ASTRONOMY 113 Laboratory Lab 4: the Distances to the Stars

Total Page:16

File Type:pdf, Size:1020Kb

ASTRONOMY 113 Laboratory Lab 4: the Distances to the Stars ASTRONOMY 113 Laboratory Lab 4: The Distances to the Stars - Parallax Introduction and Goals One of the most fundamental - and difficult - goals of astronomy is to measure the size of the Universe. At the end of the semester you will approach this goal and measure the distances to remote galaxies. However, the journey begins here with the measurement of the distances between the Sun and the very nearest stars. For all of its cosmic grandeur, the measurement of the distances to stars is founded in the most classic surveying technique - triangulation - and the most ancient astronomical observation - astrometry. Astrometry is the careful measurement of the positions in the sky of celestial objects with respect to each other. Of course, with respect to the horizon the positions of stars are constantly changing due to the rotation of the Earth. But with respect to each other the positions of stars change very little. Thus the relative positions of the stars in the bowl of the Big Dipper or of the stars in the Belt of Orion do not appear to change from year to year. In fact, though, very precise astrometric measurements reveal that stars do move with respect to each other. A change in position might be due to the tangential velocity of a star (that is, its motion across your line of sight). Alternatively, the change in position might be due to the motion of the Earth itself around the Sun. The resulting apparent motion of the star is known as the parallax effect. Parallax is the apparent change in the direction of an object resulting from the motion of the observer. Hold your pencil at arm's length. Close first one eye, and then the other. The pencil seems to move back and forth with respect to a mark on the more distant wall. This is the parallax effect. Of course the pencil has not moved; it is actually the location of the "observer" which is changing. Now move the pencil closer to your face and repeat the experiment. You will see that the pencil seems to move a greater distance than before. Thus the amount of the parallax motion depends on the distance of the pencil from your face. In fact, by measuring the amount of the parallax motion of the pencil you could derive the distance to the pencil. Surveyors use this same technique to measure the size of fields, the heights of mountains, etc. Exactly the same effect should happen due to the Earth moving in orbit about the Sun. The effect is shown in Figure 1. As seen from Earth, the target star seems to shift position with respect to the more distant reference stars over the course of one year. In fact the target star is not moving at all. It is the 1 Earth which is moving, and as a consequence the direction of the target star as seen from the Earth changes over the course of one year. This apparent motion of the target star in the sky is called its parallax motion. As can be seen in Figure 1, the change in direction to the target star is an angle. The parallax angle, called p and measured in arc seconds, is defined as half of the change in direction over 6 months. (The reason for using half the angle will be seen later.) By measuring the parallax angle p of a star and using a bit of geometry, we can measure the distance D to the star in units of the Earth-Sun distance. Thus the radius of the Earth’s orbit about the Sun becomes our yardstick for measuring the size of the Universe. The Earth-Sun distance is so fundamental that it has been given the name of Astronomical Unit or AU. Earth 1 AU Target star parallax Reference angle p stars D Sun Apparent motion of target star Figure 1: Geometry of parallax motion. (Not to scale!!) Note that measuring such motions requires the existence of a fixed reference frame, provided by celestial objects whose motions are not detectable. Usually very distant stars will do, but for the most accurate astrometry astronomers use distant galaxies or quasars as reference points. Two thousand years ago, Greek Astronomers realized that if the Earth were moving then they should be able to observe the parallax motion of the stars. As no such motions were seen, they concluded the Earth was at rest. Their logic was absolutely correct. However, the stars are vastly more distant than they realized so that their parallax motions are too small to be seen with the naked eye. In this lab, you will observe a small portion of the sky through a telescope. You will search for stars whose positions in the sky are changing with time. The goals of this lab are to: i) Use astrometry to measure the parallax angles of several stars. ii) Determine the distances to these stars. iii) Observe the tangential velocities of several stars. 2 Before You Come to Class... • Read the lab completely. Your time in the lab is best used observing the "sky", not reading this manual. • Bring to class this lab manual, your lab book, a pencil or erasable pen, a straight edge, and a scientific calculator. Schedule This lab is to be completed in two lab sessions. 3 Section 1 - Observations The computer screen will show a window with the application "Parallax". • Double click on the application "Parallax". You will see a view of the sky like that in Figure 2. Figure 2: Sample Parallax screen The display shows the image obtained from the telescope, and a console with several control buttons and readouts. The readouts show the location of the telescope in the Solar System, the direction in which the telescope is pointing, and the Earth date in years and decimal fractions of a year. This telescope can only point in certain directions: in the ecliptic plane ("Ecliptic"), toward the ecliptic poles (e.g., "North Ecliptic Pole"), and at an angle 45o above the ecliptic plane (e.g., "North Mid- Latitude"). Initially the telescope should be pointing toward the North Ecliptic Pole; if not, ask your TA for help. The buttons at the top of the console give you control over time and telescope magnification. The Forward and Back buttons move time one-step forward and backward, respectively. The time step is one tenth of a year. The Continuous button moves time forward continuously. The magnification buttons (1x, 2x, 4x, 8x) change the telescope magnification. Try them out - notice that increased magnification necessarily reduces the size of the field of view. Now that you are comfortable with the telescope, begin your observations. • Click the Reset button to set the date to the current year. • Make sure you are on Earth looking toward the North Ecliptic Pole. • Click the Continuous button to move forward in time. You will see that time is continuously (and rapidly!) passing. Just watch the stars for a while. 4 • Click the Continuous button to stop the advance of time. Q1: Tape the star chart at the end of the lab manual (Figure 4) into your lab book. Identify all of the stars whose positions are changing with time. Mark them on the star chart; you may need to do a Reset if any of the stars have moved a long way from their original positions. These will be your "target stars" for observation. Name each moving star with a name of your own choosing. • Click on magnification 8x. • Click the Continuous button to move forward in time. This allows you to see stars with smaller motions (but only at the center of the field of view). Note on the star chart and name any target stars newly discovered at this magnification. Q2: Sketch the motion of each target star on the star chart. Do any of them show parallax motion? Which ones? Why do you think the motions are due to parallax? Do any of them show motions other than parallax? Which ones? To what do you attribute their motion? Q3: Of all the stars in the field of view, which do you think is nearest the Sun? Why? • Click the Reset button. ASTROMETRY Having now observed that some stars change positions in the sky, the next step is to measure their motions. Your telescope is equipped with instrumentation designed for such astrometric measurements. In order to do astrometry, we must define a fixed reference frame against which we measure the positions of the stars. Such a reference frame can be defined by celestial objects whose tangential motions are too small to be detected. Typically astrometrists will define their reference frame with many such objects; in this lab one will suffice. • Choose a distinctive stationary star and mark it on your star chart as your "reference star". This reference star will be the fixed point from which the positions of the moving stars - or "target stars" - are measured. The reference star is your anchor point in space. Notice that your cursor turns into a cross hair when it enters the telescope field of view. • Center the cursor on your reference star, and click. A red "x" will appear where you clicked. Note that if you wish to move the red "x", double-click at the new location. • Move the cursor elsewhere in the telescope field of view. Click and hold the mouse. 5 A display will appear in the lower left-hand corner of the window showing something like X: 11.80" and Y: 23.30". These numbers show the distance of the cursor from the red "x" along the X (left- right) and Y (up-down) directions, respectively.
Recommended publications
  • A New Vla–Hipparcos Distance to Betelgeuse and Its Implications
    The Astronomical Journal, 135:1430–1440, 2008 April doi:10.1088/0004-6256/135/4/1430 c 2008. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A NEW VLA–HIPPARCOS DISTANCE TO BETELGEUSE AND ITS IMPLICATIONS Graham M. Harper1, Alexander Brown1, and Edward F. Guinan2 1 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA; [email protected], [email protected] 2 Department of Astronomy and Astrophysics, Villanova University, PA 19085, USA; [email protected] Received 2007 November 2; accepted 2008 February 8; published 2008 March 10 ABSTRACT The distance to the M supergiant Betelgeuse is poorly known, with the Hipparcos parallax having a significant uncertainty. For detailed numerical studies of M supergiant atmospheres and winds, accurate distances are a pre- requisite to obtaining reliable estimates for many stellar parameters. New high spatial resolution, multiwavelength, NRAO3 Very Large Array (VLA) radio positions of Betelgeuse have been obtained and then combined with Hipparcos Catalogue Intermediate Astrometric Data to derive new astrometric solutions. These new solutions indicate a smaller parallax, and hence greater distance (197 ± 45 pc), than that given in the original Hipparcos Catalogue (131 ± 30 pc) and in the revised Hipparcos reduction. They also confirm smaller proper motions in both right ascension and declination, as found by previous radio observations. We examine the consequences of the revised astrometric solution on Betelgeuse’s interaction with its local environment, on its stellar properties, and its kinematics. We find that the most likely star-formation scenario for Betelgeuse is that it is a runaway star from the Ori OB1 association and was originally a member of a high-mass multiple system within Ori OB1a.
    [Show full text]
  • Measuring the Astronomical Unit from Your Backyard Two Astronomers, Using Amateur Equipment, Determined the Scale of the Solar System to Better Than 1%
    Measuring the Astronomical Unit from Your Backyard Two astronomers, using amateur equipment, determined the scale of the solar system to better than 1%. So can you. By Robert J. Vanderbei and Ruslan Belikov HERE ON EARTH we measure distances in millimeters and throughout the cosmos are based in some way on distances inches, kilometers and miles. In the wider solar system, to nearby stars. Determining the astronomical unit was as a more natural standard unit is the tUlronomical unit: the central an issue for astronomy in the 18th and 19th centu· mean distance from Earth to the Sun. The astronomical ries as determining the Hubble constant - a measure of unit (a.u.) equals 149,597,870.691 kilometers plus or minus the universe's expansion rate - was in the 20th. just 30 meters, or 92,955.807.267 international miles plus or Astronomers of a century and more ago devised various minus 100 feet, measuring from the Sun's center to Earth's ingenious methods for determining the a. u. In this article center. We have learned the a. u. so extraordinarily well by we'll describe a way to do it from your backyard - or more tracking spacecraft via radio as they traverse the solar sys­ precisely, from any place with a fairly unobstructed view tem, and by bouncing radar Signals off solar.system bodies toward the east and west horizons - using only amateur from Earth. But we used to know it much more poorly. equipment. The method repeats a historic experiment per­ This was a serious problem for many brancht:s of as­ formed by Scottish astronomer David Gill in the late 19th tronomy; the uncertain length of the astronomical unit led century.
    [Show full text]
  • Measuring the Speed of Light and the Moon Distance with an Occultation of Mars by the Moon: a Citizen Astronomy Campaign
    Measuring the speed of light and the moon distance with an occultation of Mars by the Moon: a Citizen Astronomy Campaign Jorge I. Zuluaga1,2,3,a, Juan C. Figueroa2,3, Jonathan Moncada4, Alberto Quijano-Vodniza5, Mario Rojas5, Leonardo D. Ariza6, Santiago Vanegas7, Lorena Aristizábal2, Jorge L. Salas8, Luis F. Ocampo3,9, Jonathan Ospina10, Juliana Gómez3, Helena Cortés3,11 2 FACom - Instituto de Física - FCEN, Universidad de Antioquia, Medellín-Antioquia, Colombia 3 Sociedad Antioqueña de Astronomía, Medellín-Antioquia, Colombia 4 Agrupación Castor y Pollux, Arica, Chile 5 Observatorio Astronómico Universidad de Nariño, San Juan de Pasto-Nariño, Colombia 6 Asociación de Niños Indagadores del Cosmos, ANIC, Bogotá, Colombia 7 Organización www.alfazoom.info, Bogotá, Colombia 8 Asociación Carabobeña de Astronomía, San Diego-Carabobo, Venezuela 9 Observatorio Astronómico, Instituto Tecnológico Metropolitano, Medellín, Colombia 10 Sociedad Julio Garavito Armero para el Estudio de la Astronomía, Medellín, Colombia 11 Planetario de Medellín, Parque Explora, Medellín, Colombia ABSTRACT In July 5th 2014 an occultation of Mars by the Moon was visible in South America. Citizen scientists and professional astronomers in Colombia, Venezuela and Chile performed a set of simple observations of the phenomenon aimed to measure the speed of light and lunar distance. This initiative is part of the so called “Aristarchus Campaign”, a citizen astronomy project aimed to reproduce observations and measurements made by astronomers of the past. Participants in the campaign used simple astronomical instruments (binoculars or small telescopes) and other electronic gadgets (cell-phones and digital cameras) to measure occultation times and to take high resolution videos and pictures. In this paper we describe the results of the Aristarchus Campaign.
    [Show full text]
  • Lecture 5: Stellar Distances 10/2/19, 802 AM
    Lecture 5: Stellar Distances 10/2/19, 802 AM Astronomy 162: Introduction to Stars, Galaxies, & the Universe Prof. Richard Pogge, MTWThF 9:30 Lecture 5: Distances of the Stars Readings: Ch 19, section 19-1 Key Ideas Distance is the most important & most difficult quantity to measure in Astronomy Method of Trigonometric Parallaxes Direct geometric method of finding distances Units of Cosmic Distance: Light Year Parsec (Parallax second) Why are Distances Important? Distances are necessary for estimating: Total energy emitted by an object (Luminosity) Masses of objects from their orbital motions True motions through space of stars Physical sizes of objects The problem is that distances are very hard to measure... The problem of measuring distances Question: How do you measure the distance of something that is beyond the reach of your measuring instruments? http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit1/distances.html Page 1 of 7 Lecture 5: Stellar Distances 10/2/19, 802 AM Examples of such problems: Large-scale surveying & mapping problems. Military range finding to targets Measuring distances to any astronomical object Answer: You resort to using GEOMETRY to find the distance. The Method of Trigonometric Parallaxes Nearby stars appear to move with respect to more distant background stars due to the motion of the Earth around the Sun. This apparent motion (it is not "true" motion) is called Stellar Parallax. (Click on the image to view at full scale [Size: 177Kb]) In the picture above, the line of sight to the star in December is different than that in June, when the Earth is on the other side of its orbit.
    [Show full text]
  • Cosmic Distances
    Cosmic Distances • How to measure distances • Primary distance indicators • Secondary and tertiary distance indicators • Recession of galaxies • Expansion of the Universe Which is not true of elliptical galaxies? A) Their stars orbit in many different directions B) They have large concentrations of gas C) Some are formed in galaxy collisions D) The contain mainly older stars Which is not true of galaxy collisions? A) They can randomize stellar orbits B) They were more common in the early universe C) They occur only between small galaxies D) They lead to star formation Stellar Parallax As the Earth moves from one side of the Sun to the other, a nearby star will seem to change its position relative to the distant background stars. d = 1 / p d = distance to nearby star in parsecs p = parallax angle of that star in arcseconds Stellar Parallax • Most accurate parallax measurements are from the European Space Agency’s Hipparcos mission. • Hipparcos could measure parallax as small as 0.001 arcseconds or distances as large as 1000 pc. • How to find distance to objects farther than 1000 pc? Flux and Luminosity • Flux decreases as we get farther from the star – like 1/distance2 • Mathematically, if we have two stars A and B Flux Luminosity Distance 2 A = A B Flux B Luminosity B Distance A Standard Candles Luminosity A=Luminosity B Flux Luminosity Distance 2 A = A B FluxB Luminosity B Distance A Flux Distance 2 A = B FluxB Distance A Distance Flux B = A Distance A Flux B Standard Candles 1. Measure the distance to star A to be 200 pc.
    [Show full text]
  • 2.8 Measuring the Astronomical Unit
    2.8 Measuring the Astronomical Unit PRE-LECTURE READING 2.8 • Astronomy Today, 8th Edition (Chaisson & McMillan) • Astronomy Today, 7th Edition (Chaisson & McMillan) • Astronomy Today, 6th Edition (Chaisson & McMillan) VIDEO LECTURE • Measuring the Astronomical Unit1 (15:12) SUPPLEMENTARY NOTES Parallax Figure 1: Earth-baseline parallax 1http://youtu.be/AROp4EhWnhc c 2011-2014 Advanced Instructional Systems, Inc. and Daniel Reichart 1 Figure 2: Stellar parallax • In both cases: angular shift baseline = (9) 360◦ (2π × distance) • angular shift = apparent shift in angular position of object when viewed from dif- ferent observing points • baseline = distance between observing points • distance = distance to object • If you know the baseline and the angular shift, solving for the distance yields: baseline 360◦ distance = × (10) 2π angular shift Note: Angular shift needs to be in degrees when using this equation. • If you know the baseline and the distance, solving for the angular shift yields: 360◦ baseline angular shift = × (11) 2π distance c 2011-2014 Advanced Instructional Systems, Inc. and Daniel Reichart 2 Note: Baseline and distance need to be in the same units when using this equation. Standard astronomical baselines • Earth-baseline parallax • baseline = diameter of Earth = 12,756 km • This is used to measure distances to objects within our solar system. • Stellar parallax • baseline = diameter of Earth's orbit = 2 astronomical units (or AU) • 1 AU is the average distance between Earth and the sun. • This is used to measure distances
    [Show full text]
  • Cosmic Distance Ladder
    Cosmic Distance Ladder How do we know the distances to objects in space? Jason Nishiyama Cosmic Distance Ladder Space is vast and the techniques of the cosmic distance ladder help us measure that vastness. Units of Distance Metre (m) – base unit of SI. 11 Astronomical Unit (AU) - 1.496x10 m 15 Light Year (ly) – 9.461x10 m / 63 239 AU 16 Parsec (pc) – 3.086x10 m / 3.26 ly Radius of the Earth Eratosthenes worked out the size of the Earth around 240 BCE Radius of the Earth Eratosthenes used an observation and simple geometry to determine the Earth's circumference He noted that on the summer solstice that the bottom of wells in Alexandria were in shadow While wells in Syene were lit by the Sun Radius of the Earth From this observation, Eratosthenes was able to ● Deduce the Earth was round. ● Using the angle of the shadow, compute the circumference of the Earth! Out to the Solar System In the early 1500's, Nicholas Copernicus used geometry to determine orbital radii of the planets. Planets by Geometry By measuring the angle of a planet when at its greatest elongation, Copernicus solved a triangle and worked out the planet's distance from the Sun. Kepler's Laws Johann Kepler derived three laws of planetary motion in the early 1600's. One of these laws can be used to determine the radii of the planetary orbits. Kepler III Kepler's third law states that the square of the planet's period is equal to the cube of their distance from the Sun.
    [Show full text]
  • Measuring Distances Using Parallax 1 Introduction
    Measuring Distances Using Parallax Name: Date: 1 Introduction How do astronomers know how far away a star or galaxy is? Determining the distances to the objects they study is one of the the most difficult tasks facing astronomers. Since astronomers cannot simply take out a ruler and measure the distance to any object, they have to use other methods. Inside the solar system, astronomers can simply bounce a radar signal off of a planet, asteroid or comet to directly measure the distance to that object (since radar is an electromagnetic wave, it travels at the speed of light, so you know how fast the signal travels{you just have to count how long it takes to return and you can measure the object's distance). But, as you will find out in your lecture sessions, some stars are hun- dreds, thousands or even tens of thousands of \light years" away. A light year is how far light travels in a single year (about 9.5 trillion kilometers). To bounce a radar signal of a star that is 100 light years away would require you to wait 200 years to get a signal back (remember the signal has to go out, bounce off the target, and come back). Obviously, radar is not a feasible method for determining how far away stars are. In fact, there is one, and only one direct method to measure the distance to a star: \parallax". Parallax is the angle that something appears to move when the observer looking at that object changes their position. By observing the size of this angle and knowing how far the observer has moved, one can determine the distance to the object.
    [Show full text]
  • Aerospace Micro-Lesson
    AIAA AEROSPACE M ICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee. PARALLAX AND THE SIZE OF THE SOLAR SYSTEM How do scientists measure astronomical distances? We cannot stretch a tape measure from the earth to another planet. Before the space program started, astronomers used indirect methods to calculate the size of the solar system. GRADES K-2 One of the methods astronomers use to measure a distance indirectly is called “parallax.” You can illustrate parallax very easily by holding up your finger in front of a distant object and closing one eye at a time. As you look through your left and right eyes alternately, your finger appears to jump back and forth in front of the object. If you move your finger closer to your eyes or farther away from your eyes, the size of the jump appears to get wider or narrower. (Your finger also appears to be larger or smaller, but that is a different effect.) GRADES 3-5 One can make a slightly more concrete version of the Grades K-2 demonstration of parallax by setting something up a few feet in front of a distinctive background and asking students to draw what they see from their directions. Students in different parts of the classroom can then compare their drawings. There are two points to remember. First, the things to be drawn should be both simple and distinctive, keeping in mind the artistic ability of the age group.
    [Show full text]
  • 4. Cosmic Distance Ladder I: Parallax
    4. COSMIC DISTANCE LADDER I: PARALLAX EQUIPMENT Protractor with attached string Tape measure Computer with internet connection GOALS In this lab, you will learn: 1. How to use parallax to measure distances to objects on Earth 2. How to use parallax and Earth’s diameter to measure distances to objects within our solar system 3. How to use parallax measurements of objects within our solar system to measure the astronomical unit (AU) 4. How to use parallax and the AU to measure distances to nearby stars 1 1. BACKGROUND A. THE COSMIC DISTANCE LADDER Distance is one of the most difficult things to measure in astronomy. You cannot see distance: You never know if you are looking at a low-luminosity star nearby (A) or a high-luminosity star far away (B): In both cases, the star can appear to be equally bright. 2 To deal with this, astronomers have developed a hierarchy of techniques for measuring greater and greater distances: In Lab 2, you measured Earth’s diameter in kilometers. This is the base of the cosmic distance ladder. In this lab, you will use Earth’s diameter in kilometers and a technique called parallax to measure distances to two solar-system objects: an asteroid and the planet Venus. You will then use your measurement of the distance to Venus to determine how many kilometers are in one astronomical unit (AU). One AU is the average distance between Earth and the sun. Finally, you will use your measurement of the AU in kilometers and parallax to measure the distance to the closest star system to the sun: Alpha Centauri.
    [Show full text]
  • Parallax Adjustment for Riflescopes
    Parallax Adjustment For Riflescopes As applied to riflescopes, parallax can be defined as the apparent movement of objects within the field of view in relation to the reticle. Parallax occurs when the “primary image” of the object is formed either in front of, or behind the reticle. If the eye is moved from the optical axis of the scope, this also creates parallax. Parallax does not occur if the primary image is formed on the same focal plane as the reticle, or if the eye is positioned in the optical axis of the scope. Riflescopes with high magnification, or scopes for long-range shooting should be equipped with a parallax adjustment because even slight sighting errors can seriously affect sighting accuracy. By adjusting the objective part of the optical system the target can be brought in the exact focal plane of the reticle at any distance. Tactical style riflescopes do not usually have parallax adjustment because the exact range of the target can never be anticipated. Lower magnification scopes do not usually have parallax adjustment either since at lower powers the amount of parallax is very small and has little importance for practical, fast target sighting accuracy. Factors That Affect the Amount of Parallax in a Riflescope Two main factors that cause and affect the amount of parallax in a riflescope. First is the distance of the target to the objective lens of the riflescope. Since the reticle is in a fixed position within the riflescope housing, the image of the target doesn’t always appear positioned in the same plane as the reticle.
    [Show full text]
  • Pos(IX EVN Symposium)057 O × 2 Kpc
    Distance to VY Canis Majoris with VERA PoS(IX EVN Symposium)057 Yoon Kyung Choi∗ Max-Planck-Institut fuer Radioastronomie E-mail: [email protected] Tomoya Hirota Mizusawa VERA Observatory, NAOJ E-mail: [email protected] Mareki Honma Mizusawa VERA Observatory, NAOJ E-mail: [email protected] Hideyuki Kobayashi Mizusawa VERA Observatory, NAOJ E-mail: [email protected] We report on observational results of H2O and SiO (J = 1 − 0, v = 1 and v = 2) masers around VY Canis Majoris (VY CMa) carried out with VERA for 13 months. Our astrometric monitoring ± +0.11 measured a parallax of 0.88 0.08 mas, and it corresponds to a distance of 1.14 −0.09 kpc. This is the first trigonometric parallax measurement for VY CMa. Using our newly obtained distance with a high accuracy, the luminosity of VY CMa was re-estimated to be (3 ± 0.5) × 5 10 L⊙. This improved luminosity is more consistent with the theoretical evolutionary model than previous values. Moreover, we considered 3-dimensional structure and kinematics of the circumstellar envelopes around VY CMa with proper motions and absolute positions of the H2O and SiO masers. The 3-dimensional structures and kinematics suggest a bipolar outflow around VY CMa along the line of sight. The 9th European VLBI Network Symposium on The role of VLBI in the Golden Age for Radio Astronomy and EVN Users Meeting September 23-26, 2008 Bologna, Italy ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
    [Show full text]