The Fibonacci Numbers—Exposed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fast Tabulation of Challenge Pseudoprimes Andrew Shallue and Jonathan Webster
THE OPEN BOOK SERIES 2 ANTS XIII Proceedings of the Thirteenth Algorithmic Number Theory Symposium Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster msp THE OPEN BOOK SERIES 2 (2019) Thirteenth Algorithmic Number Theory Symposium msp dx.doi.org/10.2140/obs.2019.2.411 Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster We provide a new algorithm for tabulating composite numbers which are pseudoprimes to both a Fermat test and a Lucas test. Our algorithm is optimized for parameter choices that minimize the occurrence of pseudoprimes, and for pseudoprimes with a fixed number of prime factors. Using this, we have confirmed that there are no PSW-challenge pseudoprimes with two or three prime factors up to 280. In the case where one is tabulating challenge pseudoprimes with a fixed number of prime factors, we prove our algorithm gives an unconditional asymptotic improvement over previous methods. 1. Introduction Pomerance, Selfridge, and Wagstaff famously offered $620 for a composite n that satisfies (1) 2n 1 1 .mod n/ so n is a base-2 Fermat pseudoprime, Á (2) .5 n/ 1 so n is not a square modulo 5, and j D (3) Fn 1 0 .mod n/ so n is a Fibonacci pseudoprime, C Á or to prove that no such n exists. We call composites that satisfy these conditions PSW-challenge pseudo- primes. In[PSW80] they credit R. Baillie with the discovery that combining a Fermat test with a Lucas test (with a certain specific parameter choice) makes for an especially effective primality test[BW80]. -
Prime Divisors in the Rationality Condition for Odd Perfect Numbers
Aid#59330/Preprints/2019-09-10/www.mathjobs.org RFSC 04-01 Revised The Prime Divisors in the Rationality Condition for Odd Perfect Numbers Simon Davis Research Foundation of Southern California 8861 Villa La Jolla Drive #13595 La Jolla, CA 92037 Abstract. It is sufficient to prove that there is an excess of prime factors in the product of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k + 4m+1 ℓ 2αi 1) i=1 qi to establish that there do not exist any odd integers with equality (4k+1)4m+2−1 between σ(N) and 2N. The existence of distinct prime divisors in the repunits 4k , 2α +1 Q q i −1 i , i = 1,...,ℓ, in σ(N) follows from a theorem on the primitive divisors of the Lucas qi−1 sequences and the square root of the product of 2(4k + 1), and the sequence of repunits will not be rational unless the primes are matched. Minimization of the number of prime divisors in σ(N) yields an infinite set of repunits of increasing magnitude or prime equations with no integer solutions. MSC: 11D61, 11K65 Keywords: prime divisors, rationality condition 1. Introduction While even perfect numbers were known to be given by 2p−1(2p − 1), for 2p − 1 prime, the universality of this result led to the the problem of characterizing any other possible types of perfect numbers. It was suggested initially by Descartes that it was not likely that odd integers could be perfect numbers [13]. After the work of de Bessy [3], Euler proved σ(N) that the condition = 2, where σ(N) = d|N d is the sum-of-divisors function, N d integer 4m+1 2α1 2αℓ restricted odd integers to have the form (4kP+ 1) q1 ...qℓ , with 4k + 1, q1,...,qℓ prime [18], and further, that there might exist no set of prime bases such that the perfect number condition was satisfied. -
An Analysis of Primality Testing and Its Use in Cryptographic Applications
An Analysis of Primality Testing and Its Use in Cryptographic Applications Jake Massimo Thesis submitted to the University of London for the degree of Doctor of Philosophy Information Security Group Department of Information Security Royal Holloway, University of London 2020 Declaration These doctoral studies were conducted under the supervision of Prof. Kenneth G. Paterson. The work presented in this thesis is the result of original research carried out by myself, in collaboration with others, whilst enrolled in the Department of Mathe- matics as a candidate for the degree of Doctor of Philosophy. This work has not been submitted for any other degree or award in any other university or educational establishment. Jake Massimo April, 2020 2 Abstract Due to their fundamental utility within cryptography, prime numbers must be easy to both recognise and generate. For this, we depend upon primality testing. Both used as a tool to validate prime parameters, or as part of the algorithm used to generate random prime numbers, primality tests are found near universally within a cryptographer's tool-kit. In this thesis, we study in depth primality tests and their use in cryptographic applications. We first provide a systematic analysis of the implementation landscape of primality testing within cryptographic libraries and mathematical software. We then demon- strate how these tests perform under adversarial conditions, where the numbers being tested are not generated randomly, but instead by a possibly malicious party. We show that many of the libraries studied provide primality tests that are not pre- pared for testing on adversarial input, and therefore can declare composite numbers as being prime with a high probability. -
Triangular Numbers /, 3,6, 10, 15, ", Tn,'" »*"
TRIANGULAR NUMBERS V.E. HOGGATT, JR., and IVIARJORIE BICKWELL San Jose State University, San Jose, California 9111112 1. INTRODUCTION To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen- ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) FIBONACCI'S TRIANGLE SUMS / 1 =:1 3 3 5 8 = 2s 7 9 11 27 = 33 13 15 17 19 64 = 4$ 21 23 25 27 29 125 = 5s We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b - serves how they are defined geometrically, 1 3 6 10 • - one easily sees that (1.1) Tn - 1+2+3 + .- +n = n(n±M and (1.2) • Tn+1 = Tn+(n+1) . By noticing that two adjacent arrays form a square, such as 3 + 6 = 9 '.'.?. we are led to 2 (1.3) n = Tn + Tn„7 , which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which are also triangular numbers, T =T + T (1-4) n Tn Tn-1 • Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri- angle of odd numbers: 221 222 TRIANGULAR NUMBERS [OCT. FIBONACCI'S TRIANGLE SUMS f^-O2) Tf-T* (2* -I2) (32-22) Ti-Tf (42-32) (52-42) (62-52) Ti-Tl•2 (72-62) (82-72) (9*-82) (Kp-92) Tl-Tl Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri- angular numbers is a perfect cube. -
Twelve Simple Algorithms to Compute Fibonacci Numbers Arxiv
Twelve Simple Algorithms to Compute Fibonacci Numbers Ali Dasdan KD Consulting Saratoga, CA, USA [email protected] April 16, 2018 Abstract The Fibonacci numbers are a sequence of integers in which every number after the first two, 0 and 1, is the sum of the two preceding numbers. These numbers are well known and algorithms to compute them are so easy that they are often used in introductory algorithms courses. In this paper, we present twelve of these well-known algo- rithms and some of their properties. These algorithms, though very simple, illustrate multiple concepts from the algorithms field, so we highlight them. We also present the results of a small-scale experi- mental comparison of their runtimes on a personal laptop. Finally, we provide a list of homework questions for the students. We hope that this paper can serve as a useful resource for the students learning the basics of algorithms. arXiv:1803.07199v2 [cs.DS] 13 Apr 2018 1 Introduction The Fibonacci numbers are a sequence Fn of integers in which every num- ber after the first two, 0 and 1, is the sum of the two preceding num- bers: 0; 1; 1; 2; 3; 5; 8; 13; 21; ::. More formally, they are defined by the re- currence relation Fn = Fn−1 + Fn−2, n ≥ 2 with the base values F0 = 0 and F1 = 1 [1, 5, 7, 8]. 1 The formal definition of this sequence directly maps to an algorithm to compute the nth Fibonacci number Fn. However, there are many other ways of computing the nth Fibonacci number. -
Primes and Primality Testing
Primes and Primality Testing A Technological/Historical Perspective Jennifer Ellis Department of Mathematics and Computer Science What is a prime number? A number p greater than one is prime if and only if the only divisors of p are 1 and p. Examples: 2, 3, 5, and 7 A few larger examples: 71887 524287 65537 2127 1 Primality Testing: Origins Eratosthenes: Developed “sieve” method 276-194 B.C. Nicknamed Beta – “second place” in many different academic disciplines Also made contributions to www-history.mcs.st- geometry, approximation of andrews.ac.uk/PictDisplay/Eratosthenes.html the Earth’s circumference Sieve of Eratosthenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Sieve of Eratosthenes We only need to “sieve” the multiples of numbers less than 10. Why? (10)(10)=100 (p)(q)<=100 Consider pq where p>10. Then for pq <=100, q must be less than 10. By sieving all the multiples of numbers less than 10 (here, multiples of q), we have removed all composite numbers less than 100. -
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
On the Discriminator of Lucas Sequences
Ann. Math. Québec (2019) 43:51–71 https://doi.org/10.1007/s40316-017-0097-7 On the discriminator of Lucas sequences Bernadette Faye1,2 · Florian Luca3,4,5 · Pieter Moree4 Received: 18 August 2017 / Accepted: 28 December 2017 / Published online: 12 February 2018 © The Author(s) 2018. This article is an open access publication Abstract We consider the family of Lucas sequences uniquely determined by Un+2(k) = (4k+2)Un+1(k)−Un(k), with initial values U0(k) = 0andU1(k) = 1andk ≥ 1anarbitrary integer. For any integer n ≥ 1 the discriminator function Dk(n) of Un(k) is defined as the smallest integer m such that U0(k), U1(k),...,Un−1(k) are pairwise incongruent modulo m. Numerical work of Shallit on Dk(n) suggests that it has a relatively simple characterization. In this paper we will prove that this is indeed the case by showing that for every k ≥ 1there is a constant nk such that Dk(n) has a simple characterization for every n ≥ nk. The case k = 1 turns out to be fundamentally different from the case k > 1. FRENCH ABSTRACT Pour un entier arbitraire k ≥ 1, on considère la famille de suites de Lucas déterminée de manière unique par la relation de récurrence Un+2(k) = (4k + 2)Un+1(k) − Un(k), et les valeurs initiales U0(k) = 0etU1(k) = 1. Pour tout entier n ≥ 1, la fonction discriminante Dk(n) de Un(k) est définie comme le plus petit m tel que U0(k), U1(k),...,Un−1(k) soient deux à deux non congruents modulo m. -
And Its Properties on the Sequence Related to Lucas Numbers
Mathematica Aeterna, Vol. 2, 2012, no. 1, 63 - 75 On the sequence related to Lucas numbers and its properties Cennet Bolat Department of Mathematics, Art and Science Faculty, Mustafa Kemal University, 31034, Hatay,Turkey Ahmet I˙pek Department of Mathematics, Art and Science Faculty, Mustafa Kemal University, 31034, Hatay,Turkey Hasan Köse Department of Mathematics, Science Faculty, Selcuk University 42031, Konya,Turkey Abstract The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recur- rence relation. In this article, we study a new generalization {Lk,n}, with initial conditions Lk,0 = 2 and Lk,1 = 1, which is generated by the recurrence relation Lk,n = kLk,n−1 + Lk,n−2 for n ≥ 2, where k is integer number. Some well-known sequence are special case of this generalization. The Lucas sequence is a special case of {Lk,n} with k = 1. Modified Pell-Lucas sequence is {Lk,n} with k = 2. We produce an extended Binet’s formula for {Lk,n} and, thereby, identities such as Cassini’s, Catalan’s, d’Ocagne’s, etc. using matrix algebra. Moreover, we present sum formulas concerning this new generalization. Mathematics Subject Classi…cation: 11B39, 15A23. Keywords: Classic Fibonacci numbers; Classic Lucas numbers; k-Fibonacci numbers; k-Lucas numbers, Matrix algebra. 64 C. Bolat, A. Ipek and H. Kose 1 Introduction In recent years, many interesting properties of classic Fibonacci numbers, clas- sic Lucas numbers and their generalizations have been shown by researchers and applied to almost every …eld of science and art. -
Fibonacci Numbers
mathematics Article On (k, p)-Fibonacci Numbers Natalia Bednarz The Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powsta´nców Warszawy 12, 35-959 Rzeszów, Poland; [email protected] Abstract: In this paper, we introduce and study a new two-parameters generalization of the Fibonacci numbers, which generalizes Fibonacci numbers, Pell numbers, and Narayana numbers, simultane- ously. We prove some identities which generalize well-known relations for Fibonacci numbers, Pell numbers and their generalizations. A matrix representation for generalized Fibonacci numbers is given, too. Keywords: Fibonacci numbers; Pell numbers; Narayana numbers MSC: 11B39; 11B83; 11C20 1. Introduction By numbers of the Fibonacci type we mean numbers defined recursively by the r-th order linear recurrence relation of the form an = b1an−1 + b2an−2 + ··· + bran−r, for n > r, (1) where r > 2 and bi > 0, i = 1, 2, ··· , r are integers. For special values of r and bi, i = 1, 2, ··· r, the Equality (1) defines well-known numbers of the Fibonacci type and their generalizations. We list some of them: Citation: Bednarz, N. On 1. Fibonacci numbers: Fn = Fn−1 + Fn−2 for n > 2, with F0 = F1 = 1. (k, p)-Fibonacci Numbers. 2. Lucas numbers: Ln = Ln−1 + Ln−2 for n > 2, with L0 = 2, L1 = 1. Mathematics 2021, 9, 727. https:// 3. Pell numbers: Pn = 2Pn−1 + Pn−2 for n > 2, with P0 = 0, P1 = 1. doi.org/10.3390/math9070727 4. Pell–Lucas numbers: Qn = 2Qn−1 + Qn−2 for n > 2, with Q0 = 1, Q1 = 3. 5. Jacobsthal numbers: Jn = Jn−1 + 2Jn−2 for n > 2, with J0 = 0, J1 = 1. -
On Repdigits As Product of Consecutive Fibonacci Numbers1
Rend. Istit. Mat. Univ. Trieste Volume 44 (2012), 393–397 On repdigits as product of consecutive Fibonacci numbers1 Diego Marques and Alain Togbe´ Abstract. Let (Fn)n≥0 be the Fibonacci sequence. In 2000, F. Luca proved that F10 = 55 is the largest repdigit (i.e. a number with only one distinct digit in its decimal expansion) in the Fibonacci sequence. In this note, we show that if Fn ··· Fn+(k−1) is a repdigit, with at least two digits, then (k, n) = (1, 10). Keywords: Fibonacci, repdigits, sequences (mod m) MS Classification 2010: 11A63, 11B39, 11B50 1. Introduction Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0, where F0 = 0 and F1 = 1. These numbers are well-known for possessing amaz- ing properties. In 1963, the Fibonacci Association was created to provide an opportunity to share ideas about these intriguing numbers and their applica- tions. We remark that, in 2003, Bugeaud et al. [2] proved that the only perfect powers in the Fibonacci sequence are 0, 1, 8 and 144 (see [6] for the Fibono- mial version). In 2005, Luca and Shorey [5] showed, among other things, that a non-zero product of two or more consecutive Fibonacci numbers is never a perfect power except for the trivial case F1 · F2 = 1. Recall that a positive integer is called a repdigit if it has only one distinct digit in its decimal expansion. In particular, such a number has the form a(10m − 1)/9, for some m ≥ 1 and 1 ≤ a ≤ 9. -
The Bivariate (Complex) Fibonacci and Lucas Polynomials: an Historical Investigation with the Maple's Help
Volume 9, Number 4, 2016 THE BIVARIATE (COMPLEX) FIBONACCI AND LUCAS POLYNOMIALS: AN HISTORICAL INVESTIGATION WITH THE MAPLE´S HELP Francisco Regis Vieira Alves, Paula Maria Machado Cruz Catarino Abstract: The current research around the Fibonacci´s and Lucas´ sequence evidences the scientific vigor of both mathematical models that continue to inspire and provide numerous specializations and generalizations, especially from the sixthies. One of the current of research and investigations around the Generalized Sequence of Lucas, involves it´s polinomial representations. Therefore, with the introduction of one or two variables, we begin to discuss the family of the Bivariate Lucas Polynomias (BLP) and the Bivariate Fibonacci Polynomials (BFP). On the other hand, since it´s representation requires enormous employment of a large algebraic notational system, we explore some particular properties in order to convince the reader about an inductive reasoning that produces a meaning and produces an environment of scientific and historical investigation supported by the technology. Finally, throughout the work we bring several figures that represent some examples of commands and algebraic operations with the CAS Maple that allow to compare properties of the Lucas´polynomials, taking as a reference the classic of Fibonacci´s model that still serves as inspiration for several current studies in Mathematics. Key words: Lucas Sequence, Fibonacci´s polynomials, Historical investigation, CAS Maple. 1. Introduction Undoubtedly, the Fibonacci sequence preserves a character of interest and, at the same time, of mystery, around the numerical properties of a sequence that is originated from a problem related to the infinite reproduction of pairs of rabbits. On the other hand, in several books of History of Mathematics in Brazil and in the other countries (Eves, 1969; Gullberg, 1997; Herz, 1998; Huntley, 1970; Vajda, 1989), we appreciate a naive that usually emphasizes eminently basic and trivial properties related to this sequence.