Analysis of Human Y-Family DNA Polymerases and Primpol by Pre

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Human Y-Family DNA Polymerases and Primpol by Pre Analysis of Human Y-Family DNA Polymerases and PrimPol by Pre-Steady-State Kinetic Methods Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By E. John P. Tokarsky Graduate Program in Biophysics The Ohio State University 2018 Dissertation Committee Dr. Zucai Suo, Advisor Dr. Charles Bell Dr. Jeff Kuret Dr. Zhengrong Wu Copyrighted by E. John P. Tokarsky 2018 2 Abstract Eukaryotic genomic DNA is efficiently and accurately replicated to ensure that an exact copy is created before cell division occurs. The complex machinery involved in DNA replication is tightly coordinated and regulated to ensure it proceeds in a relatively uninhibited manner. The enzymes responsible for copying the genome are known as DNA polymerases and these are responsible for catalyzing nucleotidyl transfer of the building blocks of DNA, deoxyribonucleotides (dNTPs), onto growing primer strands in the 5′-3′ direction. The active sites of DNA polymerases allow them to facilitate template-dependent nucleotidyl transfer based on Watson-Crick base pairing rules, i.e. adenine:thymine and cytosine:guanine (A:T and C:G). In humans, these enzymes must proceed at an extremely fast rate in order to replicate approximately 6 billion base pairs during each cell cycle. Reactive hydrocarbons, high energy UV-light, or free radicals generated during cellular processes (i.e. electron transport chain), modify DNA bases that can cause DNA polymerases to stall. Specialized DNA polymerases, from the Y-family, catalyze translesion DNA synthesis to replicate through modified DNA bases in order for the replication machinery to continue efficient DNA synthesis. Y-family DNA polymerases are able to accommodate bulky, modified bases into their active sites because they are flexible, and solvent-exposed. This characteristic makes them perfect candidates to bypass many types of DNA damage. However, these flexible active sites ii make them error-prone and thus, Y-family DNA polymerases must be tightly regulated to ensure that high levels of DNA mutations that lead to genetic disease, are not introduced. In this dissertation, I will describe my work with four human Y-family DNA polymerases, eta (hPolη), kappa (hPolκ), iota (hPolι), Rev1, and their abilities to bypass an air pollution-generated, bulky DNA lesion. 3-nitrobenzanthrone (3-NBA) is a byproduct of diesel fuel combustion that binds to particulate matter and is subsequently inhaled by humans. 3-NBA undergoes chemical modifications to become a reactive intermediate that subsequently modifies guanine bases producing N-(2′-deoxyguanosin-8- yl)-3-aminobenzanthrone (dGC8-N-ABA) lesions. We show that dGC8-N-ABA inhibits all four Y-family DNA polymerases in some manner, but hPolη and hPolκ had the ability to bypass the lesion over time, whereas hPolι and Rev1 were unable to bypass it after many hours. An in-depth kinetic analysis was performed with hPolη, to determine the effect of the presence of the lesion on the kinetic parameters of dNTP binding and nucleotidyl transfer rate, at positions upstream, opposite, and downstream from the dGC8-N-ABA. Directly opposite from the lesion, we found that hPolη had a 100-fold lower efficiency and an approximately 25% lower fidelity (i.e. ability to incorporate the correct nucleotide), with dATP being the highest misincorporation. This result is consistent with what has been found in other publications that show high levels of G→T transversion mutations occurring in human and mouse cells treated with 3-NBA. A specialized primase-polymerase known as PrimPol, was discovered in humans in 2013. PrimPol exhibits similar properties to Y-family polymerases such as displaying relatively low efficiency and fidelity, and for having the ability to bypass certain types of iii DNA damage. However, based on in vitro experiments, the polymerase and primase activities of PrimPol are differentially regulated based on whether it utilizes manganese (Mn2+) or magnesium (Mg2+) as a divalent metal ion cofactor for catalysis. We sought to determine the effect of divalent metal ions on the polymerase fidelity and sugar selectivity of PrimPol. We found that PrimPol was extremely error-prone (fidelity range 10-1 to 10-2) when utilizing Mn2+, but was ~100-fold more efficient, compared to Mg2+. Finally, we showed that PrimPol could incorporate the nucleoside analogs and anticancer drugs, cytarabine and gemcitabine, as efficiently as normal dCTP in the presence of either Mn2+ or Mg2+. iv Dedication To my parents, Eugene and Linda, who have supported me through it all. v Acknowledgements I have so many people to be grateful for during my journey as a graduate student. I would first like to thank my undergraduate and graduate advisor, Dr. Zucai Suo. He was the first person to give me a chance to succeed in research and always pushed me to do my very best. I am thankful for his advice and constant support over the years. I am thankful to my committee members, Dr. Jeff Kuret, Dr. Charles Bell, and Dr. Justin Wu, for offering helpful advice from the time I began candidacy, to the end of my dissertation defense. It meant a great deal to me to have you all as guides during my graduate career. My lab mates and friends, Dr. Walter Zahurancik, Dr. Varun Gadkari, Dr. Anthony Stephenson, Dr. Austin Raper, and (soon to be Dr.) Andrew Reed, I could not thank you enough for making work fun. To be able to work with such smart individuals every day is something that I will miss, and will never take for granted. I know that every single one of you will be successful in your lives, and I hope to be there for all of you. I want to thank my parents Eugene and Linda for their constant support throughout my entire life. I have had two wonderful parents that I always knew were in my corner no matter what challenges arose. I cannot thank you both enough for being there for me. My brother Joe, and sister Betsy have always been the older siblings that were there to keep me happy and laughing the entire way. I also wanted to show love to vi my sister-in-law, Lauren, and brother-in-law, Elliot, and to my three beautiful nieces, Guinevere, Samantha, and Phoebe. Lastly, I want to show my love and appreciation to my incredible fiancé, Kate Gilligan, who has seen me at my best and at my worst. I cannot wait to see what life has in store for us. vii Vita 2009-2013 B.S. Biology The Ohio State University, Columbus, OH 2013-2018 Ph.D. Biophysics The Ohio State University, Columbus, OH 2013-2018 Graduate Teaching Associate, Department of Chemistry and Biochemistry The Ohio State University, Columbus, OH Publications 1. Tokarsky, E.J., Wallenmeyer, P.C., Phi, K.K., Suo, Z. (2017) Significant impact of divalent metal ions on the fidelity, sugar selectivity, and drug incorporation efficiency of human PrimPol. DNA Repair. 49, 51-59. 2. Tokarsky, E.J., Gadkari, V.V., Zahurancik, W.J., Malik, C.K., Basu, A.K., Suo, Z. (2016) Pre-Steady-State Kinetic Investigation of Bypass of a Bulky Guanine Lesion by Human Y-family DNA Polymerases. DNA Repair. 46, 20-28. 3. Patra, A., Politica, D.A., Chatterjee, A., Tokarsky, E.J., Suo, Z., Basu, A.K., Stone, M.P., Egli, M. (2016) Mechanism of Error-Free Bypass of the Environmental viii Carcinogen N-(2- Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η. ChemBioChem. 17 (21), 2033 –2037. 4. Vyas, R., Efthimiopoulous G., Tokarsky, E.J., Malik, C.K., Basu, A.K., Suo, Z. (2015) Mechanistic Basis for the Bypass of a Bulky DNA Adduct Catalyzed by a Y- Family DNA Polymerase. J Am Chem Soc. 137 (37), 12131-12142. 5. Vyas, R., Reed, A.J., Tokarsky, E.J., and Suo, Z. (2015) Viewing DNA Polymerase β Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography. J Am Chem Soc. 137 (15), 5225-5230. 6. Gadkari, V.V., Tokarsky, E.J., Malik, C.K., Basu, A.K., and Suo, Z. (2014) Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-Family DNA Polymerase, DNA Repair. 21, 65-77. Fields of Study Major Field: Biophysics ix Table of Contents Abstract ............................................................................................................................... ii Dedication ........................................................................................................................... v Acknowledgements ............................................................................................................ vi Vita ................................................................................................................................... viii Table of Contents ................................................................................................................ x List of Schemes ................................................................................................................ xiii List of Tables ................................................................................................................... xiv List of Figures ................................................................................................................... xv Chapter 1. Introduction ....................................................................................................... 1 1.1 Introduction to DNA replication ............................................................................... 1 1.1.1 Origin licensing and helicase assembly ............................................................. 2 1.1.2
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Intimate Relations—Mitochondria and Ageing
    International Journal of Molecular Sciences Review Intimate Relations—Mitochondria and Ageing Michael Webb and Dionisia P. Sideris * Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA; [email protected] * Correspondence: [email protected] Received: 29 August 2020; Accepted: 6 October 2020; Published: 14 October 2020 Abstract: Mitochondrial dysfunction is associated with ageing, but the detailed causal relationship between the two is still unclear. Wereview the major phenomenological manifestations of mitochondrial age-related dysfunction including biochemical, regulatory and energetic features. We conclude that the complexity of these processes and their inter-relationships are still not fully understood and at this point it seems unlikely that a single linear cause and effect relationship between any specific aspect of mitochondrial biology and ageing can be established in either direction. Keywords: mitochondria; ageing; energetics; ROS; gene regulation 1. Introduction The last two decades have witnessed a dramatic transformation in our view of mitochondria, their basic biology and functions. While still regarded as functioning primarily as the eukaryotic cell’s generator of energy in the form of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (reduced form; NADH), mitochondria are now recognized as having a plethora of functions, including control of apoptosis, regulation of calcium, forming a signaling hub and the synthesis of various bioactive molecules. Their biochemical functions beyond ATP supply include biosynthesis of lipids and amino acids, formation of iron sulphur complexes and some stages of haem biosynthesis and the urea cycle. They exist as a dynamic network of organelles that under normal circumstances undergo a constant series of fission and fusion events in which structural, functional and encoding (mtDNA) elements are subject to redistribution throughout the network.
    [Show full text]
  • DNA Damage Tolerance by Eukaryotic DNA Polymerase and Primase Primpol
    http://www.diva-portal.org This is the published version of a paper published in International Journal of Molecular Sciences. Citation for the original published paper (version of record): Boldinova, E O., Wanrooij, P H., Shilkin, E S., Wanrooij, S., Makarova, A V. (2017) DNA Damage Tolerance by Eukaryotic DNA Polymerase and Primase PrimPol. International Journal of Molecular Sciences, 18(7): 1584 https://doi.org/10.3390/ijms18071584 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-139823 International Journal of Molecular Sciences Review DNA Damage Tolerance by Eukaryotic DNA Polymerase and Primase PrimPol Elizaveta O. Boldinova 1,†, Paulina H. Wanrooij 2,† ID , Evgeniy S. Shilkin 1, Sjoerd Wanrooij 2,* and Alena V. Makarova 1,* ID 1 Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia; [email protected] (E.O.B.); [email protected] (E.S.S.) 2 Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; [email protected] * Correspondence: [email protected] (S.W.); [email protected] (A.V.M.); Tel.: +46-72-246-03-09 (S.W.); +7-499-196-00-15 (A.V.M.) † These authors contributed equally to this work. Received: 26 June 2017; Accepted: 16 July 2017; Published: 21 July 2017 Abstract: PrimPol is a human deoxyribonucleic acid (DNA) polymerase that also possesses primase activity and is involved in DNA damage tolerance, the prevention of genome instability and mitochondrial DNA maintenance.
    [Show full text]
  • Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies
    biomolecules Review Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies Eva Vesela 1,2, Katarina Chroma 1, Zsofia Turi 1 and Martin Mistrik 1,* 1 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, Olomouc 779 00, Czech Republic; [email protected] (E.V.); [email protected] (K.C.); zsofi[email protected] (Z.T.) 2 MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK * Correspondence: [email protected]; Tel.: +420-585-634-170 Academic Editor: Rob de Bruin Received: 25 November 2016; Accepted: 10 February 2017; Published: 21 February 2017 Abstract: DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
    [Show full text]
  • Taiwanese Journal of Obstetrics & Gynecology
    Taiwanese Journal of Obstetrics & Gynecology 55 (2016) 419e422 Contents lists available at ScienceDirect Taiwanese Journal of Obstetrics & Gynecology journal homepage: www.tjog-online.com Short Communication Prenatal diagnosis of mosaic small supernumerary marker chromosome 17 associated with ventricular septal defect, developmental delay, and speech delay * Chih-Ping Chen a, b, c, d, e, f, , Sheng Chiang g, h, Kung-Liahng Wang g, h, i, Fu-Nan Cho j, Ming Chen k, l, m, Schu-Rern Chern b, Peih-Shan Wu n, Yen-Ni Chen a, Shin-Wen Chen a, Shun-Ping Chang k, l, Weu-Lin Chen a, Wayseen Wang b, o a Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan b Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan c Department of Biotechnology, Asia University, Taichung, Taiwan d School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan e Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan f Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan g Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taitung Branch, Taitung, Taiwan h MacKay Medical College, New Taipei City, Taiwan i Department of Obstetrics and Gynecology, Taipei Medical University, Taipei, Taiwan j Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan k Department of Medical Research, Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan l Department of Genomic Medicine, Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan m Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan n Gene Biodesign Co.
    [Show full text]
  • A Novel DNA Primase-Helicase Pair Encoded by Sccmec Elements Aleksandra Bebel†, Melissa a Walsh, Ignacio Mir-Sanchis‡, Phoebe a Rice*
    RESEARCH ARTICLE A novel DNA primase-helicase pair encoded by SCCmec elements Aleksandra Bebel†, Melissa A Walsh, Ignacio Mir-Sanchis‡, Phoebe A Rice* Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States Abstract Mobile genetic elements (MGEs) are a rich source of new enzymes, and conversely, understanding the activities of MGE-encoded proteins can elucidate MGE function. Here, we biochemically characterize three proteins encoded by a conserved operon carried by the Staphylococcal Cassette Chromosome (SCCmec), an MGE that confers methicillin resistance to Staphylococcus aureus, creating MRSA strains. The first of these proteins, CCPol, is an active A-family DNA polymerase. The middle protein, MP, binds tightly to CCPol and confers upon it the ability to synthesize DNA primers de novo. The CCPol-MP complex is therefore a unique primase- polymerase enzyme unrelated to either known primase family. The third protein, Cch2, is a 3’-to-5’ helicase. Cch2 additionally binds specifically to a dsDNA sequence downstream of its gene that is also a preferred initiation site for priming by CCPol-MP. Taken together, our results suggest that this is a functional replication module for SCCmec. *For correspondence: Introduction [email protected] Staphylococcus aureus is a dangerous human pathogen, due in part to the emergence of multi- drug-resistant strains such as MRSA (methicillin-resistant S. aureus). MRSA strains have acquired † Present address: Phage resistance to b-lactam antibiotics (including methicillin) mainly through horizontal gene transfer of a Consultants, Gdynia, Poland; mobile genomic island called staphylococcal cassette chromosome (SCC) (Moellering, 2012). ‡Umea˚ University, Umea˚ , SCCmec is a variant of SCC that carries a methicillin resistance gene, mecA.
    [Show full text]
  • S-Phase Checkpoint Regulations That Preserve Replication and Chromosome Integrity Upon Dntp Depletion
    Cell. Mol. Life Sci. DOI 10.1007/s00018-017-2474-4 Cellular and Molecular LifeSciences REVIEW S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion Michele Giannattasio1,2 · Dana Branzei1 Received: 25 November 2016 / Revised: 29 December 2016 / Accepted: 23 January 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract DNA replication stress, an important source Sources of DNA replication fork pausing, of genomic instability, arises upon different types of DNA slow-down and arrest replication perturbations, including those that stall repli- cation fork progression. Inhibitors of the cellular pool of DNA replication forks pause or stall at hard-to-replicate deoxynucleotide triphosphates (dNTPs) slow down DNA genomic regions containing natural pausing elements [1, synthesis throughout the genome. Following depletion of 2], at sites containing DNA lesions [3, 4], and in the pres- dNTPs, the highly conserved replication checkpoint kinase ence of DNA replication inhibitors [5, 6], such as inhibitors pathway, also known as the S-phase checkpoint, preserves of dNTP pools, and drugs that inhibit replicative DNA pol- the functionality and structure of stalled DNA replication ymerases and DNA topoisomerases (see Table 1). Numer- forks and prevents chromosome fragmentation. The under- ous chemical, physical or genetic perturbations can influ- lying mechanisms involve pathways extrinsic to replication ence the structure of specific genomic regions, induce DNA forks, such as those involving regulation of the ribonu- lesions, or inhibit activities required to synthesize DNA. cleotide reductase activity, the temporal program of origin The major categories of replication fork blocking elements, firing, and cell cycle transitions.
    [Show full text]
  • Hepatic Proteomic Analysis of Selenoprotein T Knockout Mice by TMT: Implications for the Role of Selenoprotein T in Glucose and Lipid Metabolism
    International Journal of Molecular Sciences Article Hepatic Proteomic Analysis of Selenoprotein T Knockout Mice by TMT: Implications for the Role of Selenoprotein T in Glucose and Lipid Metabolism Ke Li 1, Tiejun Feng 1, Leyan Liu 1, Hongmei Liu 1,2, Kaixun Huang 1 and Jun Zhou 1,2,* 1 Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; [email protected] (K.L.); [email protected] (T.F.); [email protected] (L.L.); [email protected] (H.L.); [email protected] (K.H.) 2 Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China * Correspondence: [email protected] Abstract: Selenoprotein T (SELENOT, SelT), a thioredoxin-like enzyme, exerts an essential oxidore- ductase activity in the endoplasmic reticulum. However, its precise function remains unknown. To gain more understanding of SELENOT function, a conventional global Selenot knockout (KO) mouse model was constructed for the first time using the CRISPR/Cas9 technique. Deletion of SELENOT caused male sterility, reduced size/body weight, lower fed and/or fasting blood glucose levels and lower fasting serum insulin levels, and improved blood lipid profile. Tandem mass tag (TMT) proteomics analysis was conducted to explore the differentially expressed proteins (DEPs) in the liver of male mice, revealing 60 up-regulated and 94 down-regulated DEPs in KO mice. The Citation: Li, K.; Feng, T.; Liu, L.; Liu, proteomic results were validated by western blot of three selected DEPs. The elevated expression of H.; Huang, K.; Zhou, J.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Characterization of Poldip2 Knockout Mice: Avoiding Incorrect Gene Targeting
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429447; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of Poldip2 knockout mice: avoiding incorrect gene targeting Bernard Lassègue1*, Sandeep Kumar2, Rohan Mandavilli1, Keke Wang1, Michelle Tsai1, Dong-Won Kang2, Marina S. Hernandes1, Alejandra San Martín1, Hanjoong Jo1,2, W. Robert Taylor1,2,3 and Kathy K. Griendling1 1Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 2Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 3Division of Cardiology, Atlanta VA Medical Center, Decatur, GA Running title: Poldip2 knockout mice Keywords: Poldip2, mouse, conditional knockout, constitutive knockout, gene targeting, ectopic targeting, gene duplication, unexpected mutation *Corresponding author: Bernard Lassègue Division of Cardiology Emory University School of Medicine 101 Woodruff Circle WMB 308B Atlanta, GA 30322 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429447; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract POLDIP2 is a multifunctional protein whose roles are only partially understood. Our laboratory previously reported physiological studies performed using a mouse gene trap model, which suffered from two limitations: perinatal lethality in homozygotes and constitutive Poldip2 inactivation. To overcome these limitations, we developed a new conditional floxed Poldip2 model. The first part of the present study shows that our initial floxed mice were affected by an unexpected mutation, which was not readily detected by Southern blotting and traditional PCR.
    [Show full text]
  • (NF1) As a Breast Cancer Driver
    INVESTIGATION Comparative Oncogenomics Implicates the Neurofibromin 1 Gene (NF1) as a Breast Cancer Driver Marsha D. Wallace,*,† Adam D. Pfefferle,‡,§,1 Lishuang Shen,*,1 Adrian J. McNairn,* Ethan G. Cerami,** Barbara L. Fallon,* Vera D. Rinaldi,* Teresa L. Southard,*,†† Charles M. Perou,‡,§,‡‡ and John C. Schimenti*,†,§§,2 *Department of Biomedical Sciences, †Department of Molecular Biology and Genetics, ††Section of Anatomic Pathology, and §§Center for Vertebrate Genomics, Cornell University, Ithaca, New York 14853, ‡Department of Pathology and Laboratory Medicine, §Lineberger Comprehensive Cancer Center, and ‡‡Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514, and **Memorial Sloan-Kettering Cancer Center, New York, New York 10065 ABSTRACT Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.
    [Show full text]
  • The M1 Aminopeptidase NPEPPS Is a Novel Regulator of Cisplatin
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433676; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The M1 aminopeptidase NPEPPS is a 2 novel regulator of cisplatin sensitivity 3 4 Robert T. Jones1,15, Andrew Goodspeed1,3,15, Maryam C. Akbarzadeh2,4,16, Mathijs Scholtes2,16, 5 Hedvig Vekony1, Annie Jean1, Charlene B. Tilton1, Michael V. Orman1, Molishree Joshi1,5, 6 Teemu D. Laajala1,6, Mahmood Javaid7, Eric T. Clambey8, Ryan Layer7,9, Sarah Parker10, 7 Tokameh Mahmoudi2,11, Tahlita Zuiverloon2,*, Dan Theodorescu12,13,14,*, James C. Costello1,3,* 8 9 1Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 10 USA 11 2 Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center 12 Rotterdam, Rotterdam, The Netherlands 13 3University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz 14 Medical Campus, Aurora, CO, USA 15 4Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical 16 Sciences, Tehran, Iran 17 5Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, 18 USA 19 6Department of Mathematics and Statistics, University of Turku, Turku, Finland. 20 7Computer Science Department, University of Colorado, Boulder 21 8Department of Anesthesiology, University
    [Show full text]