The Nasopharyngeal Orifice of the Auditory Tube

Total Page:16

File Type:pdf, Size:1020Kb

The Nasopharyngeal Orifice of the Auditory Tube The Nasopharyngeal Orifice of the Auditory Tube: Implications for Tubal Dynamics Anatomy STEWART R. ROOD, Ph.D. WILLIAM J. DOYLE, Ph.D. Pittsburgh, Pennsylvania 15213 This is the first part of a study designed to clarify the relationship between auditory tube dilation and observed movement of the naso- pharyngeal orifice of the tube. This report seeks to delineate the anatomical parameters of the system, whereas, the second will report on findings of torus 'movement' observed during simultaneous tympan- ometric measurement of tubal function during swallowing. The dispo- sition of the paratubal musculature, relation between the tubal cartilage and the cranial base, relations between the cartilage and the medial pyterygoid plate, relation between the two cartilaginous laminae, and the presence of a heavy coat of soft tissue over the torus were findings felt to indicate that movement of the tubal cartilage in swallowing cannot occur. Nasopharyngoscopic reports of "cartilage" movement during swallowing may be observations of soft tissue sliding over the torus and not torus movement itself. KEY WORDS: Eustachian tube, Torus tubarius, Nasoendoscopy, Anatomy The mechanism by which the auditory tube the results of studies involving animal models. is dilated is still a matter of some debate. The latter are perhaps the most enlightening Various muscles and muscle systems have in view of this more direct approach to settling been suggested as being responsible for the this issue. observed tubal opening during deglutition. The various studies reported show clearly These mechanisms have been based on ana- that the tensor veli palatini muscle is the sole tomic and physiologic evidence as well as on and sufficient functional dilator of the Eus- tachian tube in dogs (Rich, 1920) and in the Dr. Rood is Assistant Professor, Department of Oto- Rhesus monkey (Macaca mulatta; Cantekin laryngology, University of Pittsburgh School of Medicine, Eye and Ear Hospital, Pittsburgh Pennsylvania. Dr. et al., 1979), the two animals studied most Doyle is Assistant Professor, Department of Otolaryngol- intensively. Extrapolation of the mechanisms ogy, University of Pittsburgh School of Medicine, Chil- observed in these animal models to man has dren's Hospital, Pittsburgh, Pennsylvania. Correspond- been criticized. This has occurred in spite of ence should be addressed to Stewart R. Rood, Ph.D., the reported marked similarity in the anat- 1115 Eye and Ear Hospital, 230 Lothrop Street, Pitts- burgh, PA 15213. , . omy and function of the auditory tube and Presented in part at the Mid-winter Meeting, Associ- middle ear between the Rhesus monkey and ation for Research in Otolaryngology, St. Petersburg, man (Doyle and Rood, 1979). Direct studies Florida, January 21-23, 1980. of this system in man are not feasible, and, This study was supported in part under Grant #1PO NS16337 from NINCDS of the National Institutes of consequently, we must rely upon such evi- Health, to the Department of Otolaryngology, Children's dence as the observed dilations at the naso- Hospital of Pittsburgh. pharyngeal orifice which accompany swallow- 119 120 Cleft Palate Journal, April 1982, Vol. 19 No. 2 ing. It is, therefore, the purpose of this study Dellon, 1978). It has been presented with to outline the anatomy of the auditory tube some modifications for over a century. This is and its associated musculature and to relate supported by the observed movements of the this to possible imposed constraints and limi- tissue surrounding the nasopharyngeal orifice. tations on tubal mechanics. One of the first authors to present his ob- servation illustrating the role of the levator Review of the Literature veli palatini muscle in tubal functions was Two basic mechanisms of auditory tube Cleland, who, in 1869 observed that the lower dilation have been proposed for man. The margin of the auditory tube was "spas- first is supported by anatomical and func- modically twitched up" during swallowing. tional studies in man and more direct evi- Simpson and Witcher (1947) and Simkins dence from animal models. This model (1943) also describe various mass tubal move- (Honjo et al., 1979) assumes that the auditory ments which involved the torus tubarius ro- tube is basically fixed to the cranial base and tating counterclockwise about an axis passing that functional dilation is accomplished by through the tubal lumen. The mechanistic contraction of the medial bundle of the tensor explanation for these movements was first veli palatini muscle (Rood and Doyle, 1978). postulated by Bryant (1907). He reported that The second model involves both the tensor the medial cartilaginous lamina is hinged su- and the levator veli palatini muscles (Seif and periorly and swings freely at its line of attach- FIGURE 1. A photomicrograph obtained from a 1.5 mo. old otologically normal specimen (at the junction between the anterior third and middle third of the cartilaginous tube) illustrating the relationship between the tubal cartilage (A), the levator veli platini (C) and tensor veli palatini (D) muscles. An "accessory" piece of cartilage is also shown (B). The cartilage, shown here in its crooked shaped configuration, is a continuous piece of cartilage, with lateral (2) and medial (1) aspects. The description of lateral and medial laminae which are joined at the dome of the cartilage is not supported. (Original magnification-15%) Rood & Doyle, oriricE 121 ment. The primary force responsible for tubal levator veli palatini muscle and various types dilation is purportedly the posteromedial of tubal rotation have been suggested (Schu- pressure of the levator veli palatini muscle on knecht, 1974). the angular process of the medial cartilage Common to the majority of these reports is which then swings "backward, upward, and an anatomic description of the tensor veli inward, dragging with it the floor of the tube palatini (TVP) as being single bundled and and thereby forming a triangular orifice" lacking a direct tubal attachment. However, (Bryant, p.934). Bryant did not report a role past and more recent anatomic studies have for the tensor veli palatini muscle in tubal demonstrated conclusively that the TVP mus- dilation. A similar mechanism of tubal dila- cle is a composite muscle consisting of a lateral tion was postulated by Simkins (1943), though bundle (TVP proper) with bone to bone at- he ascribed to the tensor veli palatini muscle tachments (in agreement with Seif and Del- the role of tubal closure. More recently, Seif lon) and a medial bundle (the dilatator tubae and Dellon (1978) reiterated these positions muscle) which takes its origin directly from and suggested a more active function for the the posterior 1/3 of the lateral membranous tensor veli palatini muscle. They reported wall of the auditory tube and is attached on that this muscle is only capable of isometric its other end to the deep surface of the TVP. contraction. By increasing its bulk along the The vector of this muscle has been described lateral tubal margin, it may serve to passively (Doyle, 1977) for adults of various popula- assist the motion of the levator veli palatini. tions and is potentially effective in dilating More complicated hypotheses involving the the auditory tube by inferolateral displace- FIGURE 2A. The tensor veli palatini (lateral bundle) viewed from the lateral aspect. 1-the lateral bundle of tensor veli palatini; 2-the lateral lamina of the auditory tube cartilage; 3-the lateral membranous wall of the auditory tube retracted somewhat; 4-the cranial base. 122 Cleft Palate Journal, April 1982, Vol. 19 No. 2 FIGURE 2B. The medial bundle (2) of the tensor veli palatini muscle (dilatator tubae) or seen with the lateral bundle removed. 1-the muscle as it rounds the hamulus; 2-the dilator tubae muscle; 3-the lateral cartilaginous lamina; 4-the cranial base; 5-the lateral membranous tubal wall. ment of the lateral tubal wall. Consequently, graphic and narrative documentation the more complicated mechanisms of tubal was maintained of all pertinent observa- dilation which implicitly deny this insertion tions, e.g. cartilage-cranial base relation- are at best of secondary functional impor- ship, cartilage-pyterygoid plate relation- tance. This report addresses the anatomic po- ship, and disposition of the paratubal tential for the more complex movements as- musculature. sumed under the model of tubal dilation by One side from each of six human ca- contraction of the levator veli palatini muscle. daver heads (in addition to the above) was dissected as above but studied with Materials and Methods specific attention to the soft tissue sheath Several research protocols were developed overlying the torus tubarius. Measure- in order to obtain anatomic data deemed ments were taken of the thickness of the relevant to the basic question of the reality of tubal cartilage at the lateral lanima, with tubal cartilage movement, of whatever sort, and without its soft tissue sheath. during swallowing. Five anteroinferiorly extended temporal 1. One side from each of seven adult hu- bone specimens, excised at autopsy in man cadaver heads was dissected using accordance with the procedure outlined standard dissection instruments. When by Rood and Doyle (1981), were pro- necessary, dissection was carried out us- cessed for light microscopy. The speci- ing a Zeiss binocular operating micro- mens (ages: 1.5 mo., 3 mo., 13 yrs., 21 scopic for magnification. No quantative yrs., and 27 yrs.) were decalcified in tri- measurements were obtained. Photo- chloroacetic acid, embedded in celloidin, Rood & Doyle, nasorHarynorar ortrice 123 sectioned at 25-30 um, and stained in 5) Relation of the soft tissue sheath to the hematoxylin and eosin. Tubal cross-sec- anterior termination of the tubal carti- tions and longitudinal sections were stud- lage. ied. Wide field, lowpower photomicro- graphs were obtained using a Micro- 1. ParatuBatr MuscutatTuURE Nikor 55 mm lens coupled to a Bowens Figure 1 shows the disposition of the two Illumatron. primary muscles associated with the auditory tube.
Recommended publications
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Titel NAV + Total*
    NOMINA ANATOMICA VETERINARIA FIFTH EDITION (revised version) Prepared by the International Committee on Veterinary Gross Anatomical Nomenclature (I.C.V.G.A.N.) and authorized by the General Assembly of the World Association of Veterinary Anatomists (W.A.V.A.) Knoxville, TN (U.S.A.) 2003 Published by the Editorial Committee Hannover (Germany), Columbia, MO (U.S.A.), Ghent (Belgium), Sapporo (Japan) 2012 NOMINA ANATOMICA VETERINARIA (2012) CONTENTS CONTENTS Preface .................................................................................................................................. iii Procedure to Change Terms ................................................................................................. vi Introduction ......................................................................................................................... vii History ............................................................................................................................. vii Principles of the N.A.V. ................................................................................................... xi Hints for the User of the N.A.V....................................................................................... xii Brief Latin Grammar for Anatomists ............................................................................. xiii Termini situm et directionem partium corporis indicantes .................................................... 1 Termini ad membra spectantes .............................................................................................
    [Show full text]
  • Eya4-Deficient Mice Are a Model for Heritable Otitis Media Frederic F.S
    Related Commentary, page 471 Research article Eya4-deficient mice are a model for heritable otitis media Frederic F.S. Depreux,1 Keith Darrow,2 David A. Conner,1 Roland D. Eavey,3,4 M. Charles Liberman,2 Christine E. Seidman,1,5 and J.G. Seidman1 1Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 2Eaton-Peabody Laboratory and 3Pediatric Otolaryngology Service, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA. 4Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA. 5Howard Hughes Medical Institute, Boston, Massachusetts, USA. Otitis media is an extremely common pediatric inflammation of the middle ear that often causes pain and diminishes hearing. Vulnerability to otitis media is due to eustachian tube dysfunction as well as other poorly understood factors, including genetic susceptibility. As EYA4 mutations cause sensorineural hearing loss in humans, we produced and characterized Eya4-deficient (Eya4–/–) mice, which had severe hearing deficits. In addition, all Eya4–/– mice developed otitis media with effusion. Anatomic studies revealed abnormal middle ear cavity and eustachian tube dysmorphology; thus, Eya4 regulation is critical for the development and func- tion of these structures. We suggest that some human otitis media susceptibility reflects underlying genetic predisposition in genes like EYA4 that regulate middle ear and eustachian tube anatomy. Introduction treatment of otitis media, with or without infection, may prevent Otitis media, an inflammation of the middle ear, accounts for 24 long-term sequelae of hearing loss; speech, language, and learning million pediatric office visits annually (1), is responsible for over deficits; and behavioral issues (4). $4 billion in annual health care costs, and prompts more anti- Human mutations in 2 EYA gene family members cause senso- biotic prescriptions and surgery (ear ventilation tubes) than any rineural hearing loss.
    [Show full text]
  • Eustachian Tube Dysfunction in Patients with House Dust Mite
    Ma et al. Clin Transl Allergy (2020) 10:30 https://doi.org/10.1186/s13601-020-00328-9 Clinical and Translational Allergy RESEARCH Open Access Eustachian tube dysfunction in patients with house dust mite-allergic rhinitis Yun Ma† , Maojin Liang†, Peng Tian, Xiang Liu, Hua Dang, Qiujian Chen, Hua Zou* and Yiqing Zheng* Abstract Background: One of the important pathogeneses of eustachian tube dysfunction (ETD) is nasal infammatory disease. The prevalence of allergic rhinitis (AR) in adults ranges from 10 to 30% worldwide. However, research on the status of eustachian tubes in AR patients is still very limited. Methods: This prospective controlled cross-sectional study recruited 59 volunteers and 59 patients with AR from Sun Yat-sen Memorial Hospital. Visual analogue scale (VAS) scores for AR symptoms and seven-item Eustachian Tube Dysfunction Questionnaire (ETDQ-7) scores were collected for both groups. Nasal endoscopy, tympanography and eustachian tube pressure measurement (tubomanometry, TMM) were used for objective assessment. All AR patients underwent 1 month of treatment with mometasone furoate nasal spray and oral loratadine. Then, the nasal condition and eustachian tube status were again evaluated. Results: TMM examination revealed that 22 patients (39 ears, 33.1%) among the AR patients and 5 healthy controls (7 ears, 5.9%) had abnormal eustachian pressure. Twenty-two AR patients (37.3%) and 9 healthy controls had an ETDQ-7 score 15. With regard to nasal symptoms of AR, the VAS scores of nasal obstruction were correlated with the ETDQ-7 scores,≥ and the correlation coefcient was r 0.5124 (p < 0.0001). Nasal endoscopic scores were also positively cor- related with ETDQ-7 scores, with a correlation= coefcient of 0.7328 (p < 0.0001).
    [Show full text]
  • Pharynx, Larynx, Nasal Cavity and Pterygopalatine Fossa
    Pharynx, Larynx, Nasal cavity And Pterygopalatine Fossa Mikel H. Snow, Ph.D. Dental Anatomy [email protected] July 29, 2018 Pharynx Food & Air Passage Pharynx The pharynx is a skeletal muscle tube that opens anteriorly with 3 regions. The upper part communicates with nasal cavity, the middle communicates with oral cavity, and the lower communicates with the larynx. Nasal cavity Nasal Oral cavity cavity Larynx Air Nasopharynx: between Oral sphenoid sinus & uvula Food/ cavity Oropharynx: between uvula & epiglottis drink Laryngopharynx: between epiglottis & esophagus Esophagus Trachea The posterior and lateral walls are 3 skeletal muscles (constrictors) that propel food/liquid inferiorly to the esophagus. Constrictors innervated by CNX. Additional muscles elevate the pharynx (stylopharyngeus is external). Stylopharyngeus innervated by CNIX. Stylopharyngeus Superior constrictor Middle constrictor Inferior constrictor Two additional internal muscles we’ll get to later… Key relationship: Glossopharyngeal nerve wraps around stylopharyngeus muscle. CN IX wraps around stylopharyngeus muscle and Stylopharyngeus innervates it. Pharyngeal constrictors Pharynx Interior 1 Nasopharynx: 1. Pharyngeal tonsils 2. Auditory tube ostia 2 3 3. Salpingopharyngeal fold 4 4 Oropharynx: 4. Palatine tonsils 5 5 Laryngopharynx: Slit open 5. Piriform recess constrictors to examine interior Lateral Wall of Pharynx 5. Salpingopharyngeus muscle 6. Levator veli palatini muscle 1. Pharyngeal tonsils 7. Tensor veli palatini muscle 2. Torus tubarius 8. Palatine tonsil 3.
    [Show full text]
  • Central Nervous System. Sense Organs Study Guide
    CENTRAL NERVOUS SYSTEM. SENSE ORGANS STUDY GUIDE 0 Ministry of Education and Science of Ukraine Sumy State University Medical Institute CENTRAL NERVOUS SYSTEM. SENSE ORGANS STUDY GUIDE Recommended by the Academic Council of Sumy State University Sumy Sumy State University 2017 1 УДК 6.11.8 (072) C40 Authors: V. I. Bumeister, Doctor of Biological Sciences, Professor; O. S. Yarmolenko, Candidate of Medical Sciences, Assistant; O. O. Prykhodko, Candidate of Medical Sciences, Assistant Professor; L. G. Sulim, Senior Lecturer Reviewers: O. O. Sherstyuk – Doctor of Medical Sciences, Professor of Ukrainian Medical Stomatological Academy (Poltava); V. Yu. Harbuzova – Doctor of Biological Sciences, Professor of Sumy State University (Sumy) Recommended by for publication Academic Council of Sumy State University as a study guide (minutes № 11 of 15.06.2017) Central nervous system. Sense organs : study guide / C40 V. I. Bumeister, O. S. Yarmolenko, O. O. Prykhodko, L. G. Sulim. – Sumy : Sumy State University, 2017. – 173 p. ISBN 978-966-657- 694-4 This study gnide is intended for the students of medical higher educational institutions of IV accreditation level, who study human anatomy in the English language. Навчальний посібник рекомендований для студентів вищих медичних навчальних закладів IV рівня акредитації, які вивчають анатомію людини англійською мовою. УДК 6.11.8 (072) © Bumeister V. I., Yarmolenko O. S., Prykhodko O. O, Sulim L. G., 2017 ISBN 978-966-657- 694-4 © Sumy State University, 2017 2 INTRODUCTION Human anatomy is a scientific study of human body structure taking into consideration all its functions and mechanisms of its development. Studying the structure of separate organs and systems in close connection with their functions, anatomy considers a person's organism as a unit which develops basing on the regularities under the influence of internal and external factors during the whole process of evolution.
    [Show full text]
  • Autologous Lipoinjection of the Patulous Eustachian Tube
    Otorhinolaryngology-Head and Neck Surgery Research Article ISSN: 2398-4937 Autologous lipoinjection of the patulous Eustachian tube: Harvesting, cellular analysis, clinical application and preliminary outcome Holger Sudhoff*, Matthias Schürmann and Viktoria Brotzmann Department of Otolaryngology, Head and Neck Surgery, Bielefeld Academic Teaching Hospital, Bielefeld, Germany Abstract Objective: Autologous lipoinjection for patulous Eustachian tube dysfunction was investigated. We studied the technique of fat harvesting, fat tissue changes due to processing, clinical application and preliminary outcomes. Design: Prospective pilot cohort study. Methods: Transnasal endoscopic injection of autologous lipoinjection into the posterior cushin was performed in 8 patients as a new treatment option for patulous Eustachian tube. All patients were followed up 6 months after treatment. For each intervention, 2-3 ml of injectable soft-tissue bulking agent was used. Fat tissue changes due to processing were studied by confocal laser scanning microscopy. Results: In 2 patients, more than one procedure was necessary. 6 out of 8 patients were satisfied with the result in the follow up and only 1 patient reported no improvement of symptoms. The procedure was minimally invasive, fast and easy to perform. Implications: There is no gold standard for the therapy of patulous Eustachian tube. Autologous lipoinjection into the posterior cushin of the Eustachian tube is a new minimally invasive therapeutic approach. Given the emerging discussion regarding the type of surgical treatment of patulous Eustachian tube dysfunction on functional outcomes, this is an area for further research. Introduction is usually flattened and/or the compliance negative. Other tests like impedance testing in the pressure chamber require expensive The Eustachian tube (ET) is generally closed but opens temporarily equipment but do not yield any unique information.
    [Show full text]
  • Rare Finding of Eustachian Tube Calcifications with Cone-Beam Computed Tomography
    Imaging Science in Dentistry 2017; 47: 275-9 https://doi.org/10.5624/isd.2017.47.4.275 Rare finding of Eustachian tube calcifications with cone-beam computed tomography Ali Z. Syed1,*, Anna Hawkins2, Leela Subashini Alluri1, Buthainah Jadallah1, Kiran Shahid1, Michael Landers1, Hussein M. Assaf3 1Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, CWRU School of Dental Medicine, Cleveland, OH, USA 2Senior Dental Student, CWRU School of Dental Medicine, Cleveland, OH, USA 3Department of Comprehensive Care, CWRU School of Dental Medicine, Cleveland, OH, USA ABSTRACT Soft tissue calcification is a pathological condition in which calcium and phosphate salts are deposited in the soft tissue organic matrix. This study presents an unusual calcification noted in the cartilaginous portion of the Eustachian tube. A 67-year-old woman presented for dental treatment, specifically for implant placement, and cone- beam computed tomography (CBCT) was performed. The CBCT scan was reviewed by a board-certified oral and maxillofacial radiologist and revealed incidental findings of 2 distinct calcifications in the cartilaginous portion of the Eustachian tube. To the authors’ knowledge, no previous study has reported the diagnosis of Eustachian tube calcification using CBCT. This report describes an uncommon variant of Eustachian tube calcification, which has a significant didactic value because such cases are seldom illustrated either in textbooks or in the literature. This case once again underscores the importance of having CBCT scans
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,197.552 B2 Mandpe (45) Date of Patent: Jun
    US008197552B2 (12) United States Patent (10) Patent No.: US 8,197.552 B2 Mandpe (45) Date of Patent: Jun. 12, 2012 (54) EUSTACHIANTUBE DEVICE AND METHOD (58) Field of Classification Search .................... 623/10, 623/23.7; 604/8: 606/108–109 (76) Inventor: Aditi H. Mandpe, San Francisco, CA See application file for complete search history. US (US) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS U.S.C. 154(b) by 9 days. 2006/0198869 A1* 9, 2006 Furst et al. .................... 424/426 2006/0206189 A1* 9, 2006 Furst et al. ................... 623,111 (21) Appl. No.: 12/901,932 * cited by examiner (22) Filed: Oct. 11, 2010 Primary Examiner — David Isabella Assistant Examiner — Andrew Iwamaye (65) Prior Publication Data (74) Attorney, Agent, or Firm — Louis L. Wu US 2011 FOO2898.6 A1 Feb. 3, 2011 (57) ABSTRACT O O Devices are provided for insertion into a Eustachian tube of Related U.S. Application Data an animal, e.g., a human being. The devices include an insert (62) Division of application No. 1 1/678,919, filed on Feb. able member. The member has opposing Surfaces and is 26, 2007, now Pat. No. 7,833,282. formed at least in part from a biocompatible material that is degradable. The device may comprise a hole that is effective (60) Provisional application No. 60/767,020, filed on Feb. to provide sufficient fluid communication between the oppos 27, 2006. ing surfaces of the insertable member to effect pressure equilibration therebetween.
    [Show full text]
  • Digestive System
    DIGESTIVE SYSTEM overview:oral cavity(cavum oris), pharynx, oesophagus, stomach (ventriculus, gaster, stomachus), small intestine (intestinum tenue), large intestine(intestinum crassum) Glands of digestive system: intramural, extramural Common structure of gastrointestinal tube: 1. tunica mucosa: lamina epithelialis, lamina propria mucosae, lamina muscularis mucosae (papillae, plicae, villi) 2. tela submucosa (plexus submucosus) 3. tunica muscularis: stratum circulare, stratum longitudinale (plexus myentericus) 4. adventitia/serosa CAVUM ORIS Rima oris Vestibulum oris: shape, boundaries Labium superius et inferius: anguli oris, philtrum, tuberculum labii sup., sulcus nasolabialis, sulcus mentolabialis. Structure: skin, subcutaneous tissue kůže, podkožní vazivo, m. orbicularis oris, submucous tissue (glandulae labiales). transitional zone– red of the lips. Buccae: Structure: skin, subcutaneous tissue, m. buccinator, submucous tissue (glandulae buccales et molares), mucous membrane. Papilla parotidea. Mucous membrane (lips and cheeks) → fornix vestibuli sup. et inf. (frenulum labii sup. et inf.) → mucogingival border→ gingiva (processus alveolares): attached, free (differences, boundaries– paramarginal groove). Papillae interdentales. Tremata, trigonum retromolare. Cavum oris proprium: boundaries Palatum durum: Hard palate (bony palate) (1. semestr), papilla incisiva, plicae palatinae transversae, torus palatinus. Structure: mucous membrane + periosteum of hard palate = mukoperiosteum. Only small portion of subcutaneous tissue (glandullae
    [Show full text]
  • 1 Normal and Abnormal Craniofacial Structures
    PART Normal and Abnormal 1 Craniofacial Structures CHAPTER 1 Anatomy and Physiology CHAPTER 2 Genetics and Patterns of Inheritance CHAPTER 3 Clefts of the Lip and Palate CHAPTER 4 Dysmorphology and Craniofacial Syndromes CHAPTER 5 Facial, Oral, and Pharyngeal Anomalies CHAPTER 6 Dental Anomalies CHAPTER 7 Early Feeding Problems 1 © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284149722_CH01_Pass03.indd 1 04/06/18 8:20 AM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284149722_CH01_Pass03.indd 2 04/06/18 8:20 AM CHAPTER 1 Anatomy and Physiology CHAPTER OUTLINE INTRODUCTION Muscles of the Velopharyngeal Valve Velopharyngeal Motor and Sensory Innervation ANATOMY Variations in Velopharyngeal Closure Craniofacial Structures Patterns of Velopharyngeal Closure Craniofacial Bones and Sutures Pneumatic versus Nonpneumatic Activities Ear Timing of Closure Nose and Nasal Cavity Height of Closure Lips Firmness of Closure Intraoral Structures Effect of Rate and Fatigue Tongue Changes with Growth and Age Faucial Pillars, Tonsils, and Oropharyngeal Subsystems of Speech: Putting It All Isthmus Hard Palate Together Velum Respiration Uvula Phonation Prosody Pharyngeal Structures Resonance and Velopharyngeal Function Pharynx Articulation Eustachian Tube Subsystems as “Team Players” PHYSIOLOGY Summary Velopharyngeal Valve For Review and Discussion Velar Movement Lateral Pharyngeal Wall Movement References Posterior Pharyngeal Wall Movement 3 © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284149722_CH01_Pass03.indd 3 04/06/18 8:20 AM 4 Chapter 1 Anatomy and Physiology INTRODUCTION The nasal, oral, and pharyngeal structures are all very important for normal speech and resonance. Unfortu- nately, these are the structures that are commonly affected by cleft lip and palate and other craniofacial anom- alies.
    [Show full text]
  • Tracking the Glossopharyngeal Nerve Pathway Through Anatomical References in Cross-Sectional Imaging Techniques: a Pictorial Review
    Insights into Imaging https://doi.org/10.1007/s13244-018-0630-5 PICTORIAL REVIEW Tracking the glossopharyngeal nerve pathway through anatomical references in cross-sectional imaging techniques: a pictorial review José María García Santos1,2 & Sandra Sánchez Jiménez1,3 & Marta Tovar Pérez1,3 & Matilde Moreno Cascales4 & Javier Lailhacar Marty5 & Miguel A. Fernández-Villacañas Marín4 Received: 4 October 2017 /Revised: 9 April 2018 /Accepted: 16 April 2018 # The Author(s) 2018 Abstract The glossopharyngeal nerve (GPN) is a rarely considered cranial nerve in imaging interpretation, mainly because clinical signs may remain unnoticed, but also due to its complex anatomy and inconspicuousness in conventional cross-sectional imaging. In this pictorial review, we aim to conduct a comprehensive review of the GPN anatomy from its origin in the central nervous system to peripheral target organs. Because the nerve cannot be visualised with conventional imaging examinations for most of its course, we will focus on the most relevant anatomical references along the entire GPN pathway, which will be divided into the brain stem, cisternal, cranial base (to which we will add the parasympathetic pathway leaving the main trunk of the GPN at the cranial base) and cervical segments. For that purpose, we will take advantage of cadaveric slices and dissections, our own developed drawings and schemes, and computed tomography (CT) and magnetic resonance imaging (MRI) cross-sectional images from our hospital’s radiological information system and picture and archiving communication system. Teaching Points • The glossopharyngeal nerve is one of the most hidden cranial nerves. • It conveys sensory, visceral, taste, parasympathetic and motor information. • Radiologists’ knowledge must go beyond the limitations of conventional imaging techniques.
    [Show full text]