Construction of Quintic Trigonometric Bézier Spiral Curve

Total Page:16

File Type:pdf, Size:1020Kb

Construction of Quintic Trigonometric Bézier Spiral Curve ASM Sc. J., 12, Special Issue 5, 2019 for ICoAIMS2019, 208-215 Construction of Quintic Trigonometric Bézier Spiral Curve M.Y. Misro1∗, A. Ramli1 and J.M. Ali1 1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia The construction of curves need to satisfy some conditions in order to achieve smooth pathways. In terms of designing highways, there are five design templates of transition curves. Usually, cubic and quintic Bézier curves are used to construct those five templates. However, quintic trigonometric Bézier curves can also be used to construct these five templates of transition curves. Global and local dynamic parameters that are embedded in control points of quintic trigonometric Bézier will provide more freedom for designers to comply with difficult tasks in designing. Keywords: spiral; smooth pathway; quintic curve; trigonometric Bézier; dynamic parameters I. INTRODUCTION Spiral curves consist of several types beginning with Euler Spiral, Logarithmic Spiral, Parabolic Spiral, and Spiral curves can be found from the representation of growth more. Euler spiral is a beautiful and useful curve known and the process of the Nautilus shell, to the patterns of by several other names, including clothoid and Cornu sunflower seeds, to the design of a staircase in the Vatican spiral (Levien, 2008). One unique property of this spiral Museum, and to the method of construction of curve is that the curvature increases linearly with its railway/roadway design. A spiral curve is one of the features arclength. Levien (2018) stated that the problem of in geometric field especially in Computer Aided Geometric elasticity were the first appearance of Euler Spiral Design. This important feature can be added on to a regular published by James Bernoulli in 1694. circular curve. The spiral can be defined as a curve segment The logarithmic, or equiangular spiral was first that provides a gradual transition between a straight line to a discovered by Rene Descartes (1596-1650) in 1637 by circle. In engineering, spirals are used to overcome the abrupt representing various curves with the help of equations. change in curvature and superelevation that occurs between Logarithmic spiral was one of those curves which at that tangent and circular curve especially for moving objects time drew the attention of mathematicians. At present, (Misro et al., 2015). that equation is written in the form 푟 = 푒훼휃. A parabolic The study of the natural structures will help numerous spiral can also be represented by the mathematical designers, architects, or even engineers to learn the secrets of equation 푟2 = 푎2휃. This spiral discovered by Bonaventura each natural form. Archetypal motif in spiral curve itself Cavalieri (1598-1647) creates a curve commonly known as brings its own uniqueness that can be represented in various a parabolic spiral (Mukhopadhyay, 2004). forms. Spirals that consist of strength, versatility, and Recently, the study of spiral construction using any kind pleasing looks will be the indicator for designers. The study of of method has aspired many researchers, including the the natural spiral form is inclusive of the features of human use of trigonometric Bézier curve that comprises the face that were derived by using golden spiral, whereby the flexibility of dynamic parameters. Previously, (Misro et al., ratio represented by the spiral constant is the only growth 2017) had published his work about spiral curve using ratio by which a new unit can grow in proportion to the old cubic trigonometric Bézier curve. This research proved unit; and still retain the same shape. This is exactly the same that spiral curves can be constructed using trigonometric process of growth in a spiral shell. function and not limited to only polynomial and hyperbolic function (logarithmic spiral). *Corresponding author’s e-mail: [email protected] ASM Science Journal, Volume 12, Special Issue 5, 2019 for ICoAIMS2019 In this research, a method to construct a spiral curve by 1 2 2 푃3 = 푃2 + (2푢1 − 2푣1 + 푢0푢2 − 푣0푣2, 4푢1푣1 increasing the number of segments will be proposed. 15 + 푢 푣 + 푢 푣 ), Therefore, a higher degree of curve is required in order to 0 2 2 0 1 bring more flexibility to the spiral curve. Section 2 briefly 푃 = 푃 + (푢 푢 − 푣 푣 , 푢 푣 + 푢 푣 ), 4 3 5 1 2 1 2 1 2 2 1 explains the background notations used throughout this 1 2 2 푃5 = 푃4 + (푢2 − 푣2 , 2푢2푣2), (3) research including the basis function of quintic trigonometric 5 Bézier curve. Section 3 summarises all the conditions of the Pythagorean Hodograph (PH) quintic trigonometric Bézier where 푃0 is arbitrarily chosen. PH curve can be defined in spiral curve. Another four templates of transition curves will parametric form as be demonstrated in Section 4 to 7. Some remarks and suggestions for future works are concluded in Section 8. 푧′(푡) = (푢(푡)2 − 푣(푡)2, 2푢(푡)푣(푡)), 0 ≤ 푡 ≤ 1 (4) Where 2 2 II. NOTATION AND 푢(푡) = 푢0(1 − 푡) + 2푢1(1 − 푡)푡 + 푢2푡 , CONVENTION 푣(푡) = 푣 (1 − 푡)2 + 2푣 (1 − 푡)푡 + 푣 푡2. (5) 0 1 2 Quintic Trigonometric Bézier curve with local dynamic Its signed curvature 휅(푡) is given by parameters 푝 and 푞 proposed by (Misro et al., 2017b) will be used throughout this paper, and given as follows 푧′(푡)× 푧′′(푡) 2(푢(푡)푣′(푡)−푢′(푡)푣(푡)) 휅(푡) = ′ 3 = 2 2 2 (6) ‖푧 (푡)‖ (푢(푡) +푣(푡) ) 5 푧 (푡) = ∑푖=0 푃푖푔푖(푡) (1) III. QUINTIC TRIGONOMETRIC where 푃푖 are control points and 푔푖 be the quintic trigonometric BÉZIER SPIRAL CURVE basis function for every 푖 = 0, 1, 2, 3, 4, 5 which are defined as Apart from cubic Bézier curve, PH quintic Bézier curve is 휋 푡 휋 푡 oftenly used as a basis function to construct transition 푓 (푡) = (1 − 푠푖푛 )4 (1 − 푝 푠푖푛 ), 0 2 2 curve (Habib & Sakai, 2005; Walton & Meek, 2004). In 휋 푡 휋 푡 휋 푡 푓 (푡) = 푠푖푛 (1 − 푠푖푛 )3 (4 + 푝 − 푝 푠푖푛 ), 1 2 2 2 (Misro et al., 2017c), the authors only constructed PH 휋 푡 2 휋 푡 휋 푡 휋 푡 푓 (푡) = (1 − 푠푖푛 ) (1 − 푐표푠 ) (8 푠푖푛 + 3 푐표푠 + 9), quintic trigonometric Bézier transition curve. Therefore, in 2 2 2 2 2 휋 푡 2 휋 푡 휋 푡 휋 푡 this paper, we will construct spiral curves using quintic 푓3(푡) = (1 − 푐표푠 ) (1 − 푠푖푛 ) (8 푐표푠 + 3 푠푖푛 + 9), 2 2 2 2 trigonometric Bézier with the following conditions to be 휋 푡 휋 푡 휋 푡 푓 (푡) = 푐표푠 (1 − 푐표푠 )3 (4 + 푞 − 푞 푐표푠 ), 4 2 2 2 satisfied 휋 푡 휋 푡 푓 (푡) = (1 − 푐표푠 )4(1 − 푞 푐표푠 ). (2) 5 2 2 1 Local dynamic parameters of 푝 and 푞 in Equation (2) will 푧(0) = (0, 0), (휅(0), 휅(1)) = (0, ), (7) 푟 ( ) enable the curve to become more flexible. The curve 푧 푡 = 푧′(0) ∥ (1,0), 푧′(1) ∥ (cos 휃 , sin 휃) (8) (푥(푡), 푦(푡)) is said to be a PH curve if 푥′(푡)2 +푦′(푡)2 can be 휋 휃 ∈ (0, ) is an angle that is measured anti-clockwise from expressed as the square of polynomial in 푡. By using the result 2 ′ ′ given by (Farouki & Sakkalis, 1990), control points 푃푖 of the 푧 (0) to 푧 (1). Parameter 푟 is referred as the radius of the quintic trigonometric Bézier curve are as follows circle. Taking quintic trigonometric Bézier curve in Equation (1) with basis function in Equation (2), our initial 1 starting point will be at 푧(0) = (0, 0) in Equation (7). To 푃 = 푃 + (푢2 − 푣2, 2푢 푣 ), 1 0 5 0 0 0 0 have a spiral curve from a straight line to a circle, we need 1 푃 = 푃 + (푢 푢 − 푣 푣 , 푢 푣 + 푢 푣 ), 1 2 1 5 0 1 0 1 0 1 1 0 휅(0) = 0 and 휅(1) = . Its curvature begins with zero at the 푟 straight line and increases linearly with its curve length. Both initial value and end value of the curvature are 209 ASM Science Journal, Volume 12, Special Issue 5, 2019 for ICoAIMS2019 crucial for this spiral curve to ensure a smooth continuity at varies from −4 to 1. the joints. Then, parallel equation in Equation (8) needs to be satisfied before we can obtain the following unknowns such as 푑3 푑3 휃 (푢 , 푢 , 푢 ) = (푚 , , 푑 cos ), 0 1 2 휃 휃 4푟 sin 4푟 sin 2 2 2 휃 (푣 , 푣 , 푣 ) = (0,0, 푑 sin ) (9) 0 1 2 2 with positive parameters 푢0 = 푚푢1 and 푑 = √푠푟 whereas 푚 and 푠 are free parameters to alter the shape of the curve. The Figure 2. Curvature profile of spiral quintic parameter 푚 and 푢0 act as global dynamic parameters that trigonometric Bézier curve will depend on the value of 휃. Thus, quintic spiral curves 푧(푡) that are satisfying the conditions in Equation (7) and Equation (8) can be found. Therefore, the quintic trigonometric Bézier spiral curve can be written a 5 푧(푡) = ∑푖=0 푃푖푔푖(푡) = 푃0푔0(푡) + 푃1푔1(푡) + 푃2푔2(푡) + 푃3푔3(푡) + 푃4푔4(푡) + 푃5푔5(푡) (10) with 푃 = 1, 2, 3, 4, 5 as in Equation (3). 푖 Figure 3. Curvature derivative of spiral quintic trigonometric Bézier curve Curvature profile in Figure 2 is almost linearly increasing until 푡 = 0.85, where it starts to have a flat value until 푡 = 1 . This shows that the curve is entering the circular curve of the circle at the end of the curvature.
Recommended publications
  • Coverrailway Curves Book.Cdr
    RAILWAY CURVES March 2010 (Corrected & Reprinted : November 2018) INDIAN RAILWAYS INSTITUTE OF CIVIL ENGINEERING PUNE - 411 001 i ii Foreword to the corrected and updated version The book on Railway Curves was originally published in March 2010 by Shri V B Sood, the then professor, IRICEN and reprinted in September 2013. The book has been again now corrected and updated as per latest correction slips on various provisions of IRPWM and IRTMM by Shri V B Sood, Chief General Manager (Civil) IRSDC, Delhi, Shri R K Bajpai, Sr Professor, Track-2, and Shri Anil Choudhary, Sr Professor, Track, IRICEN. I hope that the book will be found useful by the field engineers involved in laying and maintenance of curves. Pune Ajay Goyal November 2018 Director IRICEN, Pune iii PREFACE In an attempt to reach out to all the railway engineers including supervisors, IRICEN has been endeavouring to bring out technical books and monograms. This book “Railway Curves” is an attempt in that direction. The earlier two books on this subject, viz. “Speed on Curves” and “Improving Running on Curves” were very well received and several editions of the same have been published. The “Railway Curves” compiles updated material of the above two publications and additional new topics on Setting out of Curves, Computer Program for Realignment of Curves, Curves with Obligatory Points and Turnouts on Curves, with several solved examples to make the book much more useful to the field and design engineer. It is hoped that all the P.way men will find this book a useful source of design, laying out, maintenance, upgradation of the railway curves and tackling various problems of general and specific nature.
    [Show full text]
  • ALL ABOUT SPIRALS a Spiral Can Be Described As Any 2D Continuous Curve Where the Radial Distance R from the Origin Equals a Specified Function of the Angle Θ
    , ALL ABOUT SPIRALS A spiral can be described as any 2D continuous curve where the radial distance r from the origin equals a specified function of the angle θ. Mathematically it has the unique derivative given by- dr=(df/dθ)dθ with r=0 at θ=0 On integrating one finds- () ∫ 푑푡 r= This solution yields two simple forms. The first occurs when df/dt=α. We get- r=α(θ) This simplest of continuous spiral figures is just the Archimedes Spiral discovered by him over two thousand years ago. Setting the constant to α=3/π , we have the plot- Note that the distance between turns of the spiral remain the same. A second simple spiral is found when df/dθ=βf, where f=exp(훽휃). If we take r=1 at θ=0, it produces- r=exp(βθ) or the equivalent ln(r)=βθ It is known as the Logarithmic Spiral or Bernoulli’s Spiral. Here is its graph when β=1/10- A property of the Bernouli Spiral is that the angle between any radial line and the tangent to the spiral remains a constant. J. Bernoulli was so intrigued by this spiral that he had a copy placed on his tombstone in Basel Switzerland. Here I am pointing to it back in 2000 - One can construct numerous other spirals by simply changing the form of df(θ)/dθ and picking a starting point r(θ0)=r0. So if df/dθ=α/[2sqrt(θ)] and r=0 when θ=0, we get the spiral– r=αsqrt(θ) It looks as follows- This figure is known as the Fermat Spiral.
    [Show full text]
  • From Spiral to Spline: Optimal Techniques in Interactive Curve Design
    From Spiral to Spline: Optimal Techniques in Interactive Curve Design Raphael Linus Levien Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-162 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-162.html December 3, 2009 Copyright © 2009, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. From Spiral to Spline: Optimal Techniques in Interactive Curve Design by Raphael Linus Levien A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Carlo S´equin, Chair Professor Jonathan Shewchuk Professor Jasper Rine Fall 2009 From Spiral to Spline: Optimal Techniques in Interactive Curve Design Copyright © 2009 by Raphael Linus Levien Abstract From Spiral to Spline: Optimal Techniques in Interactive Curve Design by Raphael Linus Levien Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences University of California, Berkeley Professor Carlo S´equin, Chair A basic technique for designing curved shapes in the plane is interpolating splines. The designer inputs a sequence of control points, and the computer fits a smooth curve that goes through these points.
    [Show full text]
  • Racing Line Optimization
    Racing Line Optimization by Ying Xiong B.E., Computer Science Shanghai Jiao Tong University (2009) Submitted to the School of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Computation for Design and Optimization at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2010 © Massachusetts Institute of Technology 2010. All rights reserved. Signature of Author . Computation for Design and Optimization, School of Engineering July 30, 2010 Certified by . Gilbert Strang Professor of Mathematics Thesis Advisor Accepted by . Karen Willcox Associate Professor of Aeronautics and Astronautics Co-Director, Computation for Design and Optimization Program 1 Contents Abstract ........................................................................................................................................... 4 1. Introduction ............................................................................................................................. 5 2. Problem formulation ................................................................................................................ 9 2.1 Problem formulation for two-dimensional racing tracks ................................................. 10 2.2 Problem formulation for three-dimensional tracks .......................................................... 12 2.2.1 Force analysis ........................................................................................................ 13 2.2.2 Three-dimensional constraints .............................................................................
    [Show full text]
  • Orange Peels and Fresnel Integrals
    Orange Peels and Fresnel Integrals LAURENT BARTHOLDI AND ANDRE´ HENRIQUES ut the skin of an orange along a thin spiral of The same spiral is also used in civil engineering: it constant width (Fig. 1) and place it flat on a table provides optimal curvature for train tracks between a CC(Fig. 2). A natural breakfast question, for a mathe- straight run and an upcoming bend [4, §14.1.2]. A train that matician, is what shape the spiral peel will have when travels at constant speed and increases the curvature of its flattened out. We derive a formula that, for a given cut trajectory at a constant rate will naturally follow an arc of width, describes the corresponding spiral’s shape. the Euler spiral. For the analysis, we parametrize the spiral curve by a The review [2] describes the history of the Euler spiral constant speed trajectory, and express the curvature of the and its three independent discoveries. flattened-out spiral as a function of time. For the purpose of our mathematical treatment, we shall This is achieved by comparing a revolution of the spiral replace the orange by a sphere of radius one. The spiral on on the orange with a corresponding spiral on a cone tan- the sphere is taken to be of width 1/N, as in Fig. 5. The area gent to the surface of the orange (Fig. 3, left). Once we of the sphere is 4p, so the spiral has a length of roughly 4p know the curvature, we derive a differential equation for N.
    [Show full text]
  • Sketch-Based Path Design by James Palmer Mccrae A
    Sketch-Based Path Design by James Palmer McCrae A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2008 by James Palmer McCrae Abstract Sketch-Based Path Design James Palmer McCrae Master of Science Graduate Department of Computer Science University of Toronto 2008 We first present a novel approach to sketching 2D curves with minimally varying cur- vature as piecewise clothoids. A stable and efficient algorithm fits a sketched piecewise linear curve using a number of clothoid segments with G2 continuity based on a specified error tolerance. We then present a system for conceptually sketching 3D layouts for road and other path networks. Our system makes four key contributions. First, we generate paths with piecewise linear curvature by fitting 2D clothoid curves to strokes sketched on a terrain. Second, the height of paths above the terrain is automatically determined using a new constraint optimization formulation of the occlusion relationships between sketched strokes. Third, we present the break-out lens, a novel widget inspired by break-out views used in engineering visualization, to facilitate the in-context and interactive manipulation of paths from alternate view points. Finally, our path construction is terrain sensitive. ii Acknowledgements I would like to acknowledge the efforts of my supervisor, Karan Singh, and thank him for his guidance over the duration of the Masters program. I learned much from him as a result of our meetings. I believe that his broad knowledge and talents as a supervisor brought out the best in me.
    [Show full text]
  • Orange Peels and Fresnel Integrals 1/N Laurent Bartholdi and Andre´ G
    ORANGE PEELS AND FRESNEL INTEGRALS 1=N LAURENT BARTHOLDI AND ANDRE´ G. HENRIQUES There are two standard ways of peeling an or- ange: either cut the skin along meridians, or cut it along a spiral. We consider here the second method, and study the shape of the spiral strip, when unfolded on a table. We derive a formula that describes the corresponding flattened-out spi- ral. Cutting the peel with progressively thinner strip widths, we obtain a sequence of increasingly long spirals. We show that, after rescaling, these FIGURE 1. An orange, assumed to be a spirals tends to a definite shape, known as the Eu- sphere of radius one, with spiral of width ler spiral. The Euler spiral has applications in 1=N. many fields of science. In optics, the illumination intensity at a point behind a slit is computed from the distance between two points on the Euler spi- ral. The Euler spiral also provides optimal curva- ture for train tracks between a straight run and an upcoming bend. It is striking that it can be also obtained with an orange and a kitchen knife. 1. OUTLINE Cut the skin of an orange along a thin spiral of constant width (fig. 1) and lay it flat on a table (fig. 2). 1 cm A natural breakfast question, for a mathematician, is which shape the spiral peel will have, when flattened out. We derive a formula that, for a given cut width, FIGURE 2. The flattened-out orange peel. describes the corresponding spiral’s shape. For the analysis, we parametrize the spiral curve arXiv:1202.3033v1 [math.HO] 14 Feb 2012 by a constant speed trajectory, and express the curva- ture of the flattened-out spiral as a function of time.
    [Show full text]
  • Leeds Thesis Template
    1 The classification and analysis of spirals in decorative designs Alice Edith Humphrey Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Design August 2013 2 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 3 – Analysis and Classification Method includes material published in: Humphrey, A. and Hann M.A. (2012) Steps Towards the Analysis of Geometric Decorative Motifs Using Shape-matching Techniques. in R.Bosch, D.McKenna and R.Sarhangi (eds) Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture. Phoenix, Arizona: Tessellations Publishing. pp.495-498. The method proposed and examples presented in this paper were the candidate's work. Prof. M.A.Hann presented the paper at the conference and provided comments and advice as to the phrasing of the published paper. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Alice Humphrey to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2013 The University of Leeds and Alice Humphrey 3 Acknowledgements I am grateful for the help and advice of my supervisor Prof.
    [Show full text]
  • Path Generation for High Speed Machining Using Spiral Curves
    191 Path Generation for High Speed Machining Using Spiral Curves Zhiyang Yao1 and Ajay Joneja2 1Chinese University of Hong Kong, [email protected] 2Hong Kong University of Science and Technology, [email protected] ABSTRACT As high speed machining is becoming more and more important in modern machines shops, generating efficient cutter path for high speed machining is highly desirable. For this type of path, it should have the least number of sharp turns as well as the second derivatives along the path is controllable is preferred. Archimedean spirals have no sharp turn, and the step-over between adjacent segments can also be controlled to a predefined value. A clothoid spiral has the property that the second derivative varies linearly with the length of the curve. Therefore, these spiral curves can be used to generate paths with constant cutter engagement values as well as maintain smooth movements while performing cornering and linking movements. In this paper, we will introduce a detailed approach which covers a 2D region in a very efficient manner by using the combination of Archimedean and clothoid spirals. Keywords: Path Planning; High Speed Machining; Archimedean Spiral; Clothoid Spiral. 1. INTRODUCTION High speed machining is becoming more and more important in modern machines shops, especially in aerospace machining, mold and die machining. High Speed Machining (HSM is short) is the use of higher spindle speeds and feed rates to remove material faster as well as maintain the quality of part finishing [1] .Ideally, along a cutter path in HSM, the cutter should have a constant chip load and usually with very a small step-over at very high feed rates.
    [Show full text]
  • On the Energy Density of Helical Proteins
    On the energy density of helical proteins Manuel Barros1 and Angel Ferr´andez2∗ 1Departamento de Geometr´ıa y Topolog´ıa,Facultad de Ciencias Universidad de Granada, 18071-Granada, Spain. E-mail address: [email protected] 2Departamento de Matem´aticas,Universidad de Murcia Campus de Espinardo, 30100-Murcia, Spain. E-mail address: [email protected] Abstract We solve the problem of determining the energy actions whose moduli space of extremals contains the class of Lancret helices with a prescribed slope. We first see that the energy density should be linear both in the total bending and in the total twisting, such that the ratio between the weights of them is the prescribed slope. This will give an affirmative answer to the conjecture stated in [2]. Then, we normalize to get the best choice for the helical energy. It allows us to show that the energy, for instance of a protein chain, does not depend on the slope and is invariant under homotopic changes of the cross section which determines the cylinder where the helix is lying. In particular, the energy of a helix is not arbitrary, but it is given as natural multiples of some basic quantity of energy. PACS: 04.20.-q, 02.40.-k MSC: 53C40; 53C50 Keywords: Energy action, Lancret helix, protein chain. 1 Motivation The least action principle (also known as the Maupertuis principle) states that when a change occurs in Nature, the quantity of action necessary for the change is the least possible. It is certainly one of the fundamental props of the modern science, so the shapes in Nature must be stable, and so extremals, for a suitable action.
    [Show full text]
  • Some Patterns of Shape Change Controlled by Eigenstrain Architectures Sebastien Turcaud
    Some patterns of shape change controlled by eigenstrain architectures Sebastien Turcaud To cite this version: Sebastien Turcaud. Some patterns of shape change controlled by eigenstrain architectures. Materials. Université Grenoble Alpes, 2015. English. NNT : 2015GREAI005. tel-01206053 HAL Id: tel-01206053 https://tel.archives-ouvertes.fr/tel-01206053 Submitted on 28 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Ingénierie-matériaux mécanique énergétique environnement procédés production Arrêté ministériel : 7 août 2006 Présentée par Sébastien TURCAUD Thèse dirigée par Yves Bréchet et codirigée par Peter Fratzl préparée au sein du Laboratoire de Biomatériaux de l’Institut Max-Planck de Colloïdes et Interfaces (Potsdam, Allemagne) dans l’École Doctorale I-MEP2 Motifs de changement de forme contrôlés par des architectures de gonflement Thèse soutenue publiquement le 6 février 2015 devant le jury composé de : M. Yves Bréchet Directeur de thèse, SiMap (membre) M. Peter Fratzl Co-directeur de thèse, MPIKG (membre) M. John Dunlop Encadrant de thèse, MPIKG (membre) M. Denis Favier Professeur, UJF (président) M. Samuel Forest Professeur, Centre des matériaux (rapporteur) M.
    [Show full text]
  • Super Space Clothoids Romain Casati, Florence Bertails-Descoubes
    Super Space Clothoids Romain Casati, Florence Bertails-Descoubes To cite this version: Romain Casati, Florence Bertails-Descoubes. Super Space Clothoids. ACM Transactions on Graphics, Association for Computing Machinery, 2013, Proceedings of SIGGRAPH 2013, 32 (4), pp.Article No. 48. 10.1145/2461912.2461962. hal-00840335v3 HAL Id: hal-00840335 https://hal.inria.fr/hal-00840335v3 Submitted on 16 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Super Space Clothoids Romain Casati Florence Bertails-Descoubes INRIA and Laboratoire Jean Kuntzmann (Grenoble University, CNRS), France∗ Figure 1: Many physical strands exhibit a smooth curled geometry with affine-like curvature profile, which is captured and deformed accu- rately thanks to our new 3D dynamic primitive. From left to right, three examples of real strands whose shapes are synthesized and virtually deformed in real-time using a very low number of 3D clothoidal elements: a vine tendril (4 elements), a hair ringlet (2 elements), and a curled paper ribbon (1 single element). Left photograph courtesy of Jon Sullivan, pdphoto.org. Abstract 1 Introduction A key motivation in Computer Graphics is the creation of digi- Thin elastic filaments in real world such as vine tendrils, hair tal shapes and motions which capture or even enhance the visual ringlets or curled ribbons often depict a very smooth, curved shape complexity and beauty of nature.
    [Show full text]