Rigorous Quantum Field Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Electromagnetic Fields and Charges In
Electromagnetic fields and charges in ‘3+1’ spacetime derived from symmetry in ‘3+3’ spacetime J.E.Carroll Dept. of Engineering, University of Cambridge, CB2 1PZ E-mail: [email protected] PACS 11.10.Kk Field theories in dimensions other than 4 03.50.De Classical electromagnetism, Maxwell equations 41.20Jb Electromagnetic wave propagation 14.80.Hv Magnetic monopoles 14.70.Bh Photons 11.30.Rd Chiral Symmetries Abstract: Maxwell’s classic equations with fields, potentials, positive and negative charges in ‘3+1’ spacetime are derived solely from the symmetry that is required by the Geometric Algebra of a ‘3+3’ spacetime. The observed direction of time is augmented by two additional orthogonal temporal dimensions forming a complex plane where i is the bi-vector determining this plane. Variations in the ‘transverse’ time determine a zero rest mass. Real fields and sources arise from averaging over a contour in transverse time. Positive and negative charges are linked with poles and zeros generating traditional plane waves with ‘right-handed’ E, B, with a direction of propagation k. Conjugation and space-reversal give ‘left-handed’ plane waves without any net change in the chirality of ‘3+3’ spacetime. Resonant wave-packets of left- and right- handed waves can be formed with eigen frequencies equal to the characteristic frequencies (N+½)fO that are observed for photons. 1 1. Introduction There are many and varied starting points for derivations of Maxwell’s equations. For example Kobe uses the gauge invariance of the Schrödinger equation [1] while Feynman, as reported by Dyson, starts with Newton’s classical laws along with quantum non- commutation rules of position and momentum [2]. -
Preprint Pdf File
Unspecified Book Proceedings Series Scaling algebras for charge carrying quantum fields and superselection structure at short distances Claudio D’Antoni, Gerardo Morsella, and Rainer Verch Dedicated to Detlev Buchholz, on the occasion of his 60th birthday. Abstract. We report on a recent work on the extension to the case of fields carrying superselection charges of the method of scaling algebras, which has been introduced earlier as a means for analysing the short-distance behaviour of quantum field theories in the setting of the algebraic approach. This gen- eralization is used to study the relation between the superselection structures of the underlying theory and the one of its scaling limit, and, in particular, to propose a physically motivated criterion for the preservation of superselection charges in the scaling limit. This allows the formulation of an intrinsic notion of charge confinement as proposed by D. Buchholz. 1. Introduction A great deal of information about the short distance properties of quantum field theory can be obtained through the use of renormalization group (RG) methods (consider, just to mention one example, the parton distributions in deep inelastic scattering processes). From a conceptual point of view, however, such applications are not completely satisfactory, as they always rely on a description of the theory in terms of (unobservable) fields, which, as is well known, is in general not unique (think for instance of Borchers classes, of bosonization in two dimensional models or of the more recent discoveries of dualities in supersymmetric d = 4 gauge theories). In order to overcome these problems, a framework for a model-independent, canonical analysis of the short distance behaviour of QFT was developed in [3] in the context of the algebraic approach to QFT [13], in which a theory is defined only in terms of its algebras of local observables, and therefore the ambiguities inherent to the use of unobservable fields completely disappear. -
Spacetime Structuralism
Philosophy and Foundations of Physics 37 The Ontology of Spacetime D. Dieks (Editor) r 2006 Elsevier B.V. All rights reserved DOI 10.1016/S1871-1774(06)01003-5 Chapter 3 Spacetime Structuralism Jonathan Bain Humanities and Social Sciences, Polytechnic University, Brooklyn, NY 11201, USA Abstract In this essay, I consider the ontological status of spacetime from the points of view of the standard tensor formalism and three alternatives: twistor theory, Einstein algebras, and geometric algebra. I briefly review how classical field theories can be formulated in each of these formalisms, and indicate how this suggests a structural realist interpre- tation of spacetime. 1. Introduction This essay is concerned with the following question: If it is possible to do classical field theory without a 4-dimensional differentiable manifold, what does this suggest about the ontological status of spacetime from the point of view of a semantic realist? In Section 2, I indicate why a semantic realist would want to do classical field theory without a manifold. In Sections 3–5, I indicate the extent to which such a feat is possible. Finally, in Section 6, I indicate the type of spacetime realism this feat suggests. 2. Manifolds and manifold substantivalism In classical field theories presented in the standard tensor formalism, spacetime is represented by a differentiable manifold M and physical fields are represented by tensor fields that quantify over the points of M. To some authors, this has 38 J. Bain suggested an ontological commitment to spacetime points (e.g., Field, 1989; Earman, 1989). This inclination might be seen as being motivated by a general semantic realist desire to take successful theories at their face value, a desire for a literal interpretation of the claims such theories make (Earman, 1993; Horwich, 1982). -
On a Complex Spacetime Frame : New Foundation for Physics and Mathematics
On a complex spacetime frame : new foundation for physics and mathematics Joseph Akeyo Omolo∗ Department of Physics and Materials Science, Maseno University P.O. Private Bag, Maseno, Kenya e-mail: [email protected] March 31, 2016 Abstract This paper provides a derivation of a unit vector specifying the tem- poral axis of four-dimensional space-time frame as an imaginary axis in the direction of light or general wave propagation. The basic elements of the resulting complex four-dimensional spacetime frame are complex four-vectors expressed in standard form as four-component quantities specified by four unit vectors, three along space axes and one along the imaginary temporal axis. Consistent mathematical operations with the complex four-vectors have been developed, which provide extensions of standard vector analysis theorems to complex four-dimensional space- time. The general orientation of the temporal unit vector relative to all the three mutually perpendicular spatial unit vectors leads to ap- propriate modifications of fundamental results describing the invariant length of the spacetime event interval, time dilation, mass increase with speed and relativistic energy conservation law. Contravariant and co- variant forms have been defined, providing appropriate definition of the invariant length of a complex four-vector and appropriate definitions of complex tensors within the complex four-dimensional spacetime frame, thus setting a new geometrical framework for physics and mathematics. 1 Introduction Four-dimensional space-time frame is the natural reference frame for de- scribing the general dynamics of physical systems. Its basic elements are ∗Regular Associate, Abdus Salam ICTP: 2001-2006 1 four-vectors, which are suitable for expressing field equations and associ- ated physical quantities in consistent forms. -
Spacetime As a Feynman Diagram: the Connection Formulation
Spacetime as a Feynman diagram: the connection formulation Michael P. Reisenberger Theoretical Physics Group, Blackett Laboratory, Imperial College, London, SW7 2BZ, UK. Center for Gravitational Physics and Geometry, The Pennsylvania State University, 104 Davey Lab, University Park, PA16802-6300, USA [email protected] Carlo Rovelli Physics Department, University of Pittsburgh, Pittsburgh, PA 15260, USA. Centre de Physique Th´eorique, CNRS Luminy, 13288 Marseille, France [email protected] March 3, 2000 Abstract Spin foam models are the path integral counterparts to loop quantized canonical theories. In the last few years several spin foam models of gravity have been proposed, most of which live on finite simplicial lattice spacetime. The lattice truncates the presumably infinite set of gravitational degrees of freedom down to a finite set. Models that can accomodate an infinite set of degrees of freedom and that are independent of any background simplicial structure, or indeed any a priori spacetime topology, can be obtained from the lattice models by summing them over all lattice spacetimes. Here we show that this sum can be realized as the sum over Feynman diagrams of a quantum 1 field theory living on a suitable group manifold, with each Feynman diagram defining a particular lattice spacetime. We give an explicit formula for the action of the field theory corresponding to any given spin foam model in a wide class which includes several gravity mod- els. Such a field theory was recently found for a particular gravity model [1]. Our work generalizes this result as well as Boulatov’s and Ooguri’s models of three and four dimensional topological field theo- ries, and ultimately the old matrix models of two dimensional systems with dynamical topology. -
Noncommutative Quantum Gravity
Noncommutative Quantum Gravity J. W. Moffat Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada Abstract The possible role of gravity in a noncommutative geometry is investi- gated. Due to the Moyal *-product of fields in noncommutative geometry, it is necessary to complexify the metric tensor of gravity. We first consider the possibility of a complex Hermitian, nonsymmetric gµν and discuss the problems associated with such a theory. We then introduce a complex symmetric (non-Hermitian) metric, with the associated complex connec- tion and curvature, as the basis of a noncommutative spacetime geometry. The spacetime coordinates are in general complex and the group of local gauge transformations is associated with the complex group of Lorentz transformations CSO(3, 1). A real action is chosen to obtain a consistent set of field equations. A Weyl quantization of the metric associated with the algebra of noncommuting coordinates is employed. 1 Introduction The concept of a quantized spacetime was proposed by Snyder [1], and has received much attention over the past few years [2-6]. There has been renewed interest recently in noncommutative field theory, since it makes its appearance in string theory, e.g. noncommutative gauge theories describe the low energy excitations of open strings on D-branes in a background two-form B field [5,7-12]. Noncommutative Minkowski space is defined in terms of spacetime coordinates xµ, µ =0, ...3, which satisfy the following commutation relations [xµ, xν ]= iθµν , (1) arXiv:hep-th/0007181v2 25 Sep 2000 where θµν is an antisymmetric tensor. In what follows, we can generally extend the results to higher dimensions µ =0, ...d. -
Quantum Field Theory
1 3 4 ,"3-)&//*/(3&)3&/ */45*565&'035)&03&5*$"-1): 4*$4 "45301):4*$4"/%&-&.&/5"3:1"35*$-&1):4*$4 Quantum Field Theory Quantum field theory (QFT) is the „language“ describing the fundamental physics in the relativistic mi- crocosmos, notably the elementary particles. In a continuous endeavor, the quantum field theory group in Göttingen (previously led by Max Planck medalists Gerhart Lüders, Hans-Jürgen Borchers, and Detlev Buchholz) pursues a mathematical approach in which the strong internal constraints imposed by the interplay between the principles of relativity, Einstein causality, and the stability of quantum systems are explored. It turns out that notions like „particle“, „charge“, and their fundamental interactions are far more subtle in QFT than in the more familiar setting of quantum mechanics. A careful analysis of these structures leads to insights that bear fruit in many applications. Charges and symmetries Particles Apart from the electric charge, particle physicists have be- The fundamental observables in relativistic quantum physics come familiar with many different charges, including „fla- are neutral fields. Particles arise as excitations in certain sta- vor“ and „color“ of leptons and quarks. The traditional un- tes in which these fields can be measured. As such they may derstanding of charge quantum numbers as characteristic possess properties depending on the state. For instance, their eigenvalues in representations of internal symmetry groups mass can be temperature dependent, if it can be sharply defi- involves unobservable entities. An intrinsic characterization ned at all. Defining the mass of a particle in interaction is not in terms of observable data has confirmed this picture, but it an easy task. -
SCIENTIFIC REPORT for the YEAR 1999 ESI, Boltzmanngasse 9, A-1090 Wien, Austria
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 1999 Vienna, ESI-Report 1999 March 1, 2000 Supported by Federal Ministry of Science and Transport, Austria ESI–Report 1999 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 1999 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2000 Honorary President: Walter Thirring, Tel. +43-1-3172047-15. President: Jakob Yngvason: +43-1-31367-3406. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Doris Garscha, Ursula Sagmeister. Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents Statement on Austria’s current political situation . 2 General remarks . 2 Winter School in Geometry and Physics . 2 ESI - Workshop Geometrical Aspects of Spectral Theory . 3 PROGRAMS IN 1999 . 4 Functional Analysis . 4 Nonequilibrium Statistical Mechanics . 7 Holonomy Groups in Differential Geometry . 9 Complex Analysis . 10 Applications of Integrability . 11 Continuation of programs from 1998 and earlier . 12 Guests via Director’s shares . 13 List of Preprints . 14 List of seminars and colloquia outside of conferences . 25 List of all visitors in the year 1999 . -
October 1983 Table of Contents
Fairfield Meeting (October 28-29)- Page 614 San Luis Obispo Meeting (November 11-12)-Page 622 Evanston Meeting (November 11-12)-Page 630 Notices of the American Mathematical Society October 1983, Issue 228 Volume 30, Number 6, Pages 569- 712 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet· ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. -
Euclidean Closed Linear Transformations of Complex Spacetime and Generally of Complex Spaces of Dimension Four Endowed with the Same Or Different Metric
Journal of Physics: Conference Series PAPER • OPEN ACCESS Related content - A simple example of type-[N] otimes Euclidean Closed Linear Transformations of [N]HH-spaces admitting twisting null geodesic congruence Complex Spacetime and generally of Complex Adam Chudecki and Maciej Przanowski - Distributional sources for Newman's Spaces of dimension four endowed with the Same holomorphic Coulomb field Gerald Kaiser or Different Metric - The generalized good cut equation T M Adamo and E T Newman To cite this article: Spyridon Vossos and Elias Vossos 2016 J. Phys.: Conf. Ser. 738 012048 Recent citations - Explanation of Rotation Curves in Galaxies View the article online for updates and enhancements. and Clusters of them, by Generalization of Schwarzschild Metric and Combination with MOND, eliminating Dark Matter Spyridon Vossos and Elias Vossos This content was downloaded from IP address 131.169.4.70 on 11/01/2018 at 22:43 5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing Journal of Physics: Conference Series 738 (2016) 012048 doi:10.1088/1742-6596/738/1/012048 Euclidean Closed Linear Transformations of Complex Spacetime and generally of Complex Spaces of dimension four endowed with the Same or Different Metric Spyridon Vossos1, 3 and Elias Vossos2 1Chemist, 2Physicist, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, GR15784 Zografos, Athens, Hellas E-mail: [email protected] Keywords: 5th Euclidean postulate, complex space, Einstein equations, Euclidean complex relativistic mechanics, Euclidean metric, general relativity, human senses, isometry, linear spacetime transformation, Lorentz matrix, Lorentz metric, Lorentz transformation, Minkowski space, Schwarzschild metric, spacetime, special relativity, real space, universal speed, velocity, Vossos matrix, Vossos transformation. -
Unruh Versus Tolman: on the Heat of Acceleration Dedicated to the Memory of Rudolf Haag
Gen Relativ Gravit (2016) 48:32 DOI 10.1007/s10714-016-2029-2 RESEARCH ARTICLE Unruh versus Tolman: on the heat of acceleration Dedicated to the memory of Rudolf Haag Detlev Buchholz1 · Rainer Verch2 Received: 12 November 2015 / Accepted: 26 January 2016 / Published online: 29 February 2016 © Springer Science+Business Media New York 2016 Abstract It is shown that the Unruh effect, i.e. the increase in temperature indicated by a uniformly accelerated thermometer in an inertial vacuum state of a quantum field, cannot be interpreted as the result of an exchange of heat with a surrounding gas. Since the vacuum is spatially homogeneous in the accelerated system its temperature must be zero everywhere as a consequence of Tolman’s law. In fact, the increase of temperature of accelerated thermometers is due to systematic quantum effects induced by the local coupling between the thermometer and the vacuum. This coupling inevitably creates excitations of the vacuum which transfer energy to the thermometer, gained by the acceleration, and thereby affect its readings. The temperature of the vacuum, however, remains to be zero for arbitrary accelerations. Keywords Unruh effect · Tolman-Ehrenfest law · Vacuum temperature 1 Introduction In a well-known paper, Unruh [24] considered an idealized, pointlike detector which follows a worldline of constant proper acceleration in Minkowski spacetime while its degrees of freedom are coupled to a quantum field in the inertial vacuum state. He has shown that in the limit of large measuring times and of weak couplings the detector state will be found in a Gibbs ensemble corresponding to a temperature which B Rainer Verch [email protected] Detlev Buchholz [email protected] 1 Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany 2 Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig, Germany 123 32 Page 2 of 9 D. -
Lecture Notes PX421: Relativity and Electrodynamics
Lecture Notes PX421: Relativity and Electrodynamics Y.A. Ramachers, University of Warwick Draft date April 11, 2014 Contents Contents i 1 Full Special Relativity 3 1.1 Homogeneityandisotropyofspace . 3 1.2 Introducingthetimeparameter . 5 1.2.1 Excursion: ’What is a group and why is it interesting here?.. 6 1.3 ThewaybeyondGalileanrelativity . 8 1.4 Derivation of the Lorentz transformation . .... 9 1.4.1 Linearity and absence of change of direction . .. 9 1.4.2 Invarianceundertimereflection . 10 1.4.3 Identityassumption. 11 1.4.4 Finish deriving the one-dimensional Lorentz transformations . 12 1.4.5 Whataboutothervelocitiesthanc?. 13 1.4.6 Three-dimensional Lorentz transformations . .... 13 1.4.7 First glimpse at a compact way of writing Lorentz transfor- mations .............................. 15 1.4.8 Exercises.............................. 16 1.5 ExcursionTensorAnalysis . 17 1.5.1 Introduction............................ 17 1.5.2 Workingwithtensors. 20 1.5.3 Transformations. 30 1.5.4 BacktoLorentztransformations. 33 i ii CONTENTS 1.5.5 Exercises.............................. 36 2 Applications: Mechanics 39 2.1 ProperTime................................ 40 2.2 Four-velocity ............................... 41 2.2.1 Exercises.............................. 42 2.3 Relativistickinematicsessentials. ..... 43 2.3.1 Exercises.............................. 45 2.4 Energy-mass equivalence derivation, Einstein 1906 . ........ 46 2.5 Waves ................................... 48 2.5.1 Lightraysandtakingphotos. 50 2.5.2 Exercises.............................. 52 2.6 Linear acceleration in special relativity . ...... 53 2.6.1 Kinematicsincoordinatelanguage . 56 2.6.2 Rindlercoordinates . 58 2.6.3 Exercises.............................. 62 3 Applications: Electromagnetism 63 3.1 Reminderondifferentialoperators. .. 64 3.2 BacktotheMaxwellequations . 65 3.3 Frompotentialstofields . 67 3.3.1 Exercises.............................. 69 3.4 ParticleDynamics............................. 70 3.4.1 Exercises.............................. 71 3.5 Conservationlawsforfields .