N91"20002 LPSC XXII Press Abst 23
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Compositional Diversity Inside Lowell Crater, Orientale Basin: Evidences for Extensive Spinel Rich Deposits
Second Conference on the Lunar Highlands Crust (2012) 9016.pdf COMPOSITIONAL DIVERSITY INSIDE LOWELL CRATER, ORIENTALE BASIN: EVIDENCES FOR EXTENSIVE SPINEL RICH DEPOSITS. N. Srivastava1 and R. P. Gupta2, 1PLANEX, Physical Research Laboratory, Ahmedabad, India – 380009, [email protected], 2Earth Sciences, IIT Roorkee, Roorkee, Uttarakhand, India – 247667, [email protected]. Introduction: Spinel dominant rock exposures de- void of mafic minerals such as olivine and pyroxenes, have been recently found in certain areas both on the far-side and on the near-side of the Moon using data from NASA’s Moon Mineral Mapper (M3) onboard Chandrayaan-1, India’s first mission to the Moon [1, 2]. These include, far-side exposures along the ring of Moscoviense basin, where they were first reported [3] and several near-side exposures such as the extensive occurrences in Sinu Aestuum, in the Theophilus crater, Copernicus crater floor and few exposures in the Tycho crater [4-9]. The mode of formation of this newly discovered rock type on Moon is not clearly understood in the current perspective about the evolu- tion of Moon. Except for Tycho crater, all the above mentioned exposures are found in similar geologic Figure 1: Clementine albedo image showing the re- settings i.e., along the rings of major basins. Hence it gional geologic setting of Lowell crater. is envisaged that most of these rock exposures consti- Methodology: The composition of the exposures tute previously deep-seated rocks which have been in the region have been identified on the basis of char- exhumed on to the surface due to impacts. -
IMPACT CRATERING: the EFFECTS of TARGET TOPOGRAPHY and HETEROGENEITY Submitted to NASA Research Announcement NNH15ZDA001N-SSW, Solar System Workings
$ + 2 3 +#> 7 !"!## *+$% &'&( ')($ *+',))--)&'.-' (*)''.%.*( %,/ 0,)')(.*) )$'/ SECTION VII - Project Summary $ '(.0#&'$. +$8B;; 9A < ; <A 88; ;B; ;B ; A8C 7 6 < A 6 7 8$8B; 8; A; < ;B < 4D;>9 < ;8 6 B 9 A; 49 9 8D9A 96A4 6;A9 8 & 6 9 AD;> 8 ; 8B;; 8DB 8 8 ;68 6 68 B 8 67; 64A89 4 86767 9 'A 4D 9DB 8 8 ;68 69B > 67 9 ;A; 9 A ; 8B; 6 ;> 8+ 9A A;< A 9 ; BA 96 A ; &$) &)*. 0.@)&'$E)+'A96 A B B AD69;6 BDB 868B; ; 9 <7> 99A ; 96 9B9 BA7 9AA 97A8B;B ; $ B ;6 466 7AA > <6 ;AD;> 8 6 89 98B;; 4A9 A 8 ; A; AB4 A 6; 8 BA8 766 A 6 B 8 7D 9; ;69 6 AB ; <A<A> ;A;8B6D 9 )',.0..*/+$8B;; 9DB 8 66<B 8 A)DB 86$8B;< 7 A B;& '> >DB 86;A: 66< < >A; 9B ; 68FA)C; E6;7 87 8G)EH (6'8% 697 8G('%H'A)EB C; > ;66 B6A 9A A8B;B B B ;6 A 9 ;'A 6 B6 < A6&&0;8 89 A>4A;A66 > 6C;B ;6 < ; 69A <66 ; C; 8AB ;6I C; B 4 B 4 96'A('%B C; 6 B6> ;667A 9 ;668; ;A 9AA 9 98B;; 4A;A A89 <7> ;8 'A 66 A; B 6< ; 9; D;>4 9 A4 8 ;@A A ;A: 66B > 9AA ; 9B9 BA7 A 97A A9A67 78;B ; ; D;>49 A4 8 ; 206 ; 66< 8; AB 8 A <8668 B ; ())E &)+$8B;; 9 8C B ; ;9B6 7 ; 66 ;6 A 9A8A 6 7 8 'ADB 86 A B ; 8B;; 9 9B9 BA7 A 97B B A 6> 6 7 8 9 8 AJ>6 8 ; ; KG BB D&2H 12<4<%/""= /6" "> IMPACT CRATERING: THE EFFECTS OF TARGET TOPOGRAPHY AND HETEROGENEITY Submitted to NASA Research Announcement NNH15ZDA001N-SSW, Solar System Workings Principal Investigator: Jennifer L. -
Origin of the Anomalously Rocky Appearance of Tsiolkovskiy Crater
Icarus 273 (2016) 237–247 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Origin of the anomalously rocky appearance of Tsiolkovskiy crater ∗ Benjamin T. Greenhagen a, , Catherine D. Neish b, Jean-Pierre Williams c, Joshua T.S. Cahill a, Rebecca R. Ghent d,e,PaulO. Hayne f, Samuel J. Lawrence g,NoahE. Petro h, Joshua L. Bandfield i a Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, United States b Department of Earth Sciences, Western University Biological & Geological Sciences Building, Room 1026 1151 Richmond St. N. London, ON N6A 5B7 Canada c Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles 595 Charles Young Drive East, Box 951567 Los Angeles, CA 90095-1567, United States d Department of Earth Sciences, Earth Sciences Centre 22 Russell Street Toronto, Ontario, M5S 3B1, Canada e Planetary Science Institute, 1700 East Fort Lowell, Suite 106 Tucson, AZ 85719-2395, United States f Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive Pasadena, CA 91109 ASU, United States g School of Earth and Space Exploration, PO Box 871404 Tempe, AZ 85287-1404, United States h NASA’s Goddard Space Flight Center, 8800 Greenbelt Rd Greenbelt, MD 20771, United States i Space Science Institute, 4750 Walnut Street | Suite 205 Boulder, Colorado 80301, United States a r t i c l e i n f o a b s t r a c t Article history: Rock abundance maps derived from the Diviner Lunar Radiometer instrument on the Lunar Reconnais- Received 3 August 2015 sance Orbiter (LRO) show Tsiolkovskiy crater to have high surface rock abundance and relatively low re- Revised 6 February 2016 golith thickness. -
Percival Lowell: the Sage As Astronomer David Sutton Dolan University of Wollongong
University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1992 Percival Lowell: the sage as astronomer David Sutton Dolan University of Wollongong Recommended Citation Dolan, David Sutton, Percival Lowell: the sage as astronomer, Doctor of Philosophy thesis, Department of Science and Technology Studies, University of Wollongong, 1992. http://ro.uow.edu.au/theses/1712 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] PERCIVAL LOWELL: THE SAGE AS ASTRONOMER by David Sutton Dolan, B.A. Hons. (Flinders), M. A. (Adelaide) Department of Science and Techology Studies University of Wollongong January 1992 PERCIVAL LOWELL: THE SAGE AS ASTRONOMER CONTENTS CHAPTER PAGE 1. PERCIVAL LOWELL (1855-1916) IN HIS TIMES 1 1.1 Lowell's life and work 1 1.2 An overview of Lowell's astronomical writings 17 1.3 A brief survey of the biographical literature on Lowell 31 2. LOWELL IN THE LITERATURE, BEFORE THE SPACE AGE 45 2.1 C1830-1924 50 2.2 1925-49 78 2.3 1949-57 101 3. LOWELL IN THE SPACE AGE 125 3.1 Sputnik to Mariner: 1958-1965 125 3.2 Mariner to Viking and after: 1965-1990 155 4. LOWELL AND THE LITERARY PERSONA OF THE SAGE 186 4.1 Lowell as an anomaly in the pluralist tradition 188 4.2 "The eye of the man of knowledge" 204 4.3 Thomas Carlyle: Victorian prose, the universe, science and history 228 4.4 John Ruskin: the morality of landscape and climate 240 5. -
(Aetcode) NU) BER) ______(V?
J LUNAR DIFFERENTIAL FLUX SCANS AT 22 MICRONS (ACCFSSI0(AEtcoDE) NU) BER) ______________(V? (CAISGOY)' U(NASACR0 TMX OR A NUMBER) LUNAR DIFFERENTIAL FLUX SCANS AT 22 MICRONS Wendell W. MendelI' Space Science Departmen Rice University July, 1971 NMER)E(ACCESSIO " (T U) (NASA CR OR TMX OR AD NUM9ER) (CATEGORY) I. ABSTRACT The nighttime lunar surface has been scanned at a variety of phases both before and after new Moon. A differential chopping technique was used which records the flux difference between adjacent resolution elements along a scan. In principle the differential scan can be integrated to provide the flux distribution, but slow drifts in the sensor null level frustrated this procedure. However, some cold limb temperatures have been calculated using the planet Jupiter for calibra tion. The measurements were made with a resolution element of 27 arc seconds on the 28-inch telescope at the University of Arizona. Scan positions were determined by noting features on the illuminated portion of the Moon through a bore-sighted guide telescope. Positional accuracies are within two resolution elements. The technique is particularly sensitive to the detection of nighttime anomalies, and more than 150 of these have been identified. Prior to new Moon is seen large scale thermal structure, corre sponding to a previously unknown nonlinear cooling property of the lunar highlands. The nonlinear behavior consistently disappears 3.5 to 4 days after sunset. The effect could be due to the large scale roughness of the highlands or to a significant rock population with a mean size on the order of 10 cm. -
Lowell Observatory Archival Material
Lowell Observatory Archival Material August 6, 2013 In our paper, ‘Revisiting The 1963 Aristarchus Events’1, Anthony Cook and I relied heavily on documents in the Lowell Observatory Archive. We wish to thank Lowell Observatory Director Jeffrey Hall for granting us permission to post the following documents on our web site and in particular, we extend a heartfelt “Thank You” to Lowell Observatory Librarian/Archivist Lauren Amundson for her diligence in supplying us with the 305 pages of material in this document as they were being catalogued. This document contains all correspondence and related material concerning ‘The 1963 Aristarchus Events’ 2 identified in the Lowell Observatory Archives catalogued as of late 2012. This PDF file was constructed with PDF Converter Professional 7 and should also be readable with standard PDF software packages. Original scanned Lowell images were converted to PDF format and then MRC compression with text search option was applied allowing full search capabilities. For example, a PDF search of “Greenacre” should return 98 results including those on this page. This document is organized by grouping together all letters and documents sent between correspondents ordered chronologically within each grouping. For example, the first grouping of correspondence contains all letters in the Lowell Archive sent between Dr. John S. Hall and William D. Cannell starting with the earliest exchange on November 14, 1960 and continuing chronologically to the last relevant document on July 5, 1967, which was a Hall reference letter for Cannell. Some sections are simply newspaper articles or other documents placed in chronological order between correspondence groupings. There are no section headings as all documents are in a continuous flow. -
Scientific Knowledge of the Moon, 1609 to 1969
geosciences Review Scientific Knowledge of the Moon, 1609 to 1969 Charles A. Wood Planetary Science Institute, Tucson, AZ 85721, USA; [email protected]; Tel.: +1-301-538-5244 Received: 23 October 2018; Accepted: 18 December 2018; Published: 21 December 2018 Abstract: Discoveries stemming from the Apollo 11 mission solved many problems that had vexed scientists for hundreds of years. Research and discoveries over the preceding 360 years identified many critical questions and led to a variety of answers: How did the Moon form, how old is its surface, what is the origin of lunar craters, does the Moon have an atmosphere, how did the Moon change over time, is the Moon geologically active today, and did life play any role in lunar evolution? In general, scientists could not convincingly answer most of these questions because they had too little data and too little understanding of astronomy and geology, and were forced to rely on reasoning and speculation, in some cases wasting hundreds of years of effort. Surprisingly, by 1969, most of the questions had been correctly answered, but a paucity of data made it uncertain which answers were correct. Keywords: lunar origin; lunar crater origin; lunar atmosphere; lunar changes; lunar surface age 1. Introduction In the 360 years between Galileo’s first telescopic look at the Moon and the launch of Apollo 11, the Moon attracted many serious observers who developed questions and possible answers about its origin and conditions. Early interpretations of the Moon, its surface and atmospheric conditions were guided by philosophic beliefs from the ancient Greeks and early Christians. -
INTERPRETATION of EXTRATERRESTRIAL IMAGERY 479 Degree Polynomial (Bowen, 1960B)
P. M. MERIFIELD* (editor) J. M. SAARI R. 'vV. SHORTIlILL R. L. WlLDEY D. E. 'vVILHELl\'lS R. S. \VILLIAMS, JR. Interpretation of Extraterrestrial o - ) I I I ! Imagery KILOMETERS FRONTISPIECE. The multiringed basin of Mare Orientale. Lunar Orbiter IV moderate resolution photograph. Framelet width is about 90 km. Framelet orientation varies among the various Orbiter missions. (See page 489.) Note: Jorth is at the top in this and succeeding lunar photographs. (NASA photo.) Earth based telescopes; Photogeologic mapping of the Moon; Thermal mapping of the Moon; Lunar and planetary probes; Geologic interpretation of Lunar Orbiter photos; Photographic sensors for detecting extraterrestrial life. (A bslract on next page) TNTROD C'1'I0N * Chairman, Subcommittee V II, Photo Jnter HREE YEA RS HA VE elapsed si nce progress pretation Committee, American Society of Photo in the field of space imagery has been re grammetry, 1964-1967. Present address: Earth T Science Research Corp., Santa iVlonica, Calif. ported on to the members of the society (Van 90405. The authors are identified in their respective Lopik, Merifield, et at, 196.1), and a review of sections. 477 478 PHOTOGRAMMETRIC ENGINEERING some of the major projects that have been Ii te imagery of the earth is the subj ect of a undertaken is deemed appropriate. Terrestri subsequent paper to be published in this jour ally based telescopic photography and in nal. Al though this paper is intended to encolll frared imagery are continuing to be utilized as pass the broad spectrum of the subject, it can fundamental tools in the study of celsetial not be considered comprehensi\·e.