Investigation Into the Utility of the MSC ADAMS Dynamic Software for Simulating
Total Page:16
File Type:pdf, Size:1020Kb
Investigation into the Utility of the MSC ADAMS Dynamic Software for Simulating Robots and Mechanisms A thesis presented to The faculty of The Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Master of Science Xiao Xue May 2013 © 2013 Xiao Xue. All Rights Reserved 2 This thesis titled Investigation into the Utility of the MSC ADAMS Dynamic Software for Simulating Robots and Mechanisms by XIAO XUE has been approved for the Department of Mechanical Engineering and the Russ College of Engineering and Technology by Robert L. Williams II Professor of Mechanical Engineering Dennis Irwin Dean, Russ College of Engineering and Technology 3 ABSTRACT XUE, XIAO, M.S., May 2013, Mechanical Engineering Investigation into the Utility of the MSC ADAMS Dynamic Software for Simulating Robots and Mechanisms (pp.143) Director of Thesis: Robert L. Williams II A Slider-Crank mechanism, a 4-bar mechanism, a 2R planar serial robot and a Stewart-Gough parallel manipulator are modeled and simulated in MSC ADAMS/View. Forward dynamics simulation is done on the Stewart-Gough parallel manipulator; Inverse dynamics simulation is done on Slider-Crank mechanism, 2R planar serial robot and 4- bar mechanism. In forward dynamics simulation, the forces are applied in prismatic joints and the Stewart-Gough parallel manipulator is actuated to perform 4 different expected motions. The motion of the platform is measured and compared with the results in MATLAB. An example of inverse dynamics simulation is also performed on it. In the inverse dynamics simulation, the Slider-Crank mechanism and four-bar mechanism both run with constant input angular velocity and the actuating forces are measured and compared with the results in MATLAB. The 2R planar serial robot’s motions are defined with splines with driving torques measured and compared with Williams’s results in MATLAB. 4 ACKNOWLEDGEMENTS Firstly I want to give my sincerest thanks to my advisor, R. L. Williams II. I will be thankful to him my whole life. He has been guiding and supporting me in my program. He is always supportive and patient to my questions. He gave me constructive suggestions. Without him, I would not have finished my thesis. I also want to thank my friend Yatin. He uses MSC ADAMS and I often discuss my problems with him. He is a very nice person and helps me a lot in the details of my robots. I want to give thanks to Dr. Cotton, too. I work in his lab and he keeps the lab environment in a very positive and productive condition. I would like to give sincere thanks to my girlfriend, Xiaowei, Zhu. She keeps me positive and patient during the whole thesis process. At last, I want to thank my mum. Though she is in China, but I will always talk to her when I came to a problem. She always tries her best to help me both spiritually and financially. Without my mum, I will never finish this thesis. 5 TABLE OF CONTENTS Page Abstract.. ............................................................................................................................. 3 Acknowledges ..................................................................................................................... 4 List of Figures ..................................................................................................................... 7 List of Tables .................................................................................................................... 12 Chapter 1: Introduction .................................................................................................... 13 1.1 Statement of Purpose .................................................................................................. 13 1.2 Background ................................................................................................................. 13 1.3 Literature Review........................................................................................................ 14 1.4 Thesis Organization .................................................................................................... 25 Chapter 2: Project Information ......................................................................................... 27 2.1 Planar Slider-Crank Mechanism ................................................................................. 27 2.2 Four-Bar Mechanism .................................................................................................. 29 2.3 2R Planar Serial Robot................................................................................................ 31 2.4 3D Stewart-Gough Parallel Manipulator .................................................................... 32 2.5 Thesis Objectives ........................................................................................................ 35 Chapter 3 Kinematics ........................................................................................................ 37 3.1 Newton-Raphson Method ........................................................................................... 37 3.2 Kinematic Analysis ..................................................................................................... 38 3.3 Slider-Crank Mechanism Kinematics ......................................................................... 39 3.4 Four-Bar Mechanism Kinematics ............................................................................... 42 6 3.5 2R Planar Serial Robot Kinematics ............................................................................ 46 3.6 Stewart-Gough Parallel Manipulator Kinematics ....................................................... 49 Chapter 4 Dynamics .......................................................................................................... 56 4.1 Slider-Crank Mechanism Inverse Dynamics .............................................................. 56 4.2 Four-Bar Mechanism Inverse Dynamics .................................................................... 59 4.3 2R Planar Serial Robot Inverse Dynamics.................................................................. 62 4.4 Stewart-Gough Parallel Manipulator Forward Dynamics .......................................... 64 Chapter 5: Simulation Results .......................................................................................... 68 5.1 Inverse Dynamics Simulation and Results for Slider-Crank Mechanism .................. 68 5.2 Inverse Dynamics Simulation and Results for Four-Bar Mechanism ........................ 72 5.3 Inverse Dynamics Simulation and Results for 2R Planar Serial Robot ...................... 78 5.4 Forward and Inverse Dynamics Simulation and Results for Stewart-Gough Parallel Manipulator ....................................................................................................................... 86 Chapter 6 Conclusions and Future Work ........................................................................ 106 6.1 Conclusions ............................................................................................................... 106 6.2 Future Work .............................................................................................................. 107 References ....................................................................................................................... 108 Appendix A: 2R Planar Serial Robot Inverse Dynamics Input Rotational Tabular Data…… ......................................................................................................................... 112 Appendix B: Four Bar Mechanism Inverse Dynamics Splines ..................................... 117 Appendix C: Stewart-Gough Parallel Manipulator Forward Dynamics Splines.. ......... 119 Appendix D: MSC ADAMS/View User Manual .......................................................... 126 7 LIST OF FIGURES Page Figure 1-1 Parallel Robot HEXA ...................................................................................... 15 Figure 1-2 Surface Tracking Task .................................................................................... 15 Figure 1-3 Experimental Results of the Application of the Kinematics Control Algorithm to the CPR Prototype ........................................................................................................ 16 Figure 1-4 Mechanical System Aperture of the CPR ....................................................... 17 Figure 1-5 AIM Frame with Attached Drill Press ............................................................ 18 Figure 1-6 Schematic Detail of Experimental Apparatus Used to Measure the Accuracy of the AIM Frame in Free Space....................................................................................... 19 Figure 1-7 SurgiScope in Action at the............................................................................. 20 Figure 1-8 ABB Flexible Automation's IRB 340 Flex-Picker .......................................... 20 Figure 1-9 NASA LaRC 8-axis 8R Spatial Serial Manipulator ........................................ 21 Figure 1-10 Schematic of the Suspension Mechanism ..................................................... 24 Figure 1-11 ADAMS Model ............................................................................................. 24 Figure 1-12 Frequency Response of the Seat Mass Center .............................................. 25 Figure 2-1 Slider-Crank Mechanism ...............................................................................