Efficient Code Generation for Hardware Accelerators by Refining Partially Specified Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Code Generation for Hardware Accelerators by Refining Partially Specified Implementation Efficient code generation for hardware accelerators by refining partially specified implementation Ulysse Beaugnon To cite this version: Ulysse Beaugnon. Efficient code generation for hardware accelerators by refining partially specified implementation. Programming Languages [cs.PL]. Université Paris sciences et lettres, 2019. English. NNT : 2019PSLEE050. tel-02385303v2 HAL Id: tel-02385303 https://tel.archives-ouvertes.fr/tel-02385303v2 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Préparée à l’École Normale Supérieure Efficient Code Generation for Hardware Accelerators by Refining Partially Specified Implementation Soutenue par Composition du jury : Ulysse BEAUGNON Francesco, ZAPPA NARDELLI Le 10 Juin 2019 Directeur de Recherche, INRIA Président Rastislav, BODIK Professeur, University of Washington Rapporteur Ecole doctorale n° 386 Christophe, DUBACH Sciences Mathématiques de Professeur, University of Edinburgh Rapporteur Paris Centre Anton, LOKHMOTOV CEO, Dividiti Examinateur Jacques, PIENAAR Ingenieur, Google Examinateur Spécialité Albert, COHEN Informatique Chercheur, Google & ENS Directeur Marc, POUZET Professeur, École Normale Supérieure Directeur 2 Abstract Software programmable hardware accelerators, such as Graphical Processing Units (GPUs), are special- ized processors designed to perform specific tasks more efficiently than general purpose processors. They trade off generality against specialized data paths and massive parallelism, providing a raw processing power that is orders of magnitude higher than for contemporary multicore CPUs. Unfortunately, finding an efficient implementation for a function on an hardware accelerator is a complex problem. It requires making careful decisions for mapping computations to the appropriate levels of parallelism and for expliciting data movements across the different memory spaces, in addition to choosing amongst to the many possible thread-local optimizations. While the set of possible optimizations is usually well known, complex interactions between them make it hard to find a global optimum. Indeed, anticipating downstream transformations and deriving profitability information from inter- mediate compilation steps is a challenge. Transformations may not commute and some optimization opportunities may only become available after applying so-called “enabling” transformations. Con- versely, some transformations may hinder further optimizations. As a result, the production of highly tuned implementations remains a critical challenge to achieve competitive performance. This dissertation introduces the concept of candidate to formally define, represent and explore spaces of possible implementations. A candidate is a partially specified implementation with some decisions fixed while others are left open. It represents a whole set of possible implementations of the same function. Candidates expose all potential decisions upfront and ensure they are commutative. Taking a de- cision always restricts the set of possible implementations. This defines a well-behaved optimization space; in particular, it allows search algorithms looking for the best implementations to make the most performance-impacting decisions first and to have a global knowledge of wich optimizations may fea- ture in implementations. We provide a framework that automatically generate code to represents and manipulates candidates, from a declarative description of available choices and their interaction. This description is independent of the function to implement. We instantiate our concept of candidate to generate efficient code for linear algebra functions on GPUs. This shows our approach is expressive enough to model interacting decisions with a fundamental impact on the structure of the generated code, including compositions of strip-mining, loop fusion, loop interchange, unrolling, vectorization, parallelization, and orchestration of data movements across the memory hierarchy. We develop a model capable of computing a lower bound for the execution time of any implementation that derives from a candidate. We show that this model provides actionable information, even after taking only a few decisions, and that it enables pruning the implementation space, reducing its size by several orders of magnitude. We propose a simple search algorithm to illustrate our approach. It combines the lower bound performance model and actual evaluation on the hardware with statistical exploration to drive the search towards the most efficient implementations. Our experiments show that it generates code that is competitive with hand-tuned libraries for linear algebra functions on GPUs. They also demonstrate that taking the most important decisions first helps finding better implementations faster, thus showing how the concept of candidate empowers search algorithms. 3 4 Acknowledgements Many people helped me along the path leading to this dissertation. I am dedicating the next few paragraphs to thank them. First and foremost, I am grateful for my PhD advisors, Albert and Marc, who put their expertise to the service of my scientific and human development. In particular, I would like to honor the trust Albert put in me and the energy he gave for my ideas to succeed. And to honor Marc’s thoroughness and the life he injects into the Parkas team, be it with the ski, the brioches or the rest. This dissertation would not have been possible without Jacques, who helped me develop the initial idea and create the first prototype. Thank you for your guidance during that time. I look forward to working with you once again. The role played by Basile, Nicolas and Andi was equally crucial. They poured their ideas and their technical knowledge into my prototype to turn it into something that actually works. The careful proofreading of this dissertation by Basile and Andy was also essential. Thank you for your patience and your dedication. I would also like to thank the members of my PhD jury, especially the reviewers for reading my dissertation and providing constructive feedback. The years I spent working in the Parkas team are full of happy memories. Thank you Tim, Francesco, Paul, Adrien, Guillaume, Nath, Guillaume, Lélio, Chandan, Adila and all the others. A special mention for Tim and his legendary helpfulness. I made my first steps into the world of compilers during an internship with Anton. Obviously, I was convinced. Thank you for your kind welcome and your guidance. Finally, thank you Florian, Yoann, Éric, Particia for your support along these years and Anaël for all the courage you gave me. 5 6 Contents 1 Introduction 9 1.1 Hardware Accelerators . .9 1.2 Challenges of Code Generation for Hardware Accelerators . 10 1.3 Our Solution: Partially Specified Implementations . 10 1.4 Key Contributions . 11 1.5 Organization . 12 2 Motivation: Partially Specified Schedules 15 2.1 Problem Statement: Scheduling a Basic Block . 16 2.2 Background: Constraint Satisfaction Problems . 17 2.3 Partially Specified Schedule . 19 2.4 Optimistic Model of Partially Specified Schedules . 20 2.5 Summary . 21 3 Representing Candidate Implementations 23 3.1 Candidate Implementations . 24 3.2 Decision Space Definition . 25 3.3 Candidate Representation Description Language . 27 3.4 Example: Instructions Scheduling Within a Basic Block . 34 3.5 Constraint Propagation Code Generation . 36 3.6 Discussion . 39 3.7 Summary . 41 4 Application: Linear Algebra on GPUs 43 4.1 Background: GPUs Architecture . 44 4.2 Kernel Representation . 46 4.3 Decisions Encoding . 49 4.4 Code Generation . 56 4.5 Discussion . 60 4.6 Summary . 63 5 An Optimistic Performance Model of Candidates 65 5.1 Model Overview . 66 5.2 Single Thread Model . 72 5.3 Instantiation of the Model for Kepler GPUs . 80 5.4 Empirical Evaluation . 82 5.5 Discussion . 85 5.6 Summary . 87 6 Scaling the Search with the Properties of Candidates 89 6.1 Search Algorithm . 90 6.2 Sample Kernels . 91 6.3 Empirical Evaluation . 93 6.4 Discussion . 95 6.5 Summary . 96 7 7 Conclusion 97 7.1 Principal Contributions . 98 7.2 Long Term Perspectives . 100 A Proofs of the Performance Model 109 A.1 Notations and Basic Properties . 109 A.2 Program Order . 110 A.3 Execution Graph Properties . 114 A.4 Virtual and Concrete Paths . 116 A.5 Abstraction of the Execution Graph . 123 8 Chapter 1 Introduction Hardware accelerators are specialized processors that are orders of magnitude more efficient than tradi- tional processors for some classes of computation. This dissertation addreses the generation of optimized code for such specialized hardware. However, starting from a high level implementation of a computa- tionally intensive algorithm, finding the right combination of code transformations to fully exploit this computing power is a complex problem. The main limitation of existing approaches is that they make it hard to anticipate downstream transformations and to extract profitability information from early compilation steps. The question this dissertation addresses is: Which combination of implementation decisions does lead to the fastest code, given
Recommended publications
  • Redundancy Elimination Common Subexpression Elimination
    Redundancy Elimination Aim: Eliminate redundant operations in dynamic execution Why occur? Loop-invariant code: Ex: constant assignment in loop Same expression computed Ex: addressing Value numbering is an example Requires dataflow analysis Other optimizations: Constant subexpression elimination Loop-invariant code motion Partial redundancy elimination Common Subexpression Elimination Replace recomputation of expression by use of temp which holds value Ex. (s1) y := a + b Ex. (s1) temp := a + b (s1') y := temp (s2) z := a + b (s2) z := temp Illegal? How different from value numbering? Ex. (s1) read(i) (s2) j := i + 1 (s3) k := i i + 1, k+1 (s4) l := k + 1 no cse, same value number Why need temp? Local and Global ¡ Local CSE (BB) Ex. (s1) c := a + b (s1) t1 := a + b (s2) d := m&n (s1') c := t1 (s3) e := a + b (s2) d := m&n (s4) m := 5 (s5) if( m&n) ... (s3) e := t1 (s4) m := 5 (s5) if( m&n) ... 5 instr, 4 ops, 7 vars 6 instr, 3 ops, 8 vars Always better? Method: keep track of expressions computed in block whose operands have not changed value CSE Hash Table (+, a, b) (&,m, n) Global CSE example i := j i := j a := 4*i t := 4*i i := i + 1 i := i + 1 b := 4*i t := 4*i b := t c := 4*i c := t Assumes b is used later ¡ Global CSE An expression e is available at entry to B if on every path p from Entry to B, there is an evaluation of e at B' on p whose values are not redefined between B' and B.
    [Show full text]
  • Polyhedral Compilation As a Design Pattern for Compiler Construction
    Polyhedral Compilation as a Design Pattern for Compiler Construction PLISS, May 19-24, 2019 [email protected] Polyhedra? Example: Tiles Polyhedra? Example: Tiles How many of you read “Design Pattern”? → Tiles Everywhere 1. Hardware Example: Google Cloud TPU Architectural Scalability With Tiling Tiles Everywhere 1. Hardware Google Edge TPU Edge computing zoo Tiles Everywhere 1. Hardware 2. Data Layout Example: XLA compiler, Tiled data layout Repeated/Hierarchical Tiling e.g., BF16 (bfloat16) on Cloud TPU (should be 8x128 then 2x1) Tiles Everywhere Tiling in Halide 1. Hardware 2. Data Layout Tiled schedule: strip-mine (a.k.a. split) 3. Control Flow permute (a.k.a. reorder) 4. Data Flow 5. Data Parallelism Vectorized schedule: strip-mine Example: Halide for image processing pipelines vectorize inner loop https://halide-lang.org Meta-programming API and domain-specific language (DSL) for loop transformations, numerical computing kernels Non-divisible bounds/extent: strip-mine shift left/up redundant computation (also forward substitute/inline operand) Tiles Everywhere TVM example: scan cell (RNN) m = tvm.var("m") n = tvm.var("n") 1. Hardware X = tvm.placeholder((m,n), name="X") s_state = tvm.placeholder((m,n)) 2. Data Layout s_init = tvm.compute((1,n), lambda _,i: X[0,i]) s_do = tvm.compute((m,n), lambda t,i: s_state[t-1,i] + X[t,i]) 3. Control Flow s_scan = tvm.scan(s_init, s_do, s_state, inputs=[X]) s = tvm.create_schedule(s_scan.op) 4. Data Flow // Schedule to run the scan cell on a CUDA device block_x = tvm.thread_axis("blockIdx.x") 5. Data Parallelism thread_x = tvm.thread_axis("threadIdx.x") xo,xi = s[s_init].split(s_init.op.axis[1], factor=num_thread) s[s_init].bind(xo, block_x) Example: Halide for image processing pipelines s[s_init].bind(xi, thread_x) xo,xi = s[s_do].split(s_do.op.axis[1], factor=num_thread) https://halide-lang.org s[s_do].bind(xo, block_x) s[s_do].bind(xi, thread_x) print(tvm.lower(s, [X, s_scan], simple_mode=True)) And also TVM for neural networks https://tvm.ai Tiling and Beyond 1.
    [Show full text]
  • Equality Saturation: a New Approach to Optimization
    Logical Methods in Computer Science Vol. 7 (1:10) 2011, pp. 1–37 Submitted Oct. 12, 2009 www.lmcs-online.org Published Mar. 28, 2011 EQUALITY SATURATION: A NEW APPROACH TO OPTIMIZATION ROSS TATE, MICHAEL STEPP, ZACHARY TATLOCK, AND SORIN LERNER Department of Computer Science and Engineering, University of California, San Diego e-mail address: {rtate,mstepp,ztatlock,lerner}@cs.ucsd.edu Abstract. Optimizations in a traditional compiler are applied sequentially, with each optimization destructively modifying the program to produce a transformed program that is then passed to the next optimization. We present a new approach for structuring the optimization phase of a compiler. In our approach, optimizations take the form of equality analyses that add equality information to a common intermediate representation. The op- timizer works by repeatedly applying these analyses to infer equivalences between program fragments, thus saturating the intermediate representation with equalities. Once saturated, the intermediate representation encodes multiple optimized versions of the input program. At this point, a profitability heuristic picks the final optimized program from the various programs represented in the saturated representation. Our proposed way of structuring optimizers has a variety of benefits over previous approaches: our approach obviates the need to worry about optimization ordering, enables the use of a global optimization heuris- tic that selects among fully optimized programs, and can be used to perform translation validation, even on compilers other than our own. We present our approach, formalize it, and describe our choice of intermediate representation. We also present experimental results showing that our approach is practical in terms of time and space overhead, is effective at discovering intricate optimization opportunities, and is effective at performing translation validation for a realistic optimizer.
    [Show full text]
  • Scalable Conditional Induction Variables (CIV) Analysis
    Scalable Conditional Induction Variables (CIV) Analysis ifact Cosmin E. Oancea Lawrence Rauchwerger rt * * Comple A t te n * A te s W i E * s e n l C l o D C O Department of Computer Science Department of Computer Science and Engineering o * * c u e G m s E u e C e n R t v e o d t * y * s E University of Copenhagen Texas A & M University a a l d u e a [email protected] [email protected] t Abstract k = k0 Ind. k = k0 DO i = 1, N DO i =1,N Var. DO i = 1, N IF(cond(b(i)))THEN Subscripts using induction variables that cannot be ex- k = k+2 ) a(k0+2*i)=.. civ = civ+1 )? pressed as a formula in terms of the enclosing-loop indices a(k)=.. Sub. ENDDO a(civ) = ... appear in the low-level implementation of common pro- ENDDO k=k0+MAX(2N,0) ENDIF ENDDO gramming abstractions such as filter, or stack operations and (a) (b) (c) pose significant challenges to automatic parallelization. Be- Figure 1. Loops with affine and CIV array accesses. cause the complexity of such induction variables is often due to their conditional evaluation across the iteration space of its closed-form equivalent k0+2*i, which enables its in- loops we name them Conditional Induction Variables (CIV). dependent evaluation by all iterations. More importantly, This paper presents a flow-sensitive technique that sum- the resulted code, shown in Figure 1(b), allows the com- marizes both such CIV-based and affine subscripts to pro- piler to verify that the set of points written by any dis- gram level, using the same representation.
    [Show full text]
  • Induction Variable Analysis with Delayed Abstractions1
    Induction Variable Analysis with Delayed Abstractions1 SEBASTIAN POP, and GEORGES-ANDRE´ SILBER CRI, Mines Paris, France and ALBERT COHEN ALCHEMY group, INRIA Futurs, Orsay, France We present the design of an induction variable analyzer suitable for the analysis of typed, low-level, three address representations in SSA form. At the heart of our analyzer stands a new algorithm that recognizes scalar evolutions. We define a representation called trees of recurrences that is able to capture different levels of abstractions: from the finer level that is a subset of the SSA representation restricted to arithmetic operations on scalar variables, to the coarser levels such as the evolution envelopes that abstract sets of possible evolutions in loops. Unlike previous work, our algorithm tracks induction variables without prior classification of a few evolution patterns: different levels of abstraction can be obtained on demand. The low complexity of the algorithm fits the constraints of a production compiler as illustrated by the evaluation of our implementation on standard benchmark programs. Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers, interpreters, optimization, retargetable compilers; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—partial evaluation, program analysis General Terms: Compilers Additional Key Words and Phrases: Scalar evolutions, static analysis, static single assignment representation, assessing compilers heuristics regressions. 1Extension of Conference Paper:
    [Show full text]
  • Strength Reduction of Induction Variables and Pointer Analysis – Induction Variable Elimination
    Loop optimizations • Optimize loops – Loop invariant code motion [last time] Loop Optimizations – Strength reduction of induction variables and Pointer Analysis – Induction variable elimination CS 412/413 Spring 2008 Introduction to Compilers 1 CS 412/413 Spring 2008 Introduction to Compilers 2 Strength Reduction Induction Variables • Basic idea: replace expensive operations (multiplications) with • An induction variable is a variable in a loop, cheaper ones (additions) in definitions of induction variables whose value is a function of the loop iteration s = 3*i+1; number v = f(i) while (i<10) { while (i<10) { j = 3*i+1; //<i,3,1> j = s; • In compilers, this a linear function: a[j] = a[j] –2; a[j] = a[j] –2; i = i+2; i = i+2; f(i) = c*i + d } s= s+6; } •Observation:linear combinations of linear • Benefit: cheaper to compute s = s+6 than j = 3*i functions are linear functions – s = s+6 requires an addition – Consequence: linear combinations of induction – j = 3*i requires a multiplication variables are induction variables CS 412/413 Spring 2008 Introduction to Compilers 3 CS 412/413 Spring 2008 Introduction to Compilers 4 1 Families of Induction Variables Representation • Basic induction variable: a variable whose only definition in the • Representation of induction variables in family i by triples: loop body is of the form – Denote basic induction variable i by <i, 1, 0> i = i + c – Denote induction variable k=i*a+b by triple <i, a, b> where c is a loop-invariant value • Derived induction variables: Each basic induction variable i defines
    [Show full text]
  • Generalizing Loop-Invariant Code Motion in a Real-World Compiler
    Imperial College London Department of Computing Generalizing loop-invariant code motion in a real-world compiler Author: Supervisor: Paul Colea Fabio Luporini Co-supervisor: Prof. Paul H. J. Kelly MEng Computing Individual Project June 2015 Abstract Motivated by the perpetual goal of automatically generating efficient code from high-level programming abstractions, compiler optimization has developed into an area of intense research. Apart from general-purpose transformations which are applicable to all or most programs, many highly domain-specific optimizations have also been developed. In this project, we extend such a domain-specific compiler optimization, initially described and implemented in the context of finite element analysis, to one that is suitable for arbitrary applications. Our optimization is a generalization of loop-invariant code motion, a technique which moves invariant statements out of program loops. The novelty of the transformation is due to its ability to avoid more redundant recomputation than normal code motion, at the cost of additional storage space. This project provides a theoretical description of the above technique which is fit for general programs, together with an implementation in LLVM, one of the most successful open-source compiler frameworks. We introduce a simple heuristic-driven profitability model which manages to successfully safeguard against potential performance regressions, at the cost of missing some speedup opportunities. We evaluate the functional correctness of our implementation using the comprehensive LLVM test suite, passing all of its 497 whole program tests. The results of our performance evaluation using the same set of tests reveal that generalized code motion is applicable to many programs, but that consistent performance gains depend on an accurate cost model.
    [Show full text]
  • A Tiling Perspective for Register Optimization Fabrice Rastello, Sadayappan Ponnuswany, Duco Van Amstel
    A Tiling Perspective for Register Optimization Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel To cite this version: Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel. A Tiling Perspective for Register Op- timization. [Research Report] RR-8541, Inria. 2014, pp.24. hal-00998915 HAL Id: hal-00998915 https://hal.inria.fr/hal-00998915 Submitted on 3 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Tiling Perspective for Register Optimization Łukasz Domagała, Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel RESEARCH REPORT N° 8541 May 2014 Project-Teams GCG ISSN 0249-6399 ISRN INRIA/RR--8541--FR+ENG A Tiling Perspective for Register Optimization Lukasz Domaga la∗, Fabrice Rastello†, Sadayappan Ponnuswany‡, Duco van Amstel§ Project-Teams GCG Research Report n° 8541 — May 2014 — 21 pages Abstract: Register allocation is a much studied problem. A particularly important context for optimizing register allocation is within loops, since a significant fraction of the execution time of programs is often inside loop code. A variety of algorithms have been proposed in the past for register allocation, but the complexity of the problem has resulted in a decoupling of several important aspects, including loop unrolling, register promotion, and instruction reordering.
    [Show full text]
  • Efficient Symbolic Analysis for Optimizing Compilers*
    Efficient Symbolic Analysis for Optimizing Compilers? Robert A. van Engelen Dept. of Computer Science, Florida State University, Tallahassee, FL 32306-4530 [email protected] Abstract. Because most of the execution time of a program is typically spend in loops, loop optimization is the main target of optimizing and re- structuring compilers. An accurate determination of induction variables and dependencies in loops is of paramount importance to many loop opti- mization and parallelization techniques, such as generalized loop strength reduction, loop parallelization by induction variable substitution, and loop-invariant expression elimination. In this paper we present a new method for induction variable recognition. Existing methods are either ad-hoc and not powerful enough to recognize some types of induction variables, or existing methods are powerful but not safe. The most pow- erful method known is the symbolic differencing method as demonstrated by the Parafrase-2 compiler on parallelizing the Perfect Benchmarks(R). However, symbolic differencing is inherently unsafe and a compiler that uses this method may produce incorrectly transformed programs without issuing a warning. In contrast, our method is safe, simpler to implement in a compiler, better adaptable for controlling loop transformations, and recognizes a larger class of induction variables. 1 Introduction It is well known that the optimization and parallelization of scientific applica- tions by restructuring compilers requires extensive analysis of induction vari- ables and dependencies
    [Show full text]
  • Loop Transformations and Parallelization
    Loop transformations and parallelization Claude Tadonki LAL/CNRS/IN2P3 University of Paris-Sud [email protected] December 2010 Claude Tadonki Loop transformations and parallelization C. Tadonki – Loop transformations Introduction Most of the time, the most time consuming part of a program is on loops. Thus, loops optimization is critical in high performance computing. Depending on the target architecture, the goal of loops transformations are: improve data reuse and data locality efficient use of memory hierarchy reducing overheads associated with executing loops instructions pipeline maximize parallelism Loop transformations can be performed at different levels by the programmer, the compiler, or specialized tools. At high level, some well known transformations are commonly considered: loop interchange loop (node) splitting loop unswitching loop reversal loop fusion loop inversion loop skewing loop fission loop vectorization loop blocking loop unrolling loop parallelization Claude Tadonki Loop transformations and parallelization C. Tadonki – Loop transformations Dependence analysis Extract and analyze the dependencies of a computation from its polyhedral model is a fundamental step toward loop optimization or scheduling. Definition For a given variable V and given indexes I1, I2, if the computation of X(I1) requires the value of X(I2), then I1 ¡ I2 is called a dependence vector for variable V . Drawing all the dependence vectors within the computation polytope yields the so-called dependencies diagram. Example The dependence vectors are (1; 0); (0; 1); (¡1; 1). Claude Tadonki Loop transformations and parallelization C. Tadonki – Loop transformations Scheduling Definition The computation on the entire domain of a given loop can be performed following any valid schedule.A timing function tV for variable V yields a valid schedule if and only if t(x) > t(x ¡ d); 8d 2 DV ; (1) where DV is the set of all dependence vectors for variable V .
    [Show full text]
  • Incremental Computation of Static Single Assignment Form
    Incremental Computation of Static Single Assignment Form Jong-Deok Choi 1 and Vivek Sarkar 2 and Edith Schonberg 3 IBM T.J. Watson Research Center, P. O. Box 704, Yorktown Heights, NY 10598 ([email protected]) 2 IBM Software Solutions Division, 555 Bailey Avenue, San Jose, CA 95141 ([email protected]) IBM T.J. Watson Research Center, P. O. Box 704, Yorktown Heights, NY 10598 ([email protected]) Abstract. Static single assignment (SSA) form is an intermediate rep- resentation that is well suited for solving many data flow optimization problems. However, since the standard algorithm for building SSA form is exhaustive, maintaining correct SSA form throughout a multi-pass com- pilation process can be expensive. In this paper, we present incremental algorithms for restoring correct SSA form after program transformations. First, we specify incremental SSA algorithms for insertion and deletion of a use/definition of a variable, and for a large class of updates on intervals. We characterize several cases for which the cost of these algorithms will be proportional to the size of the transformed region and hence poten- tially much smaller than the cost of the exhaustive algorithm. Secondly, we specify customized SSA-update algorithms for a set of common loop transformations. These algorithms are highly efficient: the cost depends at worst on the size of the transformed code, and in many cases the cost is independent of the loop body size and depends only on the number of loops. 1 Introduction Static single assignment (SSA) [8, 6] form is a compact intermediate program representation that is well suited to a large number of compiler optimization algorithms, including constant propagation [19], global value numbering [3], and program equivalence detection [21].
    [Show full text]
  • Compiler-Based Code-Improvement Techniques
    Compiler-Based Code-Improvement Techniques KEITH D. COOPER, KATHRYN S. MCKINLEY, and LINDA TORCZON Since the earliest days of compilation, code quality has been recognized as an important problem [18]. A rich literature has developed around the issue of improving code quality. This paper surveys one part of that literature: code transformations intended to improve the running time of programs on uniprocessor machines. This paper emphasizes transformations intended to improve code quality rather than analysis methods. We describe analytical techniques and specific data-flow problems to the extent that they are necessary to understand the transformations. Other papers provide excellent summaries of the various sub-fields of program analysis. The paper is structured around a simple taxonomy that classifies transformations based on how they change the code. The taxonomy is populated with example transformations drawn from the literature. Each transformation is described at a depth that facilitates broad understanding; detailed references are provided for deeper study of individual transformations. The taxonomy provides the reader with a framework for thinking about code-improving transformations. It also serves as an organizing principle for the paper. Copyright 1998, all rights reserved. You may copy this article for your personal use in Comp 512. Further reproduction or distribution requires written permission from the authors. 1INTRODUCTION This paper presents an overview of compiler-based methods for improving the run-time behavior of programs — often mislabeled code optimization. These techniques have a long history in the literature. For example, Backus makes it quite clear that code quality was a major concern to the implementors of the first Fortran compilers [18].
    [Show full text]