 0.04) −0.20 (87; 0.07) −0.17 (84; 0.11) 0.18 (84; 0.10) Pd −0.04 (38; 0.81) −0.19 (28; 0.32) −0.04 (26; 0.84) 0.22 (24; 0.30) −0.13 (25; 0.53) OPTd 0.02 (67; 0.85) −0.11 (56; 0.44) 0.03 (54; 0.86) 0.09 (52; 0.52) 0.22 (59; 0.09)

vel(Hα) −0.01 (82 0.38) 0.06 (76; 0.59) 0.01 (76; 0.40) 0.05 (74; 0.68) −0.08 (69; 0.50) vel(Hβ) −0.08 (83 0.50) −0.03 (76; 0.79) 0.01 (76; 0.97) 0.01 (75; 0.91) −0.02 (69; 0.84) vel(Fe ii 5018) −0.18 (81 0.10) −0.23 (72; 0.05) −0.13 (72; 0.28) −0.12 (71; 0.31) 0.09 (66; 0.49) vel(Fe ii 5169) −0.16 (81 0.16) −0.21 (72; 0.07) −0.10 (72; 0.43) −0.09 (71; 0.51) 0.02 (66; 0.86) vel(Na i D) −0.17 (76 0.14) −0.07 (69; 0.58) −0.09 (67; 0.49) −0.52 (65; 0.23) 0.05 (64; 0.65) vel(Ba ii 6142) −0.14 (50 0.33) −0.05 (41; 0.78) −0.06 (42; 0.69) −0.03 (41; 0.86) 0.06 (39; 0.73) vel(Sc ii 6247) −0.15 (51 0.30) 0.09 (43; 0.58) 0.08 (44; 0.59) 0.12 (43; 0.46) −0.05 (40; 0.74)

pEW(Hα) −0.19 (79; 0.10) −0.32 (73; 6.51 × 10−3) −0.29 (70; 0.01) −0.27 (68; 0.02) 0.34 (67; 4.27 × 10−3) pEW(Hβ) −0.08 (81; 0.47) 0.08 (75; 0.52) −0.01 (72; 0.94) 0.02 (70; 0.85) −0.02 (69; 0.88) pEW(Fe ii 5018) −0.13 (80; 0.25) −0.34 (74; 3.32 × 10−3) −0.23 (71; 0.06) −0.37 (69; 1.96 × 10−3) 0.31 (68; 0.01) pEW(Fe ii 5169) −0.21 (80; 0.06) −0.26 (74; 0.03) −0.18 (71; 0.14) 0.40 (69; 7.04 × 10−4) 0.25 (68; 0.04) pEW(Na I D) −0.49 (80; 5.00 × 10−6) −0.44 (73; 9.72 × 10−5) −0.44 (71; 1.13 × 10−4) −0.52 (69; 4.76 × 10−6) 0.44 (68; 1.51 × 10−4) pEW(Ba ii 6142) −0.27 (77; 0.02) −0.33 (68; 5.33 × 10−3) −0.31 (67; 0.01) −0.30 (65; 0.01) 0.31 (64; 0.01) pEW(Sc ii 6247) −0.24 (78; 0.04) −0.31 (69; 0.01) −0.31 (67; 0.01) −0.30 (65; 0.01) 0.32 (64; 9.02 × 10−3)

The number of events and the probability of finding such correlation by change are presented in parenthesis.

MNRAS 000,1– ?? ()