Lens Regeneration in Humans: Using Regenerative Potential for Tissue Repairing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Complications After Keratoplasty
7 The Complications After Keratoplasty Patricia Durán Ospina Fundación Universitaria del Área Andina Seccional Pereira Colombia 1. Introduction Keratoplasty is the medical term that refers to a cornea transplant. There are some differences between the definitions of keratoplasty, commonly it is mentioned for corneal transplant, Lamellar Keratoplasty, which is a partial thickness corneal grafting and penetrating keratoplasty: is a full-thickness corneal grafting. The indications for keratoplasty include: optical (to improve visual acuity by replacing the opaque host tissue by a healthy donor or pesudophakic bullous keratopathy), tectonic (in patients with stromal thinning and descemetoceles, to preserves corneal anatomy ant integrity), therapeutic (removal of inflamed corneal tissue refractive to treatment by antibiotics or antiviral drugs) or cosmetic (in patients with corneal scars giving a whitish opaque hue to the cornea. The most frequent causes of corneal alterations leading to keratoplasty are keratoconus, bacterial infections, poor hygienic contact lens wear (Buehler et al. 1992, Chalupa, 1987, Holden, 2003) or trauma. Among microbial infections, bacterial infections are the most frequent and are mainly caused by Staphylococcus sp., Streptococcus sp. or Pseudomona sp. Some side effects of keratoplasty can be infection (keratitis on the new transplanted cornea or endophthalmitis), transplant rejection, vision fluctuation, glaucoma and bleeding, among others less reported. Infection is one of the most frequent complications after keratoplasty, which can cause endophthalmitis. Infection after keratoplasty, can result from inapropiate healing or like a complication during the transplant (Confino and Brown, 1985 and Dana, 1995). even though the area around the eye is completely sterilized the day of the surgery and the face is covered with sterile drapes. -
The Molecular Basis of Amphibian Limb Regeneration: Integrating the Old with the New David M
seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 13, 2002: pp. 345–352 doi:10.1016/S1084–9521(02)00090-3, available online at http://www.idealibrary.com on The molecular basis of amphibian limb regeneration: integrating the old with the new David M. Gardiner∗, Tetsuya Endo and Susan V. Bryant Is regeneration close to revealing its secrets? Rapid advances classical studies to guide the identification of the in technology and genomic information, coupled with several functions of this large set of genes. useful models to dissect regeneration, suggest that we soon The challenge of understanding the mechanisms may be in a position to encourage regeneration and enhanced controlling the biology of complex systems is hardly repair processes in humans. unique to regeneration biology. In recent years, techniques have become available to identify all the Key words: limb / regeneration / pattern formation / molecular components of a system, and to study the urodele / fibroblast / dedifferentiation / stem cells interactions between those components. Key to the success of such an approach is the ability to identify © 2002 Elsevier Science Ltd. All rights reserved. the molecules, while at the same time having an un- derstanding of the cell and tissue level properties of the system. The goal of this reviewis to discuss key insights from the classical literature as well as more recent molecular findings. We focus on three criti- Introduction cally important cell types: fibroblasts, epidermis and nerves. Each of these is necessary, and together they The study of amphibian limb regeneration has a rich are sufficient for the regeneration of a limb. Although experimental history. -
Module Specification
MODULE SPECIFICATION KEY FACTS Module name Principles of Therapeutics Module code OVM050 School School of Health Sciences Department or equivalent Division of Optometry and Visual Science UK credits 15 ECTS 7.5 Level 7 MODULE SUMMARY Module outline and aims Information for Clinical Optometry students The Department of Optometry and Visual Science at City University has been providing modular postgraduate training in ocular therapeutics for over 15 years. The purpose of this training has been to provide the theoretical knowledge and clinical skills to enable optometrists to manage ocular disease within the context of the legal and regulatory framework provided by the Opticians Act and relevant medicines legislation. Candidates entering the full independent prescribing (IP) programme will complete a three module scheme (module 1 - Principles of Therapeutics, module 2 - Principles of Prescribing and module 3 - IP) and complete the requisite clinical placement days. Candidates may opt to exit after modules 1 and 2 (following completion of a clinical placement) and qualify as an Additional Supply (AS) optometrist by taking the College of Optometrists’ Common Final Assessment (CFA) in AS. Alternatively, modules can be taken as stand-alone modules as part of the postgraduate programme in Clinical Optometry. Each University module constitutes 15 M level academic credits and will be integrated into our modular postgraduate programme in clinical optometry. An APEL arrangement will be used to import postgraduate credits from the clinical placement aspect of the CFA to allow students qualifying in IP to be awarded a Postgraduate Certificate in Therapeutic Prescribing (PGCTP). Completion of this module (Principles of Therapeutics - module 1 of the AS/IP programme) in addition to modules 2 (Principles of Prescribing) and 3 (IP) will enable optometrists to be entered onto a specialist optometry GOC register for therapeutic prescribing. -
The Legacy of Larval Infection on Immunological Dynamics Over Royalsocietypublishing.Org/Journal/Rstb Metamorphosis
The legacy of larval infection on immunological dynamics over royalsocietypublishing.org/journal/rstb metamorphosis Justin T. Critchlow†, Adriana Norris† and Ann T. Tate Research Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA ATT, 0000-0001-6601-0234 Cite this article: Critchlow JT, Norris A, Tate AT. 2019 The legacy of larval infection on Insect metamorphosis promotes the exploration of different ecological niches, immunological dynamics over metamorphosis. as well as exposure to different parasites, across life stages. Adaptation should favour immune responses that are tailored to specific microbial threats, with Phil. Trans. R. Soc. B 374: 20190066. the potential for metamorphosis to decouple the underlying genetic or phys- http://dx.doi.org/10.1098/rstb.2019.0066 iological basis of immune responses in each stage. However, we do not have a good understanding of how early-life exposure to parasites influences Accepted: 16 May 2019 immune responses in subsequent life stages. Is there a developmental legacy of larval infection in holometabolous insect hosts? To address this question, we exposed flour beetle (Tribolium castaneum) larvae to a protozoan parasite ‘ One contribution of 13 to a theme issue The that inhabits the midgut of larvae and adults despite clearance during meta- evolution of complete metamorphosis’. morphosis. We quantified the expression of relevant immune genes in the gut and whole body of exposed and unexposed individuals during the Subject Areas: larval, pupal and adult stages. Our results suggest that parasite exposure induces the differential expression of several immune genes in the larval ecology, evolution, immunology stage that persist into subsequent stages. We also demonstrate that immune gene expression covariance is partially decoupled among tissues and life Keywords: stages. -
Capa Folha De Rosto
Renato Linhares Sampaio AVALIAÇÃO CLÍNICA, HISTOPATOLÓGICA E IMUNOHISTOQUÍMICA DE CÓRNEAS TRATADAS POR CERATOPLASTIA COM MEMBRANA AMNIÓTICA XENÓGENA A FRESCO E CONSERVADA EM GLICERINA. ESTUDO EXPERIMENTAL EM COELHOS. Tese apresentada à Faculdade de Medicina Veterinária e Zootecnia da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Doutor em Cirurgia Veterinária. ORIENTADOR: Prof. Ass. Dr. José Joaquim Titton Ranzani BOTUCATU 2004 Renato Linhares Sampaio AVALIAÇÃO CLÍNICA, HISTOPATOLÓGICA E IMUNOHISTOQUÍMICA DE CÓRNEAS TRATADAS POR CERATOPLASTIA COM MEMBRANA AMNIÓTICA XENÓGENA A FRESCO E CONSERVADA EM GLICERINA. ESTUDO EXPERIMENTAL EM COELHOS. Tese apresentada à Faculdade de Medicina Veterinária e Zootecnia da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Doutor em Cirurgia Veterinária. ORIENTADOR: Prof. Ass. Dr. José Joaquim Titton Ranzani BOTUCATU 2004 FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉCNICA DE AQUISIÇÃO E TRATAMENTO DA INFORMAÇÃO DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CAMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: SELMA MARIA DE JESUS Sampaio, Renato Linhares. Avaliação clínica, histopatológica e imunohistoquímica de córneas tratadas por ceratoplastia com membrana amniótica xenógena a fresco e conservada em glicerina. Estudo experimental em coelhos / Renato Linhares Sampaio. – 2004. Tese (doutorado) – Universidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, Botucatu, 2004. Orientador: José Joaquim Titton Ranzani Assunto CAPES: 40102149 1. Córnea - Cirurgia - Estudos experimentais CDD 617.719 Palavras-chave: Ceratoplastia; Coelho; Córnea; Membrana amniótica; Úlcera “Seja qual for a obra na qual te embrenhes, e se acaso falha o teu primeiro intento, não desanimes nem desistas, antes volta a recomeçar com novo alento. Não haverá dificuldade nem resistência que dominar não possas com talento, com vontade firme e com paciência. -
Unveiling Mesenchymal Stromal Cells' Organizing Function in Regeneration Author List
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 January 2019 doi:10.20944/preprints201901.0161.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 823; doi:10.3390/ijms20040823 1 Unveiling mesenchymal stromal cells’ organizing function in regeneration 2 3 Author list: 4 Peter P. Nimiritsky1,2 #, 5 Roman Yu. Eremichev1 #, 6 Natalia A. Alexandrushkina1,2 #, MD 7 Anastasia Yu. Efimenko1,2, MD, PhD 8 Vsevolod A. Tkachuk1-3, DSc 9 Pavel I. Makarevich* 1,2, MD, PhD 10 11 Author affiliations 12 1 – Institute for Regenerative Medicine, Medical research and education center, 13 Lomonosov Moscow State University, Moscow, Russia 14 2 – Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia 15 3 – Laboratory of Molecular Endocrinology, National medical research center of 16 cardiology, Moscow, Russia 17 * corresponding author: [email protected] 18 # - equal contribution 19 20 1 © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 January 2019 doi:10.20944/preprints201901.0161.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 823; doi:10.3390/ijms20040823 21 Abstract 22 Regeneration is a fundamental process much attributed to functions of adult 23 stem cells. In last decades delivery of suspended adult stem cells is widely adopted 24 in regenerative medicine as a leading mean of cell therapy. However, adult stem 25 cells can not complete the task of human body regeneration effectively by 26 themselves as far as they need a receptive microenvironment (the niche) to engraft 27 and perform properly. -
Pharmacological Enhancement of Regeneration-Dependent Regulatory T Cell Recruitment in Zebrafish
International Journal of Molecular Sciences Article Pharmacological Enhancement of Regeneration-Dependent Regulatory T Cell Recruitment in Zebrafish Stephanie F. Zwi 1, Clarisse Choron 1, Dawei Zheng 2, David Nguyen 1, Yuxi Zhang 1, Camilla Roshal 1, Kazu Kikuchi 2,3,* and Daniel Hesselson 1,3,* 1 Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; [email protected] (S.F.Z.); [email protected] (C.C.); [email protected] (D.N.); [email protected] (Y.Z.); [email protected] (C.R.) 2 Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; [email protected] 3 St Vincent’s Clinical School, University of New South Wales, Kensington, NSW 2052, Australia * Correspondence: [email protected] (K.K.); [email protected] (D.H.) Received: 27 September 2019; Accepted: 15 October 2019; Published: 19 October 2019 Abstract: Regenerative capacity varies greatly between species. Mammals are limited in their ability to regenerate damaged cells, tissues and organs compared to organisms with robust regenerative responses, such as zebrafish. The regeneration of zebrafish tissues including the heart, spinal cord and retina requires foxp3a+ zebrafish regulatory T cells (zTregs). However, it remains unclear whether the muted regenerative responses in mammals are due to impaired recruitment and/or function of homologous mammalian regulatory T cell (Treg) populations. Here, we explore the possibility of enhancing zTreg recruitment with pharmacological interventions using the well-characterized zebrafish tail amputation model to establish a high-throughput screening platform. Injury-infiltrating zTregs were transgenically labelled to enable rapid quantification in live animals. -
The Evolution of Regeneration – Where Does That Leave Mammals? MALCOLM MADEN*
Int. J. Dev. Biol. 62: 369-372 (2018) https://doi.org/10.1387/ijdb.180031mm www.intjdevbiol.com The evolution of regeneration – where does that leave mammals? MALCOLM MADEN* Department of Biology & UF Genetics Institute, University of Florida, USA ABSTRACT This brief review considers the question of why some animals can regenerate and oth- ers cannot and elaborates the opposing views that have been expressed in the past on this topic, namely that regeneration is adaptive and has been gained or that it is a fundamental property of all organisms and has been lost. There is little empirical evidence to support either view, but some of the best comes from recent phylogenetic analyses of regenerative ability in Planarians which reveals that this property has been lost and gained several times in this group. In addition, a non- regenerating species has been induced to regenerate by altering only one signaling pathway. Ex- trapolating this to mammals it may be the case that there is more regenerative ability in mammals than has typically been thought to exist and that inducing regeneration in humans may not be as impossible as it may seem. The regenerative abilities of mammals is described and it turns out that there are several examples of classical epimorphic regeneration involving a blastema as exemplified by the regenerating Urodele limb that can be seen in mammals. Even the heart can regenerate in mammals which has long been considered to be a property unique to Urodeles and fish and several recent examples of regeneration have come from recent studies of the spiny mouse, Acomys, which are discussed here. -
Regrowing Human Limbs
MEDICINE Regrowing Human Limbs Progress on the road to regenerating major body parts, salamander-style, could transform the treatment of amputations and major wounds 56 SCIENTIFIC AMERICAN © 2008 SCIENTIFIC AMERICAN, INC. April 2008 Regrowing Human Limbs By Ken Muneoka, Manjong Han and David M. Gardiner salamander’s limbs are smaller and a of a salamander, but soon afterward the human bit slimier than those of most people, and amphibian wound-healing strategies diverge. Abut otherwise they are not that differ- Ours results in a scar and amounts to a failed ent from their human counterparts. The sala- regeneration response, but several signs indicate mander limb is encased in skin, and inside it is that humans do have the potential to rebuild composed of a bony skeleton, muscles, liga- complex parts. The key to making that happen ments, tendons, nerves and blood vessels. A will be tapping into our latent abilities so that loose arrangement of cells called fibroblasts our own wound healing becomes more salaman- holds all these internal tissues together and derlike. For this reason, our research first gives the limb its shape. focused on the experts to learn how it is done. Yet a salamander’s limb is unique in the world of vertebrates in that it can regrow from a stump Lessons from the Salamander after an amputation. An adult salamander can When the tiny salamander limb is amputated, regenerate a lost arm or leg this way over and blood vessels in the remaining stump contract over again, regardless of how many times the quickly, so bleeding is limited, and a layer of skin part is amputated. -
Lens and Retina Regeneration: Transdifferentiation, Stem Cells and Clinical Applications
Experimental Eye Research 78 (2004) 161–172 www.elsevier.com/locate/yexer Review Lens and retina regeneration: transdifferentiation, stem cells and clinical applications Panagiotis A. Tsonisa,*, Katia Del Rio-Tsonisb aUniversity of Dayton, Laboratory of Molecular Biology, Department of Biology, Dayton, OH 45469 2320, USA bDepartment of Zoology, Miami University, Oxford, OH 45056, USA Received 17 July 2003; accepted in revised form 24 October 2003 Abstract In this review we present a synthesis on the potential of vertebrate eye tissue regeneration, such as lens and retina. Particular emphasis is given to two different strategies used for regeneration, transdifferentiation and stem cells. Similarities and differences between these two strategies are outlined and it is proposed that both strategies might follow common pathways. Furthermore, we elaborate on specific clinical applications as the outcome of regeneration-based research q 2003 Elsevier Ltd. All rights reserved. Keywords: eye; lens; retina; regeneration; transdifferentiation; stem cells; cataracts; retinal diseases An old Greek proverb says that when you have something clear evolutionary advantage (tail regeneration in lizards) precious you should guard it as you do your eyes. Vision, and some with no obvious evolutionary advantage (i.e. lens among all the other senses, provides the link to the outside regeneration in newts). In recent years, however, intense world which is extremely important for survival of species research, especially on stem cells, has shown that the body and is much valued by humans. So it should not come as a has more remarkable reparative capabilities than previously surprise that nature must have devised back-up strategies to thought. -
Seeing Over the Horizon – Targeting the Endocannabinoid System for the Treatment of Ocular Disease
J Basic Clin Physiol Pharmacol 2016; 27(3): 253–265 Review Elizabeth A. Cairns, J. Thomas Toguri, Richard F. Porter, Anna-Maria Szczesniak and Melanie E.M. Kelly* Seeing over the horizon – targeting the endocannabinoid system for the treatment of ocular disease DOI 10.1515/jbcpp-2015-0065 disease for which ocular hypertension (OH) is a prominent Received June 5, 2015; accepted September 25, 2015; previously feature [1–5]. Research has now identified that the ocular published online November 13, 2015 actions of cannabinoids are mediated by an endogenous endocannabinoid system (ECS) (reviewed in Ref. [3]). Abstract: The observation that marijuana reduces intraoc- Furthermore, in addition to glaucoma, alterations of the ular pressure was made by Hepler and Frank in the 1970s. ECS have been reported in ocular inflammatory patholo- Since then, there has been a significant body of work gies, including diabetic retinopathy (DR) and age-related investigating cannabinoids for their potential use as macular degeneration (AMD) [6]. This suggests that ECS therapeutics. To date, no endocannabinoid system (ECS)- manipulation may be a promising target for treatment; modulating drug has been approved for clinical use in the however, no ECS-modulating drug has yet been approved eye; however, recent advances in our understanding of the for clinical use in the eye. Recent advances in our under- ECS, as well as new pharmacological tools, has renewed standing of the ocular ECS, as well as new pharmaco- interest in the development of ocular ECS-based therapeu- logical tools, may rectify this situation. This review will tics. This review summarizes the current state-of-affairs discuss recent research that highlights potential new ECS for the use of ECS-modulating drugs for the treatment of targets for the treatment of ocular disease. -
An Approach to Lens Regeneration in Mice Following
AN APPROACH TO LENS REGENERATION IN MICE FOLLOWING LENTECTOMY AND THE IMPLANTATION OF A BIODEGRADABLE HYDROGEL ENCAPSULATING IRIS PIGMENTED TISSUE IN COMBINATION WITH BASIC FIBROBLAST GROWTH FACTOR Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Bioengineering By Joelle Baddour Dayton, Ohio May, 2012 1 AN APPROACH TO LENS REGENERATION IN MICE FOLLOWING LENTECTOMY AND THE IMPLANTATION OF A BIODEGRADABLE HYDROGEL ENCAPSULATING IRIS PIGMENTED TISSUE IN COMBINATION WITH BASIC FIBROBLAST GROWTH FACTOR Name: Baddour, Joelle APPROVED BY: DR. PANAGIOTIS A. TSONIS DR. ROBERT WILKENS Panagiotis A. Tsonis, Ph.D. Robert Wilkens, Ph.D. Advisory Committee Chairman Committee Member Director, Center for Tissue Regeneration Director, Chemical Engineering And Engineering at Dayton And Bioengineering Programs Department of Biology Department of Chemical and Materials Engineering DR. AMIT SINGH Amit Singh, Ph.D. Committee Member Assistant Professor Department of Biology DR. JOHN G. WEBERAAAA DR. TONY E. SALIBAAAAAA John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor 2ii © Copyright by Joelle Baddour All rights reserved 2012 iii3 ABSTRACT AN APPROACH TO LENS REGENERATION IN MICE FOLLOWING LENTECTOMY AND THE IMPLANTATION OF A BIODEGRADABLE HYDROGEL ENCAPSULATING IRIS PIGMENTED TISSUE IN COMBINATION WITH BASIC FIBROBLAST GROWTH FACTOR Name: Baddour, Joelle University of Dayton Advisor: Dr. Panagiotis A. Tsonis Organ or tissue regeneration is the process by which damaged or lost tissue parts or whole body organs are repaired or replaced. When compared to amphibians, mammals possess very limited regenerative capabilities.