Other Scanner Issues Identifiers Vs. Reserved Words

Total Page:16

File Type:pdf, Size:1020Kb

Other Scanner Issues Identifiers Vs. Reserved Words Other Scanner Issues Identifiers vs. Reserved Words We will consider other practical Most programming languages issues in building real scanners contain reserved words like if, for real programming languages. while, switch, etc. These tokens Our finite automaton model look like ordinary identifiers, but sometimes needs to be aren’t. augmented. Moreover, error It is up to the scanner to decide if handling must be incorporated what looks like an identifier is into any practical scanner. really a reserved word. This distinction is vital as reserved words have different token codes than identifiers and are parsed differently. How can a scanner decide which tokens are identifiers and which are reserved words? © © CS 536 Spring 2008 146 CS 536 Spring 2008 147 • We can scan identifiers and • We can give distinct regular reserved words using the same expression definitions for each pattern, and then look up the token reserved word, and for identifiers. in a special “reserved word” table. Since the definitions overlap (if will match a reserved word and the • It is known that any regular general identifier pattern), we give expression may be complemented priority to reserved words. Thus a to obtain all strings not in the token is scanned as an identifier if original regular expression. Thus A, it matches the identifier pattern the complement of A, is regular if A and does not match any reserved is. Using complementation we can word pattern. This approach is write a regular expression for commonly used in scanner nonreserved generators like Lex and JLex. identifiers: ()ident if while … Since scanner generators don’t usually support complementation of regular expressions, this approach is more of theoretical than practical interest. © © CS 536 Spring 2008 148 CS 536 Spring 2008 149 Converting Token Values We can safely convert from string to integer form by first converting For some tokens, we may need to the string to double form, convert from string form into checking against max and min int, numeric or binary form. and then converting to int form if For example, for integers, we the value is representable. need to transform a string a digits Thus d = new Double(str) will into the internal (binary) form of create an object d containing the integers. value of str in double form. If We know the format of the token str is too large or too small to be is valid (the scanner checked represented as a double, plus or this), but: minus infinity is automatically substituted. • The string may represent an integer too large to represent in 32 d.doubleValue() will give d’s or 64 bit form. value as a Java double, which can be compared against • Languages like CSX and ML use a Integer.MAX_VALUE or non-standard representation for Integer.MIN_VALUE. negative values (~123 instead of -123) © © CS 536 Spring 2008 150 CS 536 Spring 2008 151 If d.doubleValue() represents a Scanner Termination valid integer, (int) d.doubleValue() A scanner reads input characters will create the appropriate integer and partitions them into tokens. value. What happens when the end of If a string representation of an the input file is reached? It may be integer begins with a “~” we can useful to create an Eof pseudo- strip the “~”, convert to a double character when this occurs. In and then negate the resulting Java, for example, value. InputStream.read(), which reads a single byte, returns -1 when end of file is reached. A constant, EOF, defined as -1 can be treated as an “extended” ASCII character. This character then allows the definition of an Eof token that can be passed back to the parser. An Eof token is useful because it allows the parser to verify that the logical end of a program corresponds to its physical end. © © CS 536 Spring 2008 152 CS 536 Spring 2008 153 Most parsers require an end of Multi Character Lookahead file token. Lex and Jlex automatically create We may allow finite automata to an Eof token when the scanner look beyond the next input they build tries to scan an EOF character. character (or tries to scan when This feature is necessary to eof() is true). implement a scanner for FORTRAN. In FORTRAN, the statement DO 10 J = 1,100 specifies a loop, with index J ranging from 1 to 100. The statement DO 10 J = 1.100 is an assignment to the variable DO10J. (Blanks are not significant except in strings.) A FORTRAN scanner decides whether the O is the last character of a DO token only after reading as far as the comma (or period). © © CS 536 Spring 2008 154 CS 536 Spring 2008 155 A milder form of extended Suppose we use the following FA. lookahead problem occurs in D D Pascal and Ada. The token 10.50 is a real literal, D . whereas 10..50 is three different D tokens. We need two-character lookahead . after the 10 prefix to decide whether we are to return 10 (an integer literal) or 10.50 (a real Given 10..100 we scan three literal). characters and stop in a non- accepting state. Whenever we stop reading in a non-accepting state, we back up along accepted characters until an accepting state is found. Characters we back up over are rescanned to form later tokens. If no accepting state is reached during backup, we have a lexical error. © © CS 536 Spring 2008 156 CS 536 Spring 2008 157 Performance Considerations On a 30 SPECmark machine (30 million instructions/sec.), we Because scanners do so much have 1000 instructions per character-level processing, they character to spend on all can be a real performance compiling steps. bottleneck in production If we allow 25% of compiling to be compilers. scanning (a compiler has a lot Speed is not a concern in our more to do than just scan!), that’s project, but let’s see why scanning just 250 instructions per speed can be a concern in character. production compilers. A key to efficient scanning is to Let’s assume we want to compile group character-level operations at a rate of 1000 lines/sec. (so whenever possible. It is better to that most programs compile in do one operation on n characters just a few seconds). rather than n operations on single Assuming 30 characters/line (on characters. average), we need to scan 30,000 In our examples we’ve read input char/sec. one character as a time. A subroutine call can cost hundreds or thousands of instructions to execute—far too much to spend on a single character. © © CS 536 Spring 2008 158 CS 536 Spring 2008 159 We prefer routines that do block Lexical Error Recovery reads, putting an entire block of characters directly into a buffer. A character sequence that can’t be Specialized scanner generators scanned into any valid token is a can produce particularly fast lexical error. scanners. Lexical errors are uncommon, but The GLA scanner generator claims they still must be handled by a that the scanners it produces run scanner. We won’t stop as fast as: compilation because of so minor an error. while(c != Eof) { Approaches to lexical error c = getchar(); handling include: } • Delete the characters read so far and restart scanning at the next unread character. • Delete the first character read by the scanner and resume scanning at the character following it. Both of these approaches are reasonable. © © CS 536 Spring 2008 160 CS 536 Spring 2008 161 The first is easy to do. We just Consider reset the scanner and begin ...for$tnight... scanning anew. The $ terminates scanning of for. The second is a bit harder but Since no valid token begins with also is a bit safer (less is $, it is deleted. Then tnight is immediately deleted). It can be scanned as an identifier. In effect implemented using scanner we get backup. ...for tnight... Usually, a lexical error is caused which will cause a syntax error. by the appearance of some illegal Such “false errors” are character, mostly at the beginning unavoidable, though a syntactic of a token. error-repair may help. (Why at the beginning?) In these case, the two approaches are equivalent. The effects of lexical error recovery might well create a later syntax error, handled by the parser. © © CS 536 Spring 2008 162 CS 536 Spring 2008 163 Error Tokens One way to handle runaway strings is to define an error token. Certain lexical errors require An error token is not a valid special care. In particular, token; it is never returned to the runaway strings and runaway parser. Rather, it is a pattern for comments ought to receive an error condition that needs special error messages. special handling. We can define an In Java strings may not cross line error token that represents a boundaries, so a runaway string string terminated by an end of is detected when an end of a line line rather than a double quote is read within the string body. character. Ordinary recovery rules are For a valid string, in which inappropriate for this error. In internal double quotes and back particular, deleting the first slashes are escaped (and no other character (the double quote escaped characters are allowed), character) and restarting scanning we can use is a bad decision. " ( Not( " | Eol | \ ) | \" | \\ )* " It will almost certainly lead to a cascade of “false” errors as the For a runaway string we use string text is inappropriately " ( Not( " | Eol | \ ) | \" | \\ )* Eol scanned as ordinary input. (Eol is the end of line character.) © © CS 536 Spring 2008 164 CS 536 Spring 2008 165 When a runaway string token is In languages like C, C++, Java and recognized, a special error CSX, which allow multiline message should be issued.
Recommended publications
  • Chapter 5 Names, Bindings, and Scopes
    Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 5.2 Names 199 5.3 Variables 200 5.4 The Concept of Binding 203 5.5 Scope 211 5.6 Scope and Lifetime 222 5.7 Referencing Environments 223 5.8 Named Constants 224 Summary • Review Questions • Problem Set • Programming Exercises 227 CMPS401 Class Notes (Chap05) Page 1 / 20 Dr. Kuo-pao Yang Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 Imperative languages are abstractions of von Neumann architecture – Memory: stores both instructions and data – Processor: provides operations for modifying the contents of memory Variables are characterized by a collection of properties or attributes – The most important of which is type, a fundamental concept in programming languages – To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility 5.2 Names 199 5.2.1 Design issues The following are the primary design issues for names: – Maximum length? – Are names case sensitive? – Are special words reserved words or keywords? 5.2.2 Name Forms A name is a string of characters used to identify some entity in a program. Length – If too short, they cannot be connotative – Language examples: . FORTRAN I: maximum 6 . COBOL: maximum 30 . C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 . C# and Java: no limit, and all characters are significant . C++: no limit, but implementers often impose a length limitation because they do not want the symbol table in which identifiers are stored during compilation to be too large and also to simplify the maintenance of that table.
    [Show full text]
  • A Concurrent PASCAL Compiler for Minicomputers
    512 Appendix A DIFFERENCES BETWEEN UCSD'S PASCAL AND STANDARD PASCAL The PASCAL language used in this book contains most of the features described by K. Jensen and N. Wirth in PASCAL User Manual and Report, Springer Verlag, 1975. We refer to the PASCAL defined by Jensen and Wirth as "Standard" PASCAL, because of its widespread acceptance even though no international standard for the language has yet been established. The PASCAL used in this book has been implemented at University of California San Diego (UCSD) in a complete software system for use on a variety of small stand-alone microcomputers. This will be referred to as "UCSD PASCAL", which differs from the standard by a small number of omissions, a very small number of alterations, and several extensions. This appendix provides a very brief summary Of these differences. Only the PASCAL constructs used within this book will be mentioned herein. Documents are available from the author's group at UCSD describing UCSD PASCAL in detail. 1. CASE Statements Jensen & Wirth state that if there is no label equal to the value of the case statement selector, then the result of the case statement is undefined. UCSD PASCAL treats this situation by leaving the case statement normally with no action being taken. 2. Comments In UCSD PASCAL, a comment appears between the delimiting symbols "(*" and "*)". If the opening delimiter is followed immediately by a dollar sign, as in "(*$", then the remainder of the comment is treated as a directive to the compiler. The only compiler directive mentioned in this book is (*$G+*), which tells the compiler to allow the use of GOTO statements.
    [Show full text]
  • Concise Introduction to C++
    i i final3 2012/4/19 page 47 i i Chapter 2 Concise Introduction to C++ C++ seems to be most suitable for many practical applications. Indeed, C++ is sufficiently high-level to allow transparent object-oriented programming and efficient use of human resources, yet is also sufficiently low-level to have types, variables, pointers, arrays, and loops to allow efficient use of computer resources. In this chapter, we give a concise description of C++ and illustrate its power as an object-oriented programming language. In particular, we show how to construct and use abstract mathematical objects such as vectors and matrices. We also explain the notion of a template class, which can be filled with a concrete type later on in compilation time. We also discuss inheritance and illustrate its potential. 2.1 Objects As we have seen above, C is a language based on functions. Every command is also a function that returns a value that can be further used or abandoned, according to the wish of the programmer. Furthermore, programmers can write their own functions, which may also return variables of the type specified just before the function name. When the function is called, a temporary, unnamed variable is created to store the returned value until it has been used. C++, on the other hand, is an object-oriented programming language. In this kind of language, the major concern is not the functions that can be executed but rather the objects upon which they operate. Although C++ supports all the operations and features available in C, its point of view is different.
    [Show full text]
  • Concepts in Programming Languages Practicalities
    Concepts in Programming Languages Practicalities I Course web page: Alan Mycroft1 www.cl.cam.ac.uk/teaching/1617/ConceptsPL/ with lecture slides, exercise sheet and reading material. These slides play two roles – both “lecture notes" and “presentation material”; not every slide will be lectured in Computer Laboratory detail. University of Cambridge I There are various code examples (particularly for 2016–2017 (Easter Term) JavaScript and Java applets) on the ‘materials’ tab of the course web page. I One exam question. www.cl.cam.ac.uk/teaching/1617/ConceptsPL/ I The syllabus and course has changed somewhat from that of 2015/16. I would be grateful for comments on any remaining ‘rough edges’, and for views on material which is either over- or under-represented. 1Acknowledgement: various slides are based on Marcelo Fiore’s 2013/14 course. Alan Mycroft Concepts in Programming Languages 1 / 237 Alan Mycroft Concepts in Programming Languages 2 / 237 Main books Context: so many programming languages I J. C. Mitchell. Concepts in programming languages. Cambridge University Press, 2003. Peter J. Landin: “The Next 700 Programming Languages”, I T.W. Pratt and M. V.Zelkowitz. Programming Languages: CACM (published in 1966!). Design and implementation (3RD EDITION). Some programming-language ‘family trees’ (too big for slide): Prentice Hall, 1999. http://www.oreilly.com/go/languageposter http://www.levenez.com/lang/ ? M. L. Scott. Programming language pragmatics http://rigaux.org/language-study/diagram.html (4TH EDITION). http://www.rackspace.com/blog/ Elsevier, 2016. infographic-evolution-of-computer-languages/ I R. Harper. Practical Foundations for Programming Plan of this course: pick out interesting programming-language Languages.
    [Show full text]
  • Java Terms/Concepts You Should Know from OOPDA Glossary Terms
    Java Terms/Concepts You Should Know from OOPDA A abstract class A class with the abstract reserved word in its header. Abstract classes are distinguished by the fact that you may not directly construct objects from them using the new operator. An abstract class may have zero or more abstract methods. abstract method A method with the abstract reserved word in its header. An abstract method has no method body. Methods defined in an interface are always abstract. The body of an abstract method must be defined in a sub class of an abstract class, or the body of a class implementing an interface. Abstract Windowing Toolkit The Abstract Windowing Toolkit (AWT) provides a collection of classes that simplify the creation of applications with graphical user interfaces. These are to be found in the java.awt packages. Included are classes for windows, frames, buttons, menus, text areas, and so on. Related to the AWT classes are those for the Swing packages. aggregation A relationship in which an object contains one or more other subordinate objects as part of its state. The subordinate objects typically have no independent existence separate from their containing object. When the containing object has no further useful existence, neither do the subordinate objects. For instance, a gas station object might contain several pump objects. These pumps will only exist as long as the station does. Aggregation is also referred to as the has-a relationship, to distinguish it from the is-a relationship, which refers to inheritance. anonymous class A class created without a class name.
    [Show full text]
  • Intel ® Fortran Programmer's Reference
    ® Intel Fortran Programmer’s Reference Copyright © 1996-2003 Intel Corporation All Rights Reserved Issued in U.S.A. Version Number: FWL-710-02 World Wide Web: http://developer.intel.com Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSO- EVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PAR- TICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. This Intel® Fortran Programmer’s Reference as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for infor- mational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corpora- tion. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde- fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibil- ities arising from future changes to them.
    [Show full text]
  • PHP Advanced and Object-Oriented Programming
    VISUAL QUICKPRO GUIDE PHP Advanced and Object-Oriented Programming LARRY ULLMAN Peachpit Press Visual QuickPro Guide PHP Advanced and Object-Oriented Programming Larry Ullman Peachpit Press 1249 Eighth Street Berkeley, CA 94710 Find us on the Web at: www.peachpit.com To report errors, please send a note to: [email protected] Peachpit Press is a division of Pearson Education. Copyright © 2013 by Larry Ullman Acquisitions Editor: Rebecca Gulick Production Coordinator: Myrna Vladic Copy Editor: Liz Welch Technical Reviewer: Alan Solis Compositor: Danielle Foster Proofreader: Patricia Pane Indexer: Valerie Haynes Perry Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press Interior Design: Peachpit Press Logo Design: MINE™ www.minesf.com Notice of Rights All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting permission for reprints and excerpts, contact [email protected]. Notice of Liability The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the computer software and hardware products described in it. Trademarks Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
    [Show full text]
  • Software II: Principles of Programming Languages Control Statements
    Software II: Principles of Programming Languages Lecture 8 – Statement-Level Control Structures Control Statements: Evolution • FORTRAN I control statements were based directly on IBM 704 hardware • Much research and argument in the 1960s about the issue – One important result: It was proven that all algorithms represented by flowcharts can be coded with only two-way selection and pretest logical loops Control Structure • A control structure is a control statement and the statements whose execution it controls • Design question – Should a control structure have multiple entries? Selection Statements • A selection statement provides the means of choosing between two or more paths of execution • Two general categories: – Two-way selectors – Multiple-way selectors Two-Way Selection Statements • General form: if control_expression then clause else clause • Design Issues: – What is the form and type of the control expression? – How are the then and else clauses specified? – How should the meaning of nested selectors be specified? The Control Expression • If the then reserved word or some other syntactic marker is not used to introduce the then clause, the control expression is placed in parentheses • In C89, C99, Python, and C++, the control expression can be arithmetic • In most other languages, the control expression must be Boolean Clause Form • In many contemporary languages, the then and else clauses can be single statements or compound statements • In Perl, all clauses must be delimited by braces (they must be compound) • In Fortran
    [Show full text]
  • Software II: Principles of Programming Languages Introduction
    Software II: Principles of Programming Languages Lecture 5 – Names, Bindings, and Scopes Introduction • Imperative languages are abstractions of von Neumann architecture – Memory – Processor • Variables are characterized by attributes – To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility Names • Design issues for names: – Are names case sensitive? – Are special words reserved words or keywords? Names (continued) • Length – If too short, they cannot be connotative – Language examples: • FORTRAN 95: maximum of 31 (only 6 in FORTRAN IV) • C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 (only 8 are significant K&R C ) • C#, Ada, and Java: no limit, and all are significant • C++: no limit, but implementers often impose one Names (continued) • Special characters – PHP: all variable names must begin with dollar signs – Perl: all variable names begin with special characters, which specify the variable’s type – Ruby: variable names that begin with @ are instance variables; those that begin with @@ are class variables Names (continued) • Case sensitivity – Disadvantage: readability (names that look alike are different) • Names in the C-based languages are case sensitive • Names in others are not • Worse in C++, Java, and C# because predefined names are mixed case (e.g. IndexOutOfBoundsException ) Names (continued) • Special words – An aid to readability; used to delimit or separate statement clauses • A keyword is a word that is special only
    [Show full text]
  • Names and Binding
    Names, Bindings, and Scopes Alark Joshi Introduction • Imperative languages are abstractions of von Neumann architecture o Memory o Processor • Variables characterized by attributes o To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility 1-2 Copyright © 2009 Addison-Wesley. All rights reserved. Names • Design issues for names: o Are names case sensitive? o Are special words reserved words or keywords? 1-3 Copyright © 2009 Addison-Wesley. All rights reserved. Names (continued) • Length o If too short, they cannot be connotative o Language examples: • FORTRAN 95: maximum of 31 • C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 • C#, Ada, and Java: no limit, and all are significant • C++: no limit, but implementers often impose one 1-4 Copyright © 2009 Addison-Wesley. All rights reserved. Names (continued) • Special characters o PHP: all variable names must begin with dollar signs o Perl: all variable names begin with special characters, which specify the variable’s type o Ruby: variable names that begin with @ are instance variables; those that begin with @@ are class variables 1-5 Copyright © 2009 Addison-Wesley. All rights reserved. Names (continued) • Case sensitivity o Disadvantage: readability (names that look alike are different) • Names in the C-based languages are case sensitive • Names in others are not • Worse in C++, Java, and C# because predefined names are mixed case (e.g. IndexOutOfBoundsException) 1-6 Copyright © 2009 Addison-Wesley. All rights reserved. Names (continued) • Special words o An aid to readability; used to delimit or separate statement clauses • A keyword is a word that is special only in certain contexts, e.g., in Fortran o Real VarName (Real is a data type followed with a name, therefore Real is a keyword) o Real = 3.4 (Real is a variable) 1-7 Copyright © 2009 Addison-Wesley.
    [Show full text]
  • C Identifiers
    C++ Identifiers and Datatypes Each line of a C++ program contains a number of different words. The C++ compiler classifies these words into different categories: Reserved words: A reserved is a word that has a special meaning in C++. A reserved word always appears in lowercase and can only be used for the purpose, which has been defined to it by the C++ compiler. Examples of reserved words: int, void, return. The other types of words are identifiers that come into two varieties: standard and user defined. Standard Identifiers: Standard identifiers have a special meaning in C++. They are the names of operations defined in the standard C++ library. For example: cout is the name of an I/O operation. Unlike reserved words, standard identifiers can be redefined and used by the programmer for other purposes. However, this is NOT recommended. User-defined Identifiers: We choose our own identifiers (called user-defined identifier) to name memory cells that will hold data and program results and to name operations that we define. These names should follow specific rules to be acceptable to the C++ compiler. The rules that make up for a valid identifier are: An identifier must consist of only letters, digits and underscores. An identifier cannot begin with a digit A C++ reserved word cannot be used as an identifier. An identifier defined in the C++ standard library should not be redefined. Some C++ compilers only consider identifiers up to 31 characters. Uppercase and Lowercase: C++ is case sensitive. This means that it distinguishes between small and capital letters.
    [Show full text]
  • {PDF} Head First Javascript Programming
    HEAD FIRST JAVASCRIPT PROGRAMMING PDF, EPUB, EBOOK Eric Freeman,Elisabeth Robson | 704 pages | 13 Jun 2014 | O'Reilly Media, Inc, USA | 9781449340131 | English | Sebastopol, United States Head First JavaScript Programming PDF Book You know the saying: There's no time like the present Then the rest of the book went back to basic OO concepts such as dog inheritance hierarchies. It is more focused on giving you a foundation in JavaScript programming than it is teaching you how to add JavaScript to webpages. Q: Is JavaScript case sensitive? Details if other :. Enabling JavaScript in your browser will allow you to experience all the features of our site. This was the case with early JavaScript, and was why, for many years, the performance of JavaScript was not so great. Many people who feel they are good at JS, will feel left behind after reading this book. A: Only by name. Who we are!? Showing Is it? It gets very overwhelming to go through the plethora of websites and ebooks and this book gives the programming noob real structure that can be followed and is very logically sequenced and organized. JavaScript is pass-by-value. A lot of the JavaScript instructional material I had been using earlier was fine at instructing me in the use of the language but did absolutely nothing to show me actually how to integrate it into client-side programming. Just keep learning. But if you wanna do all that you have to know JavaScript. Jun 01, Carl Klutzke rated it really liked it Shelves: recommended-non-fiction.
    [Show full text]