Connectivity-Based Garbage Collection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 5 Names, Bindings, and Scopes
Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 5.2 Names 199 5.3 Variables 200 5.4 The Concept of Binding 203 5.5 Scope 211 5.6 Scope and Lifetime 222 5.7 Referencing Environments 223 5.8 Named Constants 224 Summary • Review Questions • Problem Set • Programming Exercises 227 CMPS401 Class Notes (Chap05) Page 1 / 20 Dr. Kuo-pao Yang Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 Imperative languages are abstractions of von Neumann architecture – Memory: stores both instructions and data – Processor: provides operations for modifying the contents of memory Variables are characterized by a collection of properties or attributes – The most important of which is type, a fundamental concept in programming languages – To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility 5.2 Names 199 5.2.1 Design issues The following are the primary design issues for names: – Maximum length? – Are names case sensitive? – Are special words reserved words or keywords? 5.2.2 Name Forms A name is a string of characters used to identify some entity in a program. Length – If too short, they cannot be connotative – Language examples: . FORTRAN I: maximum 6 . COBOL: maximum 30 . C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 . C# and Java: no limit, and all characters are significant . C++: no limit, but implementers often impose a length limitation because they do not want the symbol table in which identifiers are stored during compilation to be too large and also to simplify the maintenance of that table. -
Gotcha Again More Subtleties in the Verilog and Systemverilog Standards That Every Engineer Should Know
Gotcha Again More Subtleties in the Verilog and SystemVerilog Standards That Every Engineer Should Know Stuart Sutherland Sutherland HDL, Inc. [email protected] Don Mills LCDM Engineering [email protected] Chris Spear Synopsys, Inc. [email protected] ABSTRACT The definition of gotcha is: “A misfeature of....a programming language...that tends to breed bugs or mistakes because it is both enticingly easy to invoke and completely unexpected and/or unreasonable in its outcome. A classic gotcha in C is the fact that ‘if (a=b) {code;}’ is syntactically valid and sometimes even correct. It puts the value of b into a and then executes code if a is non-zero. What the programmer probably meant was ‘if (a==b) {code;}’, which executes code if a and b are equal.” (http://www.hyperdictionary.com/computing/gotcha). This paper documents 38 gotchas when using the Verilog and SystemVerilog languages. Some of these gotchas are obvious, and some are very subtle. The goal of this paper is to reveal many of the mysteries of Verilog and SystemVerilog, and help engineers understand the important underlying rules of the Verilog and SystemVerilog languages. The paper is a continuation of a paper entitled “Standard Gotchas: Subtleties in the Verilog and SystemVerilog Standards That Every Engineer Should Know” that was presented at the Boston 2006 SNUG conference [1]. SNUG San Jose 2007 1 More Gotchas in Verilog and SystemVerilog Table of Contents 1.0 Introduction ............................................................................................................................3 2.0 Design modeling gotchas .......................................................................................................4 2.1 Overlapped decision statements ................................................................................... 4 2.2 Inappropriate use of unique case statements ............................................................... -
Advanced Data Structures
Advanced Data Structures PETER BRASS City College of New York CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521880374 © Peter Brass 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-43685-7 eBook (EBL) ISBN-13 978-0-521-88037-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page xi 1 Elementary Structures 1 1.1 Stack 1 1.2 Queue 8 1.3 Double-Ended Queue 16 1.4 Dynamical Allocation of Nodes 16 1.5 Shadow Copies of Array-Based Structures 18 2 Search Trees 23 2.1 Two Models of Search Trees 23 2.2 General Properties and Transformations 26 2.3 Height of a Search Tree 29 2.4 Basic Find, Insert, and Delete 31 2.5ReturningfromLeaftoRoot35 2.6 Dealing with Nonunique Keys 37 2.7 Queries for the Keys in an Interval 38 2.8 Building Optimal Search Trees 40 2.9 Converting Trees into Lists 47 2.10 -
Advanced Practical Programming for Scientists
Advanced practical Programming for Scientists Thorsten Koch Zuse Institute Berlin TU Berlin SS2017 The Zen of Python, by Tim Peters (part 1) ▶︎ Beautiful is better than ugly. ▶︎ Explicit is better than implicit. ▶︎ Simple is better than complex. ▶︎ Complex is better than complicated. ▶︎ Flat is better than nested. ▶︎ Sparse is better than dense. ▶︎ Readability counts. ▶︎ Special cases aren't special enough to break the rules. ▶︎ Although practicality beats purity. ▶︎ Errors should never pass silently. ▶︎ Unless explicitly silenced. ▶︎ In the face of ambiguity, refuse the temptation to guess. Advanced Programming 78 Ex1 again • Remember: store the data and compute the geometric mean on this stored data. • If it is not obvious how to compile your program, add a REAME file or a comment at the beginning • It should run as ex1 filenname • If you need to start something (python, python3, ...) provide an executable script named ex1 which calls your program, e.g. #/bin/bash python3 ex1.py $1 • Compare the number of valid values. If you have a lower number, you are missing something. If you have a higher number, send me the wrong line I am missing. File: ex1-100.dat with 100001235 lines Valid values Loc0: 50004466 with GeoMean: 36.781736 Valid values Loc1: 49994581 with GeoMean: 36.782583 Advanced Programming 79 Exercise 1: File Format (more detail) Each line should consists of • a sequence-number, • a location (1 or 2), and • a floating point value > 0. Empty lines are allowed. Comments can start a ”#”. Anything including and after “#” on a line should be ignored. -
Fast As a Shadow, Expressive As a Tree: Hybrid Memory Monitoring for C
Fast as a Shadow, Expressive as a Tree: Hybrid Memory Monitoring for C Nikolai Kosmatov1 with Arvid Jakobsson2, Guillaume Petiot1 and Julien Signoles1 [email protected] [email protected] SASEFOR, November 24, 2015 A.Jakobsson, N.Kosmatov, J.Signoles (CEA) Hybrid Memory Monitoring for C 2015-11-24 1 / 48 Outline Context and motivation Frama-C, a platform for analysis of C code Motivation The memory monitoring library An overview Patricia trie model Shadow memory based model The Hybrid model Design principles Illustrating example Dataflow analysis An overview How it proceeds Evaluation Conclusion and future work A.Jakobsson, N.Kosmatov, J.Signoles (CEA) Hybrid Memory Monitoring for C 2015-11-24 2 / 48 Context and motivation Frama-C, a platform for analysis of C code Outline Context and motivation Frama-C, a platform for analysis of C code Motivation The memory monitoring library An overview Patricia trie model Shadow memory based model The Hybrid model Design principles Illustrating example Dataflow analysis An overview How it proceeds Evaluation Conclusion and future work A.Jakobsson, N.Kosmatov, J.Signoles (CEA) Hybrid Memory Monitoring for C 2015-11-24 3 / 48 Context and motivation Frama-C, a platform for analysis of C code A brief history I 90's: CAVEAT, Hoare logic-based tool for C code at CEA I 2000's: CAVEAT used by Airbus during certification process of the A380 (DO-178 level A qualification) I 2002: Why and its C front-end Caduceus (at INRIA) I 2006: Joint project on a successor to CAVEAT and Caduceus I 2008: First public release of Frama-C (Hydrogen) I Today: Frama-C Sodium (v.11) I Multiple projects around the platform I A growing community of users. -
Rockjit: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity
RockJIT: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity Ben Niu Gang Tan Lehigh University Lehigh University 19 Memorial Dr West 19 Memorial Dr West Bethlehem, PA, 18015 Bethlehem, PA, 18015 [email protected] [email protected] ABSTRACT For performance, modern managed language implementations Managed languages such as JavaScript are popular. For perfor- adopt Just-In-Time (JIT) compilation. Instead of performing pure mance, modern implementations of managed languages adopt Just- interpretation, a JIT compiler dynamically compiles programs into In-Time (JIT) compilation. The danger to a JIT compiler is that an native code and performs optimization on the fly based on informa- attacker can often control the input program and use it to trigger a tion collected through runtime profiling. JIT compilation in man- vulnerability in the JIT compiler to launch code injection or JIT aged languages is the key to high performance, which is often the spraying attacks. In this paper, we propose a general approach only metric when comparing JIT engines, as seen in the case of called RockJIT to securing JIT compilers through Control-Flow JavaScript. Hereafter, we use the term JITted code for native code Integrity (CFI). RockJIT builds a fine-grained control-flow graph that is dynamically generated by a JIT compiler, and code heap for from the source code of the JIT compiler and dynamically up- memory pages that hold JITted code. dates the control-flow policy when new code is generated on the fly. In terms of security, JIT brings its own set of challenges. First, a Through evaluation on Google’s V8 JavaScript engine, we demon- JIT compiler is large and usually written in C/C++, which lacks strate that RockJIT can enforce strong security on a JIT compiler, memory safety. -
Speculative Separation for Privatization and Reductions
Speculative Separation for Privatization and Reductions Nick P. Johnson Hanjun Kim Prakash Prabhu Ayal Zaksy David I. August Princeton University, Princeton, NJ yIntel Corporation, Haifa, Israel fnpjohnso, hanjunk, pprabhu, [email protected] [email protected] Abstract Memory Layout Static Speculative Automatic parallelization is a promising strategy to improve appli- Speculative LRPD [22] R−LRPD [7] cation performance in the multicore era. However, common pro- Privateer (this work) gramming practices such as the reuse of data structures introduce Dynamic PD [21] artificial constraints that obstruct automatic parallelization. Privati- Polaris [29] ASSA [14] zation relieves these constraints by replicating data structures, thus Static Array Expansion [10] enabling scalable parallelization. Prior privatization schemes are Criterion DSA [31] RSSA [23] limited to arrays and scalar variables because they are sensitive to Privatization Manual Paralax [32] STMs [8, 18] the layout of dynamic data structures. This work presents Privateer, the first fully automatic privatization system to handle dynamic and Figure 1: Privatization Criterion and Memory Layout. recursive data structures, even in languages with unrestricted point- ers. To reduce sensitivity to memory layout, Privateer speculatively separates memory objects. Privateer’s lightweight runtime system contention and relaxes the program dependence structure by repli- validates speculative separation and speculative privatization to en- cating the reused storage locations, producing multiple copies in sure correct parallel execution. Privateer enables automatic paral- memory that support independent, concurrent access. Similarly, re- lelization of general-purpose C/C++ applications, yielding a ge- duction techniques relax ordering constraints on associative, com- omean whole-program speedup of 11.4× over best sequential ex- mutative operators by replacing (or expanding) storage locations. -
Systemverilog Testbench Constructs VCS®/Vcsi™Version X-2005.06 LCA August 2005
SystemVerilog Testbench Constructs VCS®/VCSi™Version X-2005.06 LCA August 2005 The SystemVerilog features of the Native Testbench technology in VCS documented here are currently available to customers as a part of an Limited Access program. Using these features requires additional LCA license features. Please contact you local Synopsys AC for more details. Comments? E-mail your comments about this manual to [email protected]. Copyright Notice and Proprietary Information Copyright 2005 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement. Destination Control Statement All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with them. Disclaimer SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, -
Download/Repository/Ivan Fratric.Pdf, 2012
UC Irvine UC Irvine Electronic Theses and Dissertations Title Binary Recompilation via Dynamic Analysis and the Protection of Control and Data-flows Therein Permalink https://escholarship.org/uc/item/4gd0b9ht Author Nash, Joseph Michael Publication Date 2020 License https://creativecommons.org/licenses/by-sa/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Binary Recompilation via Dynamic Analysis and the Protection of Control and Data-flows Therein DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Joseph Nash Dissertation Committee: Professor Michael Franz, Chair Professor Ardalan Amiri Sani Professor Alexander V. Veidenbaum 2020 Parts of Chapter3 c 2020 ACM Reprinted, with permission, from BinRec: Attack Surface Reduction Through Dynamic Binary Recovery., Anil Altinay, Joseph Nash, Taddeus Kroes, Prahbu Rajasekaran, Dixin Zhou, Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Herbert Bos, Cristiano Giuffrida, Michael Franz, in Proceedings of the Fifteenth EuroSys Conference , EUROSYS 2020. Parts of Chapter5 c 2018 Springer. Reprinted, with permission, from Hardware Assisted Randomization of Data, Brian Belleville, Hyungon Moon, Jangseop Shin, Dongil Hwang, Joseph M. Nash, Seonhwa Jung, Yeoul Na, Stijn Volckaert, Per Larsen, Yunheung Paek, Michael Franz , in Proceedings of the 21st International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2018. Parts of Chapter4 c 2017 ACM. Reprinted, with permission, from Control-Flow Integrity: Precision, Security, and Performance, Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, Mathias Payer. , in Proceedings of the 21st International Symposium on Research in Attacks, Intrusions and Defenses, ACM Computing Surveys 2017. -
Software II: Principles of Programming Languages Introduction
Software II: Principles of Programming Languages Lecture 5 – Names, Bindings, and Scopes Introduction • Imperative languages are abstractions of von Neumann architecture – Memory – Processor • Variables are characterized by attributes – To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility Names • Design issues for names: – Are names case sensitive? – Are special words reserved words or keywords? Names (continued) • Length – If too short, they cannot be connotative – Language examples: • FORTRAN 95: maximum of 31 (only 6 in FORTRAN IV) • C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 (only 8 are significant K&R C ) • C#, Ada, and Java: no limit, and all are significant • C++: no limit, but implementers often impose one Names (continued) • Special characters – PHP: all variable names must begin with dollar signs – Perl: all variable names begin with special characters, which specify the variable’s type – Ruby: variable names that begin with @ are instance variables; those that begin with @@ are class variables Names (continued) • Case sensitivity – Disadvantage: readability (names that look alike are different) • Names in the C-based languages are case sensitive • Names in others are not • Worse in C++, Java, and C# because predefined names are mixed case (e.g. IndexOutOfBoundsException ) Names (continued) • Special words – An aid to readability; used to delimit or separate statement clauses • A keyword is a word that is special only -
Practical Analysis of Framework-Intensive Applications
PRACTICAL ANALYSIS OF FRAMEWORK-INTENSIVE APPLICATIONS by BRUNO DUFOUR A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL –NEW BRUNSWICK RUTGERS,THE STATE UNIVERSITY OF NEW JERSEY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN COMPUTER SCIENCE WRITTEN UNDER THE DIRECTION OF BARBARA G. RYDER AND APPROVED BY New Brunswick, New Jersey January 2010 ABSTRACT OF THE DISSERTATION Practical analysis of framework-intensive applications by BRUNO DUFOUR Dissertation director: Barbara G. Ryder Many modern applications (e.g., web applications) are composed of a relatively small amount of application code that calls a large number of third-party libraries and frame- works. Such framework-intensive systems typically exhibit different characteristics from traditional applications. Current tools and techniques are often inadequate in analyzing applications of such scale and complexity. Approaches based on static analysis suffer problems of insufficient scalability and/or insufficient precision. Purely dynamic analy- ses, introduce too much execution overhead, especially for production systems, or are too limited in the information gathered. The main contribution of this thesis is a new analysis paradigm, blended analysis, com- bines elements of static and dynamic analyses in order to enable analyses of framework- intensive applications that achieve good precision at a practical cost. This is accomplished by narrowing the focus of a static analysis to a set of executions of interest identified us- ing a lightweight dynamic analysis. We also present an optimization technique that further reduces the amount of code to be analyzed by removing infeasible basic blocks, and leads to significant increases in scalability and precision of the analysis. -
Detecting Cacheable Data to Remove Bloat
Cachetor: Detecting Cacheable Data to Remove Bloat Khanh Nguyen and Guoqing Xu University of California, Irvine, CA, USA {khanhtn1, guoqingx}@ics.uci.edu ABSTRACT 1. INTRODUCTION Modern object-oriented software commonly suffers from runtime Many applications suffer from chronic runtime bloat—excessive bloat that significantly affects its performance and scalability. Stud- memory usage and run-time work to accomplish simple tasks— ies have shown that one important pattern of bloat is the work re- that significantly affects scalability and performance. Our experi- peatedly done to compute the same data values. Very often the ence with dozens of large-scale, real-world applications [33, 35, cost of computation is very high and it is thus beneficial to mem- 36, 37] shows that a very important source of runtime bloat is the oize the invariant data values for later use. While this is a com- work repeatedly done to compute identical data values—if the com- mon practice in real-world development, manually finding invariant putation is expensive, significant performance improvement can data values is a daunting task during development and tuning. To be achieved by memoizing1 these values and avoiding computing help the developers quickly find such optimization opportunities for them many times. In fact, caching important data (instead of re- performance improvement, we propose a novel run-time profiling computing them) is already a well-known programming practice. tool, called Cachetor, which uses a combination of dynamic depen- For example, in the white paper “WebSphere Application Server dence profiling and value profiling to identify and report operations Development Best Practices for Performance and Scalability” [3], that keep generating identical data values.