VIEW Open Access Two Genomes Are Better Than One: History, Genetics, and Biotechnological Applications of Fungal Heterokaryons Noah B

Total Page:16

File Type:pdf, Size:1020Kb

VIEW Open Access Two Genomes Are Better Than One: History, Genetics, and Biotechnological Applications of Fungal Heterokaryons Noah B Strom and Bushley Fungal Biol Biotechnol (2016) 3:4 DOI 10.1186/s40694-016-0022-x Fungal Biology and Biotechnology REVIEW Open Access Two genomes are better than one: history, genetics, and biotechnological applications of fungal heterokaryons Noah B. Strom* and Kathryn E. Bushley Abstract Heterokaryosis is an integral part of the parasexual cycle used by predominantly asexual fungi to introduce and main- tain genetic variation in populations. Research into fungal heterokaryons began in 1912 and continues to the present day. Heterokaryosis may play a role in the ability of fungi to respond to their environment, including the adaptation of arbuscular mycorrhizal fungi to different plant hosts. The parasexual cycle has enabled advances in fungal genetics, including gene mapping and tests of complementation, dominance, and vegetative compatibility in predominantly asexual fungi. Knowledge of vegetative compatibility groups has facilitated population genetic studies and enabled the design of innovative methods of biocontrol. The vegetative incompatibility response has the potential to be used as a model system to study biological aspects of some human diseases, including neurodegenerative diseases and cancer. By combining distinct traits through the formation of artificial heterokaryons, fungal strains with superior properties for antibiotic and enzyme production, fermentation, biocontrol, and bioremediation have been produced. Future biotechnological applications may include site-specific biocontrol or bioremediation and the production of novel pharmaceuticals. Keywords: Heterokaryon, Parasexual cycle, Complementation, Vegetative compatibility groups, Heterosis, Protoplast fusion, Biotechnology Background of ascogenous cells [2]. In the sexual cycle, the nuclei in Heterokaryosis refers to the presence of two or more these dikaryotic cells fuse and undergo meiosis, result- genetically distinct nuclei within the same cell. While ing in genetically recombined haploid basidiospores or uncommon throughout most of life’s kingdoms, het- ascospores. erokaryosis is a hallmark of kingdom Fungi. The fungal Heterokaryosis also occurs during vegetative growth subkingdom, Dikarya, which contains two phyla (Asco- as a component of the parasexual cycle, a mechanism for mycota and Basidiomycota) and 95 % of all known fungal increasing genotypic diversity in predominantly asexual species [1], is named for its characteristic heterokaryons fungi (Fig. 1) [3]. In this paper, the term “predominantly with exactly two genetically distinct nuclei. Basidiomy- asexual” is used to refer to fungi that historically were not cota are often distinguished by the presence of clamp known to have a sexual cycle and those that only rarely connections, a cytological feature unique to this phy- undergo sexual recombination. In the parasexual cycle, lum that helps to ensure the segregation of both haploid first described in 1956 by Pontecorvo [4], hyphae from nuclei into daughter cells following mitosis. Ascomycetes two compatible individuals grow towards each other by are often characterized by croziers, structures similar to chemotaxis [5] and fuse, allowing exchange of nuclei to clamp connections, that maintain the dikaryotic state form a heterokaryon [4]. These nuclei become mixed in the cytoplasm of the heterokaryon [6] and sometimes undergo karyogamy, resulting in diploid cells. Following *Correspondence: [email protected] Department of Plant Biology, University of Minnesota, 826 Biological karyogamy, mitotic recombination and repeated chro- Sciences, 1445 Gortner Avenue, Saint Paul, MN 55108, USA mosome loss through mitotic nondisjunction result in © 2016 Strom and Bushley. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons. org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Strom and Bushley Fungal Biol Biotechnol (2016) 3:4 Page 2 of 14 a create beneficial fungal hybrids in applications as diverse as antibiotic production and bioremediation (Fig. 2). This review focuses on the evolution of scientific thought about non-sexual heterokaryosis, its biotechnological b applications, and future directions for basic and applied research. Early discoveries c The term, heterokaryosis, was coined in 1912 by Ger- man mycologist, Hans Burgeff [8]. Working with Phyco- myces nitens, he noticed that different sporangiospores d could give rise to phenotypically distinct mycelia [8, 9], contrary to the phenotypically identical offspring one would predict from asexual mitotic reproduction. In 1932, Hansen and Smith, working with Botrytis cinerea, showed that the phenotypically distinct mycelia arose from either one or the other haploid nucleus or from both, which were variably present in the sporangiospores e [10]. Their explanation, now known to be correct, was that dissimilar nuclei of the heterokaryotic mycelium segregated into different cells, resulting in homokaryotic regions of the mycelium that differed from each other in their genetic makeup. In 1944, Beadle and Coonradt, working with Neuro- spora crassa, produced two auxotrophic strains, one of which could not synthesize p-aminobenzoic acid, and the other of which could not synthesize nicotinic acid [11]. When grown separately on minimal media, neither strain Fig. 1 The parasexual cycle. The parasexual cycle parallels events in the sexual cycle, resulting in genetically unique haploid offspring thrived, but when grown together on minimal media, but without a meiotic reduction. a Hyphae of genetically unique hyphal fusion allowed for the formation and growth of a homokaryotic parents grow towards each other by chemotaxis and heterokaryon possessing a functional copy of each gene fuse. b Nuclei from each unique strain migrate within the fused deficient in the other strain. This genetic complemen- hypha, which is now considered a heterokaryon. c Haploid nuclei tation experiment suggested the potential advantages in the heterokaryon undergo karyogamy to create a heterozygous diploid nucleus. d The diploid nucleus undergoes mitotic recombi- of heterokaryosis in wild asexual fungi and a rationale nation to produce a recombined genotype. e In growing hyphae, for the persistence of heterokaryons throughout fungal gradual loss of chromosomes due to repeated rounds of mitotic non- evolution. disjunction results in haploidization and unique genotypes in various sectors of mycelium Heterokaryons and adaptation Beadle and Coonradt also suggested that nuclear exchanges may take place multiple times in the lifetime of a single fungus, allowing fungi to continually update the formation of haploid, as well as some aneuploid, cells their genomes through contact with compatible neigh- with unique genomes from those of either parent nucleus bors [11]. This potential for genetic variation within the [4]. Thus, even in the absence of meiosis and sexual lifetime of a single fungus was hypothesized to play an reproduction, the parasexual cycle is effective in increas- important role in the fungus’ ability to adapt to a con- ing genotypic diversity in predominantly asexual fungi tinuously changing environment. In 1952, Jinks provided [7]. the first experimental data to support the hypothesis that Fungal biologists have taken advantage of heterokaryo- genotypically distinct nuclei within the same mycelium sis during the parasexual cycle to enable genetic analyses could be involved in adaption [12]. In a culturing experi- and to advance biotechnology. For example, heterokary- ment involving various types of media, he showed that ons have enabled gene mapping, complementation, and the ratios of two genotypically unique nuclei within a wild epidemiological studies in predominantly asexual fungi. strain of Penicillium fluctuated according to media type. The power of heterokaryosis has also been harnessed to Similar unbalanced ratios of nuclei have been observed Strom and Bushley Fungal Biol Biotechnol (2016) 3:4 Page 3 of 14 a Cell wall digestion with cell wall degrading enzymes b PEG-induced protoplast fusion c Protoplast regeneration d e Genetic analyses Fermentation Pharmaceutical productionBioremediation Biocontrol Fig. 2 Protoplast fusion. a Fungal cell walls are digested with cell wall degrading enzymes, exposing protoplasts (b). c Polyethylene glycol (PEG) facilitates fusion of protoplasts, which may belong to different strains or species, as represented by red or blue chromosomes. d Fused protoplasts form heterokaryons and may progress partway or completely through the parasexual cycle, resulting in diploid or recombined haploid hybrids. e Applications of fungal heterokaryons or hybrids resulting from protoplast fusion include genetic analyses, fermentation, pharmaceutical production, bioremediation, and biocontrol in the basidiomycete, Heterobasidion parviporum [13]. remains controversial as to whether AMF, ubiquitous Whether these shifts resulted from selection acting on plant root symbionts whose spores are multinucleate nuclei [14] or from more random processes of gain or [22], are homokaryotic or heterokaryons formed through loss in particular mycelial fractions
Recommended publications
  • Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs.
    [Show full text]
  • Downloaded (Additional File 1, Table S4)
    Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi Capella-Gutiérrez et al. Capella-Gutiérrez et al. BMC Biology 2012, 10:47 http://www.biomedcentral.com/1741-7007/10/47 (31 May 2012) Capella-Gutiérrez et al. BMC Biology 2012, 10:47 http://www.biomedcentral.com/1741-7007/10/47 RESEARCHARTICLE Open Access Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi Salvador Capella-Gutiérrez, Marina Marcet-Houben and Toni Gabaldón* Abstract Background: Microsporidia is one of the taxa that have experienced the most dramatic taxonomic reclassifications. Once thought to be among the earliest diverging eukaryotes, the fungal nature of this group of intracellular pathogens is now widely accepted. However, the specific position of microsporidia within the fungal tree of life is still debated. Due to the presence of accelerated evolutionary rates, phylogenetic analyses involving microsporidia are prone to methodological artifacts, such as long-branch attraction, especially when taxon sampling is limited. Results: Here we exploit the recent availability of six complete microsporidian genomes to re-assess the long- standing question of their phylogenetic position. We show that microsporidians have a similar low level of conservation of gene neighborhood with other groups of fungi when controlling for the confounding effects of recent segmental duplications. A combined analysis of thousands of gene trees supports a topology in which microsporidia is a sister group to all other sequenced fungi. Moreover, this topology received increased support when less informative trees were discarded. This position of microsporidia was also strongly supported based on the combined analysis of 53 concatenated genes, and was robust to filters controlling for rate heterogeneity, compositional bias, long branch attraction and heterotachy.
    [Show full text]
  • S41467-021-25308-W.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Fungi Fundamentals What Is Biology? What Is Life? Seven Common Components to All Life Forms
    Fungi Fundamentals What is Biology? What is life? Seven common components to all life forms. What are fungi? How do fungi compare to other organisms on the tree of life? What are fungi? • Eukaryotic What are fungi? • Eukaryotic • Multicellular / Filamentous What are fungi? • Eukaryotic • Multicellular / Filamentous • Heterotrophic What are fungi? • Eukaryotic • Multicellular / Filamentous • Heterotrophic • Sessile/non-motile = “Vegetative” What are fungi? • Eukaryotic • Multicellular / Filamentous • Heterotrophic • Sessile/non-motile = “Vegetative” • Reproduce via spores (sexual & asexual) Kingdom Fungi • Eukaryotic • Multicellular / Filamentous • Heterotrophic • Sessile/non-motile = “Vegetative” • Reproduce via spores (sexual & asexual) Kingdom Fungi • Eukaryotic • Multicellular / Filamentous • Heterotrophic hyphae • Sessile/non-motile = “Vegetative” • Reproduce via spores (sexual & asexual) mycelium Kingdom Fungi Symbiotic Fungi • Eukaryotic • Multicellular / Filamentous • Heterotrophic • Sessile/non-motile = “Vegetative” • Reproduce via spores (sexual & asexual) Mycorrhizal mutualists Parasitic / Pathogenic Fungi Decay fungi “saprotrophic” Mycology: Laboratory Homework Fungi Are Everywhere! - Expose Malt Extract Agar Petri dishes to the environment of your home. Overnight. Anywhere you want. - Label plate and seal with parafilm. - Wait 3 days. - Record what grows on days 4-6. Bring back next week! Mycology: Laboratory Homework Fungi Are Everywhere! - Expose Malt Extract Agar Petri dishes to the environment of your home. Overnight. Anywhere you want. - Label plate and seal with parafilm. - Wait 3 days. - Record what grows on days 4-6. Bring back next week! Mycology: Laboratory Homework Growing Mushrooms! - Buy some mushrooms from the grocery store and bring them in next week so we can start growing them. Biological Diversity Species concepts Morphological species concept: species can be differentiated from each other by physical features. Not all mushrooms are alike.
    [Show full text]
  • ITS As an Environmental DNA Barcode for Fungi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Bellemain et al. BMC Microbiology 2010, 10:189 http://www.biomedcentral.com/1471-2180/10/189 RESEARCH ARTICLE Open Access ITSResearch as article an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases Eva Bellemain*1, Tor Carlsen2, Christian Brochmann1, Eric Coissac3, Pierre Taberlet3 and Håvard Kauserud2 Abstract Background: During the last 15 years the internal transcribed spacer (ITS) of nuclear DNA has been used as a target for analyzing fungal diversity in environmental samples, and has recently been selected as the standard marker for fungal DNA barcoding. In this study we explored the potential amplification biases that various commonly utilized ITS primers might introduce during amplification of different parts of the ITS region in samples containing mixed templates ('environmental barcoding'). We performed in silico PCR analyses with commonly used primer combinations using various ITS datasets obtained from public databases as templates. Results: Some of the ITS primers, such as ITS1-F, were hampered with a high proportion of mismatches relative to the target sequences, and most of them appeared to introduce taxonomic biases during PCR. Some primers, e.g. ITS1-F, ITS1 and ITS5, were biased towards amplification of basidiomycetes, whereas others, e.g. ITS2, ITS3 and ITS4, were biased towards ascomycetes. The assumed basidiomycete-specific primer ITS4-B only amplified a minor proportion of basidiomycete ITS sequences, even under relaxed PCR conditions. Due to systematic length differences in the ITS2 region as well as the entire ITS, we found that ascomycetes will more easily amplify than basidiomycetes using these regions as targets.
    [Show full text]
  • Phylogenomic Analyses Indicate That Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants
    GBE Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants Ying Chang1,*, Sishuo Wang1, Satoshi Sekimoto1,2, Andrea L. Aerts3, Cindy Choi3,AliciaClum3,Kurt M. LaButti3, Erika A. Lindquist3, Chew Yee Ngan3, Robin A. Ohm3, Asaf A. Salamov3, Igor V. Grigoriev3, Joseph W. Spatafora4, and Mary L. Berbee1 1Department of Botany, University of British Columbia, Vancouver, British Columbia 2NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, Chiba, Japan 3DOE Joint Genome Institute, Walnut Creek, California 4Department of Botany and Plant Pathology, Oregon State University *Corresponding author: E-mail: [email protected]. Accepted: May 9, 2015 Abstract As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant–fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and zygomycota II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi.
    [Show full text]
  • Appressorium: the Breakthrough in Dikarya
    Journal of Fungi Article Appressorium: The Breakthrough in Dikarya Alexander Demoor, Philippe Silar and Sylvain Brun * Laboratoire Interdisciplinaire des Energies de Demain, LIED-UMR 8236, Université de Paris, 5 rue Marie-Andree Lagroua, 75205 Paris, France * Correspondence: [email protected] Received: 28 May 2019; Accepted: 30 July 2019; Published: 3 August 2019 Abstract: Phytopathogenic and mycorrhizal fungi often penetrate living hosts by using appressoria and related structures. The differentiation of similar structures in saprotrophic fungi to penetrate dead plant biomass has seldom been investigated and has been reported only in the model fungus Podospora anserina. Here, we report on the ability of many saprotrophs from a large range of taxa to produce appressoria on cellophane. Most Ascomycota and Basidiomycota were able to form appressoria. In contrast, none of the three investigated Mucoromycotina was able to differentiate such structures. The ability of filamentous fungi to differentiate appressoria no longer belongs solely to pathogenic or mutualistic fungi, and this raises the question of the evolutionary origin of the appressorium in Eumycetes. Keywords: appressorium; infection cushion; penetration; biomass degradation; saprotrophic fungi; Eumycetes; cellophane 1. Introduction Accessing and degrading biomass are crucial processes for heterotrophic organisms such as fungi. Nowadays, fungi are famous biodegraders that are able to produce an exhaustive set of biomass- degrading enzymes, the Carbohydrate Active enzymes (CAZymes) allowing the potent degradation of complex sugars such as cellulose, hemicellulose, and the more recalcitrant lignin polymer [1]. Because of their importance for industry and biofuel production in particular, many scientific programs worldwide aim at mining this collection of enzymes in fungal genomes and at understanding fungal lignocellulosic plant biomass degradation.
    [Show full text]
  • Coccidioides Immitis! Arizona Valley Fever Fungus Coccidioides Posadasii!
    Reverse ecology: population genomics, divergence and adaptation! ! ! John Taylor! UC Berkeley! http://taylorlab.berkeley.edu/! Fungi and how they adapt.! What are Fungi?! ! Where are Fungi in the Tree of Life?! ! Adaptation.! Mushrooms! Parasol ! Mushroom! Macrolepiota! procera! Three Parts of a Mushroom - C. T. Ingold! Hypha with nuclei, Tulasnella sp.! The Hypha! Jacobson, Hickey, Glass & Read! The Mycelium! A. H. R. Buller 1931! Yeast: growth and “spores” at the same time. ! http://genome-www.stanford.edu/Saccharomyces/ Diane Nowicki and Ryan Liermann Leavened Bread! Alcoholic Beverages! http://en.wikipedia.org/wiki/Bread! www.apartmenttherapy.com! Leavened Bread! Alcoholic Beverages! : perso.club-internet.fr http://en.wikipedia.org/wiki/Bread! www.apartmenttherapy.com! ! Total Revenue for Selected Industries! ! Alcoholic Beverages !$1000 Billion! ! Automotive ! !!$900 Billion! ! Aerospace ! !!$666 Billion! ! Crude oil ! !!$1300 Billion! http://www.ssca.ca/conference/2002proceedings/monreal.html! Symbiosis, arbuscular mycorrhizae! http://mycorrhizas.info/resource.html! http://www.ssca.ca/conference/2002proceedings/monreal.html! Symbiosis, arbuscular mycorrhizae! http://mycorrhizas.info/resource.html! Symbiosis, arbuscular mycorrhizae! http://mycorrhizas.info/resource.html! Symbiosis, with 90% of plant species! http://mycorrhizas.info/resource.html! Devonian Fossil! Modern Glomales! 400 mya! Remy, Taylor et al. 1994! Symbiosis, Ectomycorrhizae! Antonio Izzo - Tom Bruns! Symbiosis, with Oaks and Pines! Antonio Izzo - Tom Bruns! Batrachochytrium &" Sierran yellow-legged frog.! Photos from Vance Vreedenberg and Jess Morgan! . and another 30% of amphibians.! Photos from Vance Vreedenberg and Jess Morgan! What are Fungi?! ! Where are Fungi in the Tree of Life?! ! Adaptation.! Baldauf. 2003. Science! Baldauf. 2003. Science! Baldauf. 2003. Science! LCA! Baldauf. 2003. Science! LAST COMMON ANCESTOR - FUNGI & ANIMALS! Fungal! Mammalian! Zoospore! Spermatozooan! Blastocladiella simplex! Equus ferus caballus! Stajich et al.
    [Show full text]
  • Homopeptide and Homocodon Levels Across Fungi Are Coupled to GC/AT‑Bias and Intrinsic Disorder, with Unique Behaviours for Some Amino Acids Yue Wang & Paul M
    www.nature.com/scientificreports OPEN Homopeptide and homocodon levels across fungi are coupled to GC/AT‑bias and intrinsic disorder, with unique behaviours for some amino acids Yue Wang & Paul M. Harrison* Homopeptides (runs of one amino‑acid type) are evolutionarily important since they are prone to expand/contract during DNA replication, recombination and repair. To gain insight into the genomic/ proteomic traits driving their variation, we analyzed how homopeptides and homocodons (which are pure codon repeats) vary across 405 Dikarya, and probed their linkage to genome GC/AT bias and other factors. We fnd that amino‑acid homopeptide frequencies vary diversely between clades, with the AT‑rich Saccharomycotina trending distinctly. As organisms evolve, homocodon and homopeptide numbers are majorly coupled to GC/AT‑bias, exhibiting a bi‑furcated correlation with degree of AT‑ or GC‑bias. Mid‑GC/AT genomes tend to have markedly fewer simply because they are mid‑GC/AT. Despite these trends, homopeptides tend to be GC‑biased relative to other parts of coding sequences, even in AT‑rich organisms, indicating they absorb AT bias less or are inherently more GC‑rich. The most frequent and most variable homopeptide amino acids favour intrinsic disorder, and there are an opposing correlation and anti‑correlation versus homopeptide levels for intrinsic disorder and structured‑domain content respectively. Specifc homopeptides show unique behaviours that we suggest are linked to inherent slippage probabilities during DNA replication and recombination, such as poly‑glutamine, which is an evolutionarily very variable homopeptide with a codon repertoire unbiased for GC/AT, and poly‑lysine whose homocodons are overwhelmingly made from the codon AAG.
    [Show full text]
  • Evolution and Phylogeny of Fungi
    Dr. Archana Dutta Study material for M.Sc Botany- First Semester ​ Assistant Professor(Guest Faculty) Dept. of Botany, MLT College, Saharsa [email protected] Mob No. - 9065558829 Evolution And Phylogeny Of Fungi Fungi have ancient origins, with evidence indicating they likely first appeared about one billion years ago, though the fossil record of fungi is scanty. Fungal hyphae evident within the tissues of the oldest plant fossils confirm that fungi are an extremely ancient group. Indeed, some of the oldest terrestrial plantlike fossils known, called Prototaxites, which were common in all parts of the world throughout the Devonian Period (419.2 million to 358.9 million years ago), are interpreted as large saprotrophic fungi (possibly even Basidiomycota). Fossils of Tortotubus protuberans, a filamentous fungus, date to the early Silurian Period (440 million years ago) and are thought to be the oldest known fossils of a terrestrial organism. However, in the absence of an extensive fossil record, biochemical characters have served as useful markers in mapping the probable evolutionary relationships of fungi. Fungal groups can be related by cell wall composition (i.e., presence of both chitin and alpha-1,3 and alpha-1,6-glucan), organization of tryptophan enzymes, and synthesis of lysine (i.e., by the aminoadipic acid pathway). Molecular phylogenetic analyses that became possible during the 1990s have greatly contributed to the understanding of fungal origins and evolution. At first, these analyses generated evolutionary trees by comparing a single gene sequence, usually the small subunit ribosomal RNA gene (SSU rRNA). Since then, information from several protein-coding genes has helped correct discrepancies, and phylogenetic trees of fungi are currently built using a wide variety of data largely, but not entirely, molecular in nature.
    [Show full text]
  • Field Evaluation of the Use of Select Entomopathogenic Fungal Isolates
    Field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY by CANDICE ANNE COOMBES November 2015 Abstract The control of false codling moth (FCM), Thaumatotibia leucotreta (Meyrick, 1912) (Lepidoptera: Tortricidae), in citrus orchards is strongly reliant on the use of integrated pest management as key export markets impose stringent chemical restrictions on exported fruit and have a strict no entry policy towards this phytosanitary pest. Most current, registered control methods target the above-ground life stages of FCM, not the soil-dwelling life stages. As such, entomopathogenic fungi which are ubiquitous, percutaneously infective soil-borne microbes that have been used successfully as control agents worldwide, present ideal candidates as additional control agents. Following an initial identification of 62 fungal entomopathogens isolated from soil collected from citrus orchards in the Eastern Cape Province, South Africa, further laboratory research has highlighted three isolates as having the greatest control potential against FCM subterranean life stages: Metarhizium anisopliae G 11 3 L6 (Ma1), M. anisopliae FCM Ar 23 B3 (Ma2) and Beauveria bassiana G Ar 17 B3 (Bb1). These isolates are capable of causing above 80% laboratory-induced mycosis of FCM fifth instars. Whether this level of efficacy was obtainable under sub-optimal and fluctuating field conditions was unknown. Thus, this thesis aimed to address the following issues with regards to the three most laboratory-virulent fungal isolates: field efficacy, field persistence, optimal application rate, application timing, environmental dependency, compatibility with fungicides and the use of different wetting agents to promote field efficacy.
    [Show full text]