Localization of Ringed Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Localization of Ringed Spaces Advances in Pure Mathematics, 2011, 1, 250-263 doi:10.4236/apm.2011.15045 Published Online September 2011 (http://www.SciRP.org/journal/apm) Localization of Ringed Spaces William D. Gillam Department of Mathematics, Brown University, Providence, USA E-mail: [email protected] Received March 28, 2011; revised April 12, 2011; accepted April 25, 2011 Abstract Let X be a ringed space together with the data M of a set M x of prime ideals of Xx, for each point x X . We introduce the localization of X ,M , which is a locally ringed space Y and a map of ringed spaces YX enjoying a universal property similar to the localization of a ring at a prime ideal. We use this to prove that the category of locally ringed spaces has all inverse limits, to compare them to the inverse limit in ringed spaces, and to construct a very general Spec functor. We conclude with a discussion of relative schemes. Keywords: Localization, Fibered Product, Spec, Relative Scheme 1. Introduction Then ( Spec of) the natural surjection kx kx Let Top , LRS , RS , and Sch denote the categories Xx11,,1Yy ,X 2 x 2 ky()2 of topological spaces, locally ringed spaces, ringed identifies Speckx 12 ky kx with a closed subspace spaces, and schemes, respectively. Consider maps of of Spec and 1 x , x Xx11,,Yy ,X 2 x 2 XX12Y 12 schemes fii: XY ( i =1,2) and their fibered product naturally coincides, under the EGA isomorphism, to the X12Y X as schemes. Let X denote the topological restriction of the structure sheaf of space underlying a scheme X . There is a natural SpecXx,, X x to the closed subspace comparison map 11Yy , 2 2 Spec kx kx Spec . 1 1()2 ky X11, x Yy ,X 2, x 2 : X12YYXXX12 It is perhaps less well-known that this entire discus- which is not generally an isomorphism, even if sion remains true for LRS morphisms ff, . X ,,XY are spectra of fields (e.g. if Y =Spec , 12 12 From the discussion above, we see that it is possible to XX==Spec , the map is two points mapping to 12 describe XX , at least as a set, from the following one point). However, in some sense fails to be an Y 21 data: isomorphism only to the extent to which it failed in the 1) the ringed space fibered product X RS X case of spectra of fields: According to [EGA I.3.4.7] the 12Y 1 (which carries the data of the rings fiber x , x over a point x , xXX Xx11,,Yy , X 2 x 2 12 12 12Y as stalks of its structure sheaf) and (with common image y ==fx fx) is naturally 11 2 2 2) the subsets Sxx ,Spec bijective with the set 12 Xx11, Yy ,X 2, x 2 It turns out that one can actually recover X12Y X as Spec kx12ky kx. a scheme solely from this data, as follows: Given a pair X , M consisting of a ringed space X and a subset In fact, one can show that this bijection is a M x SpecXx, for each x X , one can construct a homeomorphism when 1 x , x is given the topo- loc 12 locally ringed space XM, with a map of ringed loc logy it inherits from X12Y X . One can even describe 1 spaces X , MX . In a special case, this constru- the sheaf of rings x12, x inherits from X12Y X ction coincides with M. Hakim’s spectrum of a ringed as follows: Let topos. Performing this general construction to Sxx,:=Spec z:z 1There is no sense in which this sheaf of rings on 12 Xx11, Yy ,X 2,, x 2 Xxi i Spec kx 12 ky kx is “quasi-coherent”. It isn’t even a module over = for i = 1,2 . the usual structure sheaf of Spec kx kx xi 12ky Copyright © 2011 SciRes. APM W. D. GILLAM 251 RS ficient to upgrade descent theorems for RS to descent XXSxx1212Y ,, theorems for Sch . yields the comparison map , and, in particular, the scheme X12Y X . A similar construction in fact yields 2. Localization all inverse limits in LRS (§ 3.1) and the comparison map to the inverse limit in RS , and allows one to easily We will begin the localization construction after making prove that a finite inverse limits of schemes, taken in a few definitions. LRS , is a scheme (Theorem 8). Using this description Definition 1. A morphism f : AB of sheaves of of the comparison map one can easily describe some rings on a space X is called a localization morphism3 circumstances under which it is an isomorphism (§ 3.2), iff there is a multiplicative subsheaf SA so that f and one can easily see, for example, that it is a loca- is isomorphic to the localization A SA1 of A at lization morphism (Definition 1), hence has zero cotangent S .4 A morphism of ringed spaces f : XY is called #1 complex. a localization morphism iff ff: YX is a lo- The localization construction also allows us construct calization morphism. (§ 3.3), for any X LRS , a very general relative spec A localization morphism A B in Rings X is functor both flat and an epimorphism in RingsX .5 In par- ticular, the cotangent complex (hence also the sheaf of Spec : Algop LRS X XX Kähler differentials) of a localization morphism is zero which coincides with the usual one when X is a [Ill II.2.3.2]. The basic example is: For any affine scheme X =Spec A , AX is a localization mor- scheme and we restrict to quasi-coherent X algebras. X We can also construct (§ 3.5) a “good geometric realiza- phism. tion” functor from M. Hakim’s stack of relative schemes Definition 2. Let A be a ring, SA Spec any sub- 2 over a locally ringed space X to LRS X . It should set. We write SpecAS for the locally ringed space be emphasized at this point that there is essentially only whose underlying topological space is S with the topol- one construction, the localization of a ringed space of ogy it inherits from Spec A and whose sheaf of rings is § 2.2, in this paper, and one (fairly easy) theorem (Theo- the inverse image of the structure sheaf of Spec A . rem 2) about it; everything else follows formally from If A is clear from context, we drop the subscript and general nonsense. simply write Spec S . There is one possible point of Despite all these results about inverse limits, I stum- confusion here: If I A is an ideal, and we think of bled upon this construction while studying direct limits. I Spec A I as a subset of Spec A , then was interested in comparing the quotient of, say, a finite SpecA Spec A IAI Spec étale groupoid in schemes, taken in sheaves on the étale site, with the same quotient taken in LRS . In order to (though they have the same topological space). compare these meaningfully, one must somehow put them in the same category. An appealing way to do this 2.1. Prime Systems is to prove that the (functor of points of the) LRS quo- tient is a sheaf on the étale site. In fact, one can prove Definition 3. Let XX=, X be a ringed space. A that for any X LRS , the presheaf prime system M on X is a map x M x assigning a subset M x SpecXx, to each point x X . For YHomYX , LRS prime systems M , N on X we write M N to is a sheaf on schemes in both the fppf and fpqc topolo- mean M x N x for all x X . Prime systems on X gies. Indeed, one can easily describe a topology on RS , form a category PS X where there is a unique mor- analogous to the fppf and fpqc topologies on schemes, phism from M to N iff M N . The intersection and prove it is subcanonical. To upgrade this to a sub- iiM of prime systems M i PSX is defined by canonical topology on LRS one is naturally confronted iiMM:= i i . with the comparison of fibered products in LRS and x x RS . In particular, one is confronted with the question of A primed ringed space X , M is a ringed space X whether is an epimorphism in the category of ringed equipped with a prime system M . Prime ringed spaces spaces. I do not know whether this is true for arbitrary form a category PRS where a morphism f :, XM YN, is a morphism of ringed spaces f satisfy- LRS morphisms f12, f , but in the case of schemes it is possible to prove a result along these lines which is suf- 3See [Ill II.2.3.2] and the reference therein. 4 2Hakim already constructed such a functor, but ours is different from See [Ill II.2.3.2] and the reference therein. 5 hers. Both of these conditions can be checked at stalks. Copyright © 2011 SciRes. APM 252 W. D. GILLAM ing sheaf on X . The category SecF of local sections of is the category whose objects are pairs Us, Spec fM N F x xfx() where U is an open subset of X and s F U , and for every x X . where there is a unique morphism Us,, Vt if The inverse limit of a functor iM i to PS X is UV and tU s. loc clearly given by iiM .
Recommended publications
  • EXERCISES 1 Exercise 1.1. Let X = (|X|,O X) Be a Scheme and I Is A
    EXERCISES 1 Exercise 1.1. Let X = (|X|, OX ) be a scheme and I is a quasi-coherent OX -module. Show that the ringed space X[I] := (|X|, OX [I]) is also a scheme. Exercise 1.2. Let C be a category and h : C → Func(C◦, Set) the Yoneda embedding. Show ∼ that for any arrows X → Y and Z → Y in C, there is a natural isomorphism hX×Z Y → hX ×hY hZ . Exercise 1.3. Let A → R be a ring homomorphism. Verify that under the identification 2 of DerA(R, ΩR/A) with the sections of the diagonal map R ⊗A R/J → R given in lecture, 1 the universal derivation d : R → ΩR/A corresponds to the section given by sending x ∈ R to 1 ⊗ x. Exercise 1.4. Let AffZ be the category of affine schemes. The Yoneda functor h gives rise to a related functor hAff : Sch → Func(Aff◦ , Set) Z Z which only considers the functor of points for affine schemes. Is this functor still fully faithful? Cultural note: since Aff◦ is equivalent to the category of rings ( -algebras!), we can also Z Z view h as defining a (covariant) functor on the category of rings. When X is an affine scheme Aff of the form Z[{xi}]/({fj}], the value of hX on A is just the set of solutions of the fj with coordinates in A. Exercise 1.5. Let R be a ring and H : ModR → Set a functor which commutes with finite products. Verify the claim in lecture that H(I) has an R-module structure.
    [Show full text]
  • A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
    A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience.
    [Show full text]
  • Generalized Inverse Limits and Topological Entropy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork.
    [Show full text]
  • A Few Points in Topos Theory
    A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces.
    [Show full text]
  • The Hecke Bicategory
    Axioms 2012, 1, 291-323; doi:10.3390/axioms1030291 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Communication The Hecke Bicategory Alexander E. Hoffnung Department of Mathematics, Temple University, 1805 N. Broad Street, Philadelphia, PA 19122, USA; E-Mail: [email protected]; Tel.: +215-204-7841; Fax: +215-204-6433 Received: 19 July 2012; in revised form: 4 September 2012 / Accepted: 5 September 2012 / Published: 9 October 2012 Abstract: We present an application of the program of groupoidification leading up to a sketch of a categorification of the Hecke algebroid—the category of permutation representations of a finite group. As an immediate consequence, we obtain a categorification of the Hecke algebra. We suggest an explicit connection to new higher isomorphisms arising from incidence geometries, which are solutions of the Zamolodchikov tetrahedron equation. This paper is expository in style and is meant as a companion to Higher Dimensional Algebra VII: Groupoidification and an exploration of structures arising in the work in progress, Higher Dimensional Algebra VIII: The Hecke Bicategory, which introduces the Hecke bicategory in detail. Keywords: Hecke algebras; categorification; groupoidification; Yang–Baxter equations; Zamalodchikov tetrahedron equations; spans; enriched bicategories; buildings; incidence geometries 1. Introduction Categorification is, in part, the attempt to shed new light on familiar mathematical notions by replacing a set-theoretic interpretation with a category-theoretic analogue. Loosely speaking, categorification replaces sets, or more generally n-categories, with categories, or more generally (n + 1)-categories, and functions with functors. By replacing interesting equations by isomorphisms, or more generally equivalences, this process often brings to light a new layer of structure previously hidden from view.
    [Show full text]
  • SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
    SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.
    [Show full text]
  • Abelian Categories
    Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists.
    [Show full text]
  • Compact Ringed Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 52, 41 l-436 (1978) Compact Ringed Spaces CHRISTOPHER J. MULVEY * Department of Mathematics, Columbia University, New York, New York 10027 and Mathematics Division, University of Sussex, Falmer, Brighton, BNl9QH, England Communicated by Saunders MacLane Received April 16, 1976 The properties of complete regularity, paracompactness, and compactness of a topological space X all may be described in terms of the ring R(X) of continuous real functions on X. In this paper we are concerned with extending these concepts from topological to ringed spaces, replacing the ring of continuous real functions on the space by the ring of sections of the ringed space. Our interest in the problem arose from attempting to construct the tangent module 7M of a smooth manifold IM directly from the sheaf QM of smooth real functions. For each open set U of M, the module rM( U)is the s2,( U)-module of derivations of In,(U). Yet, since taking derivations is not functorial, the evident restriction maps are not canonically forthcoming. For paracompact manifolds the construction needed was known to Boardman [5]. In general, it can be carried out using the complete regularity of the ringed space (M, 62,) [18, 321. Although spaces satisfying these conditions appear naturally in analytical contexts, there emerges a fundamental connection with sectional representations of rings [19, 21, 231. In turn, this has provided a technique for using intuitionistic mathematics in applying these representations [22]. Extending these properties to ringed spaces, we prove a compactness theorem for completely regular ringed spaces generalizing the Gelfand-Kolmogoroff criterion concerning maximal ideals in the ring R(X) of continuous real functions on a completely regular space X.
    [Show full text]
  • Introduction to Algebraic Geometry
    Introduction to Algebraic Geometry Jilong Tong December 6, 2012 2 Contents 1 Algebraic sets and morphisms 11 1.1 Affine algebraic sets . 11 1.1.1 Some definitions . 11 1.1.2 Hilbert's Nullstellensatz . 12 1.1.3 Zariski topology on an affine algebraic set . 14 1.1.4 Coordinate ring of an affine algebraic set . 16 1.2 Projective algebraic sets . 19 1.2.1 Definitions . 19 1.2.2 Homogeneous Nullstellensatz . 21 1.2.3 Homogeneous coordinate ring . 22 1.2.4 Exercise: plane curves . 22 1.3 Morphisms of algebraic sets . 24 1.3.1 Affine case . 24 1.3.2 Quasi-projective case . 26 2 The Language of schemes 29 2.1 Sheaves and locally ringed spaces . 29 2.1.1 Sheaves on a topological spaces . 29 2.1.2 Ringed space . 34 2.2 Schemes . 36 2.2.1 Definition of schemes . 36 2.2.2 Morphisms of schemes . 40 2.2.3 Projective schemes . 43 2.3 First properties of schemes and morphisms of schemes . 49 2.3.1 Topological properties . 49 2.3.2 Noetherian schemes . 50 2.3.3 Reduced and integral schemes . 51 2.3.4 Finiteness conditions . 53 2.4 Dimension . 54 2.4.1 Dimension of a topological space . 54 2.4.2 Dimension of schemes and rings . 55 2.4.3 The noetherian case . 57 2.4.4 Dimension of schemes over a field . 61 2.5 Fiber products and base change . 62 2.5.1 Sum of schemes . 62 2.5.2 Fiber products of schemes .
    [Show full text]
  • TD5 – Categories of Presheaves and Colimits
    TD5 { Categories of Presheaves and Colimits Samuel Mimram December 14, 2015 1 Representable graphs and Yoneda Given a category C, the category of presheaves C^ is the category of functors Cop ! Set and natural transfor- mations between them. 1. Recall how the category of graphs can be defined as a presheaf category G^. 2. Define a graph Y0 such that given a graph G, the vertices of G are in bijection with graph morphisms from Y0 to G. Similarly, define a graph Y1 such that we have a bijection between edges of G and graph morphisms from Y1 to G. 3. Given a category C, we define the Yoneda functor Y : C! C^ by Y AB = C(B; A) for objects A; B 2 C. Complete the definition of Y . 4. In the case of G, what are the graphs obtained as the image of the two objects? A presheaf of the form YA for some object A is called a representable presheaf. 5. Yoneda lemma: show that for any category C, presheaf P 2 C^, and object A 2 C, we have P (A) =∼ C^(Y A; P ). 6. Show that the Yoneda functor is full and faithful. 7. Define a forgetful functor from categories to graphs. Invent a notion of 2-graph, so that we have a forgetful functor from 2-categories to 2-graphs. More generally, invent a notion of n-graph. 8. What are the representable 2-graphs and n-graphs? 2 Some colimits A pushout of two coinitial morphisms f : A ! B and g : A ! C consists of an object D together with two morphisms g0 : C ! D and f 0 : B ! D such that g0 ◦ f = f 0 ◦ g D g0 > ` f 0 B C ` > f g A and for every pair of morphisms g0 : B ! D00 and f 00 : C ! D00 there exists a unique h : D ! D0 such that h ◦ g0 = g00 and h ◦ f 0 = f 00.
    [Show full text]
  • Math 395: Category Theory Northwestern University, Lecture Notes
    Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere.
    [Show full text]
  • 4 Sheaves of Modules, Vector Bundles, and (Quasi-)Coherent Sheaves
    4 Sheaves of modules, vector bundles, and (quasi-)coherent sheaves “If you believe a ring can be understood geometrically as functions its spec- trum, then modules help you by providing more functions with which to measure and characterize its spectrum.” – Andrew Critch, from MathOver- flow.net So far we discussed general properties of sheaves, in particular, of rings. Similar as in the module theory in abstract algebra, the notion of sheaves of modules allows us to increase our understanding of a given ringed space (or a scheme), and to provide further techniques to play with functions, or function-like objects. There are particularly important notions, namely, quasi-coherent and coherent sheaves. They are analogous notions of the usual modules (respectively, finitely generated modules) over a given ring. They also generalize the notion of vector bundles. Definition 38. Let (X, ) be a ringed space. A sheaf of -modules, or simply an OX OX -module, is a sheaf on X such that OX F (i) the group (U) is an (U)-module for each open set U X; F OX ✓ (ii) the restriction map (U) (V ) is compatible with the module structure via the F !F ring homomorphism (U) (V ). OX !OX A morphism of -modules is a morphism of sheaves such that the map (U) F!G OX F ! (U) is an (U)-module homomorphism for every open U X. G OX ✓ Example 39. Let (X, ) be a ringed space, , be -modules, and let ' : OX F G OX F!G be a morphism. Then ker ', im ', coker ' are again -modules. If is an - OX F 0 ✓F OX submodule, then the quotient sheaf / is an -module.
    [Show full text]