Simple 3-D Visualization of Some Common Mathematical Minimal Surfaces Using MATLAB

Total Page:16

File Type:pdf, Size:1020Kb

Simple 3-D Visualization of Some Common Mathematical Minimal Surfaces Using MATLAB Simple 3-D Visualization of Some Common Mathematical Minimal Surfaces using MATLAB Nasiha Muna1 and Albert E. Patterson2 1Department of Physics, Chemistry, and Mathematics, Alabama Agricultural and Mechanical (A&M) University, Normal, Alabama, 35762, USA. Email: [email protected] 2Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. Email: [email protected] The MATLAB code for this work is available at: https://github.com/pttrsnv2/Minimal_ Surfaces_Visualization_Code. This report and its code are published under a CC-BY 4.0 International license, so it can be used and modified with proper attribution to the authors. Abstract This report presents a simple approach for visualizing some common mathematical mini- mal surfaces using MATLAB tools. The studied minimal surfaces were the gyroid, lidinoid, Schwarz P surface, Schwarz D surface, Scherk tower, helicoid surface, catenoid surface, and Mobius strip. For each, the mathematic definition is given along with a simple matlab code for it and an example 3-D surface plot generated from the given code. 1 Introduction The selected minimal surfaces to be discussed in this report were the gyroid, lidinoid, Schwarz P surface, Schwarz D surface, Scherk tower, helicoid surface, catenoid surface, and Mobius strip. These were selected, as they represent a suitable subset of the available minimal surfaces and serve as good cases to demonstrate the simple approach proposed in this report. Some very complex surfaces, such as Costa surfaces, are not covered here and will be discussed in future works. Most minimal surfaces are sometimes relatively difficult to plot in three dimensions, as they are all typically defined by implicit or parametric functions (sometimes in the complex domain). Fortunately, appropriate built-in MATLAB functions can be used to plot each of the surfaces relative to its defining equation. The gyroid and lidinoid functions are triply periodic minimal surfaces of genus 3 embedded in R3 that possess no planar symmetry curves nor straight lines. They are the distinctive embedded surfaces of the associate families of the Schwarz P and H surfaces [1–3]. The gyroid function is typically defined as fgy = sin(x) cos(y) + sin(y) cos(z) + sin(z) cos(x) = 0 (1) while the lidinoid function is most often expressed as: 1 flid = (sin(2x) cos(y) sin(z) + sin(2y) cos(z) sin(x) + sin(2z) cos(x) sin(y)) 2 (2) 1 − (cos(2x) cos(2y) + cos(2y) cos(2z) + cos(2z)cos(2x)) + 0:15 = 0 2 The Schwarz minimal surfaces span many different kinds of forms, but the two most commonly- seen are the Schwarz Primitive (“Schwarz P”) and Schwarz Diamond (“Schwarz D”) surfaces [3–5]. The Schwarz P surface is the triply periodic minimal surface built from a skew hexagon inscribed in the edges of a regular octahedron. The Schwarz P surface encompasses sixfold junctions and is typically expressed as: 1 Minimal Surface Visualization with MATLAB Muna and Patterson fsp = cos(x) + cos(y) + cos(z) (3) The Schwarz D surface is similar to the Schwarz P except that it contains six skew quadrilaterals from a skew hexagon inscribed in the edges of a cube. It has two intertwined corresponding mazes, each holding the figure of a version of the diamond arrangement; unlike Schwarz P, Schwarz D had fourfold junctions. Schwarz D is most often expressed as: fsd = sin(x) sin(y) sin(z) + sin(x) cos(y) cos(z)+ (4) cos(x) sin(y) cos(z) + cos(x) cos(y) sin(z) = 0 The Scherk surface is a 1-parameter singly-periodic, complete, properly-embedded surface in R3 and can be modified in shape by defining new handles for it [6,7]. Several forms exist, but the most common is the Scherk tower, which can be defined as: fsc = sinh(x) sinh(y) − sin(z) (5) The helicoid surface is simply a non-algebraic surface that coils around an axis and is one of the “parametric” minimal surfaces discussed in this report. When used as a minimal surface, the edge of the surface is bounded by a circular helix and is therefore the only ruled minimal surface besides the plane. The helicoid is very commonly encountered in nature, with examples including seashells, horns, and polymer structures [8–10]. A good parametric equation to describe the surface is: x = u cos(t) y = u sin(t) (6) 2 z = t 3 where u and t are the parameters specified by the user. The catenoid surface is another parametric minimal surface, which is an infinite, boundless, and locally isometric to the helicoid surface previously discussed. The equations are mathematically similar to the helicoid, with removal of the helical boundary and jointing of the ends [3, 11]. This involves the use of hyperbolic sines and cosines in the equation, which can be expressed as: x = cos(α) sinh(v) sin(u) + sin(α) cosh(v) cos(u) y = − cos(α) sinh(v) cos(u) + sin(α) cosh(v) sin(u) (7) z = u cos(α) + v sin(α) where u and v are the parameters specified by the user and α = π=2 is the value for a catenoid (α = 0 corresponds to a helicoid) [12, 13]. Finally, the Mobius strip was examined. This is one of the most commonly-seen and known minimal surface in mathematics and the basic surface related to many other mathematical structures, including knots and Klein bottles [14–16]. A common parametric expression for the Mobius strip is: v u x = cos(u) 1 + cos 2 2 v u y = sin(u) 1 + cos (8) 2 2 v u z = sin 2 2 where u and v are the parameters specified by the user. Technical Report 2 Minimal Surface Visualization with MATLAB Muna and Patterson In each of the following subsections, the basic MATLAB code and a visualization of the 3-D surface are given. The first five (gyroid, lidinoid, Schwarz P, Schwarz D, and Scherk) are defined above by 3-D implicit equations, requiring the use of the fimplicit3 tool to plot. The others (helicoid, catenoid, and Mobius strip) are defined according to parametric equations and are therefore easier to plot using a standard fsurf built-in function. In all cases, the basic equation definition is given, followed by limits on the values of the variables or parameters, the mesh density setting, and the face color for the plot. All of these settings are infinitely-adjustable within the domain of the defining functions. It is recommended that MATLAB version 2017a or higher be used. 2 Minimal Surface Cases 2.1 Gyroid Technical Report 3 Minimal Surface Visualization with MATLAB Muna and Patterson 2.2 Lidinoid Figure 1: Lidinoid Figure 2: Lidinoid Technical Report 4 Minimal Surface Visualization with MATLAB Muna and Patterson 2.3 Schwarz P Surface Figure 3: Schwarz P Figure 4: Schwarz P Technical Report 5 Minimal Surface Visualization with MATLAB Muna and Patterson 2.4 Schwarz D Surface Figure 5: Schwarz D Figure 6: Schwarz D Technical Report 6 Minimal Surface Visualization with MATLAB Muna and Patterson 2.5 Scherk Surface Figure 7: Scherk Figure 8: Scherk Technical Report 7 Minimal Surface Visualization with MATLAB Muna and Patterson 2.6 Helicoid Surface Figure 9: Helicoid Figure 10: Helicoid Technical Report 8 Minimal Surface Visualization with MATLAB Muna and Patterson 2.7 Catenoid Surface Figure 11: Catenoid Figure 12: Catenoid Technical Report 9 Minimal Surface Visualization with MATLAB Muna and Patterson 2.8 Mobius Strip Figure 13: Mobius Figure 14: Mobius 3 Summary and Conclusions Minimal surfaces are very important in mathematics, art, and design. Various forms of minimal surfaces can be identified; visualizing minimal surfaces is important because it allows users to view and handle physical objects representing various natural and mathematical phenomena. By studying minimal surfaces, structures that are otherwise difficult to represent mathematically can be graphically displayed and understood. References [1] A. Weyhaupt, “Deformations of the gyroid and lidinoid minimal surfaces,” Pacific Journal of Mathe- matics, vol. 235, no. 1, pp. 137–171, 2008. [2] S. N. Krivoshapko and V. N. Ivanov, “Minimal surfaces,” in Encyclopedia of Analytical Surfaces, pp. 427–457, Springer International Publishing, 2015. Technical Report 10 Minimal Surface Visualization with MATLAB Muna and Patterson [3] H. Karcher and K. Polthier, “Construction of triply periodic minimal surfaces,” Philosophical Trans- actions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 354, no. 1715, pp. 2077–2104, 1996. [4] H. Karcher, “The triply periodic minimal surfaces of alan schoen and their constant mean curvature companions,” Manuscripta Mathematica, vol. 64, no. 3, pp. 291–357, 1989. [5] D. M. Anderson, H. T. Davis, J. C. C. Nitsche, and L. E. Scriven, “Periodic surfaces of prescribed mean curvature,” in Springer Proceedings in Physics, pp. 130–130, Springer Berlin Heidelberg, 1987. [6] A. J. Y. Hancco, G. A. Lobos, and V. R. Batista, “Explicit minimal scherk saddle towers of arbitrary even genera in r3,” Publicacions Matemàtiques, vol. 58, pp. 445–468, 2014. [7] J. Perez and M. Traizet, “The classification of singly periodic minimal surfaces with genus zero and scherk-type ends,” Transactions of the American Mathematical Society, vol. 359, pp. 965–990, 2007. [8] C. Mamaloukas, “On determination of developable and minimal surfaces,” International Journal of Pure and Applied Mathematics, vol. 39, pp. 193–201, 2007. [9] W. Meeks and H. Rosenberg, “The uniqueness of the helicoid,” Annals of Mathematics, vol. 161, no. 2, pp. 727–758, 2005. [10] R. Ghafouri and R. Bruinsma, “Helicoid to spiral ribbon transition,” Physical Review Letters, vol. 94, no. 13, 2005. [11] A. Boudaoud, P. Patrcio, and M. B. Amar, “The helicoid versus the catenoid: Geometrically induced bifurcations,” Physical Review Letters, vol.
Recommended publications
  • Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia
    Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia Brief information on some classes of the surfaces which cylinders, cones and ortoid ruled surfaces with a constant were not picked out into the special section in the encyclo- distribution parameter possess this property. Other properties pedia is presented at the part “Surfaces”, where rather known of these surfaces are considered as well. groups of the surfaces are given. It is known, that the Plücker conoid carries two-para- At this section, the less known surfaces are noted. For metrical family of ellipses. The straight lines, perpendicular some reason or other, the authors could not look through to the planes of these ellipses and passing through their some primary sources and that is why these surfaces were centers, form the right congruence which is an algebraic not included in the basic contents of the encyclopedia. In the congruence of the4th order of the 2nd class. This congru- basis contents of the book, the authors did not include the ence attracted attention of D. Palman [8] who studied its surfaces that are very interesting with mathematical point of properties. Taking into account, that on the Plücker conoid, view but having pure cognitive interest and imagined with ∞2 of conic cross-sections are disposed, O. Bottema [9] difficultly in real engineering and architectural structures. examined the congruence of the normals to the planes of Non-orientable surfaces may be represented as kinematics these conic cross-sections passed through their centers and surfaces with ruled or curvilinear generatrixes and may be prescribed a number of the properties of a congruence of given on a picture.
    [Show full text]
  • Embedded Minimal Surfaces, Exotic Spheres, and Manifolds with Positive Ricci Curvature
    Annals of Mathematics Embedded Minimal Surfaces, Exotic Spheres, and Manifolds with Positive Ricci Curvature Author(s): William Meeks III, Leon Simon and Shing-Tung Yau Source: Annals of Mathematics, Second Series, Vol. 116, No. 3 (Nov., 1982), pp. 621-659 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/2007026 Accessed: 06-02-2018 14:54 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics This content downloaded from 129.93.180.106 on Tue, 06 Feb 2018 14:54:09 UTC All use subject to http://about.jstor.org/terms Annals of Mathematics, 116 (1982), 621-659 Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature By WILLIAM MEEKS III, LEON SIMON and SHING-TUNG YAU Let N be a three dimensional Riemannian manifold. Let E be a closed embedded surface in N. Then it is a question of basic interest to see whether one can deform : in its isotopy class to some "canonical" embedded surface. From the point of view of geometry, a natural "canonical" surface will be the extremal surface of some functional defined on the space of embedded surfaces.
    [Show full text]
  • Scalable Synthesis of Gyroid-Inspired Freestanding Three-Dimensional Graphene Architectures† Cite This: DOI: 10.1039/C9na00358d Adrian E
    Nanoscale Advances View Article Online COMMUNICATION View Journal Scalable synthesis of gyroid-inspired freestanding three-dimensional graphene architectures† Cite this: DOI: 10.1039/c9na00358d Adrian E. Garcia,a Chen Santillan Wang, a Robert N. Sanderson,b Kyle M. McDevitt,a c ac a d Received 5th June 2019 Yunfei Zhang, Lorenzo Valdevit, Daniel R. Mumm, Ali Mohraz a Accepted 16th September 2019 and Regina Ragan * DOI: 10.1039/c9na00358d rsc.li/nanoscale-advances Three-dimensional porous architectures of graphene are desirable for Introduction energy storage, catalysis, and sensing applications. Yet it has proven challenging to devise scalable methods capable of producing co- Porous 3D architectures composed of graphene lms can continuous architectures and well-defined, uniform pore and liga- improve performance of carbon-based scaffolds in applications Creative Commons Attribution-NonCommercial 3.0 Unported Licence. ment sizes at length scales relevant to applications. This is further such as electrochemical energy storage,1–4 catalysis,5 sensing,6 complicated by processing temperatures necessary for high quality and tissue engineering.7,8 Graphene's remarkably high elec- graphene. Here, bicontinuous interfacially jammed emulsion gels trical9 and thermal conductivities,10 mechanical strength,11–13 (bijels) are formed and processed into sacrificial porous Ni scaffolds for large specic surface area,14 and chemical stability15 have led to chemical vapor deposition to produce freestanding three-dimensional numerous explorations of this multifunctional material due to turbostratic graphene (bi-3DG) monoliths with high specificsurface its promise to impact multiple elds. While these specic area. Scanning electron microscopy (SEM) images show that the bi- applications typically require porous 3D architectures, gra- 3DG monoliths inherit the unique microstructural characteristics of phene growth has been most heavily investigated on 2D their bijel parents.
    [Show full text]
  • Lord Kelvin's Error? an Investigation Into the Isotropic Helicoid
    WesleyanUniversity PhysicsDepartment Lord Kelvin’s Error? An Investigation into the Isotropic Helicoid by Darci Collins Class of 2018 An honors thesis submitted to the faculty of Wesleyan University in partial fulfillment of the requirements for the Degree of Bachelor of Arts with Departmental Honors in Physics Middletown,Connecticut April,2018 Abstract In a publication in 1871, Lord Kelvin, a notable 19th century scientist, hypothesized the existence of an isotropic helicoid. He predicted that such a particle would be isotropic in drag and rotation translation coupling, and also have a handedness that causes it to rotate. Since this work was published, theorists have made predictions about the motion of isotropic helicoids in complex flows. Until now, no one has built such a particle or quantified its rotation translation coupling to confirm whether the particle has the properties that Lord Kelvin predicted. In this thesis, we show experimental, theoretical, and computational evidence that all conclude that Lord Kelvin’s geometry of an isotropic helicoid does not couple rotation and translation. Even in both the high and low Reynolds number regimes, Lord Kelvin’s model did not rotate through fluid. While it is possible there may be a chiral particle that is isotropic in drag and rotation translation coupling, this thesis presents compelling evidence that the geometry Lord Kelvin proposed is not one. Our evidence leads us to hypothesize that an isotropic helicoid does not exist. Contents 1 Introduction 2 1.1 What is an Isotropic Helicoid? . 2 1.1.1 Lord Kelvin’s Motivation . 3 1.1.2 Mentions of an Isotropic Helicoid in Literature .
    [Show full text]
  • On Algebraic Minimal Surfaces
    On algebraic minimal surfaces Boris Odehnal December 21, 2016 Abstract 1 Introduction Minimal surfaces have been studied from many different points of view. Boundary We give an overiew on various constructions value problems, uniqueness results, stabil- of algebraic minimal surfaces in Euclidean ity, and topological problems related to three-space. Especially low degree exam- minimal surfaces have been and are stil top- ples shall be studied. For that purpose, we ics for investigations. There are only a use the different representations given by few results on algebraic minimal surfaces. Weierstraß including the so-called Björ- Most of them were published in the second ling formula. An old result by Lie dealing half of the nine-teenth century, i.e., more with the evolutes of space curves can also or less in the beginning of modern differen- be used to construct minimal surfaces with tial geometry. Only a few publications by rational parametrizations. We describe a Lie [30] and Weierstraß [50] give gen- one-parameter family of rational minimal eral results on the generation and the prop- surfaces which touch orthogonal hyperbolic erties of algebraic minimal surfaces. This paraboloids along their curves of constant may be due to the fact that computer al- Gaussian curvature. Furthermore, we find gebra systems were not available and clas- a new class of algebraic and even rationally sical algebraic geometry gained less atten- parametrizable minimal surfaces and call tion at that time. Many of the compu- them cycloidal minimal surfaces. tations are hard work even nowadays and synthetic reasoning is somewhat uncertain. Keywords: minimal surface, algebraic Besides some general work on minimal sur- surface, rational parametrization, poly- faces like [5, 8, 43, 44], there were some iso- nomial parametrization, meromorphic lated results on algebraic minimal surfaces function, isotropic curve, Weierstraß- concerned with special tasks: minimal sur- representation, Björling formula, evolute of faces on certain scrolls [22, 35, 47, 49, 53], a spacecurve, curve of constant slope.
    [Show full text]
  • Optical Properties of Gyroid Structured Materials: from Photonic Crystals to Metamaterials
    REVIEW ARTICLE Optical properties of gyroid structured materials: from photonic crystals to metamaterials James A. Dolan1;2;3, Bodo D. Wilts2;4, Silvia Vignolini5, Jeremy J. Baumberg3, Ullrich Steiner2;4 and Timothy D. Wilkinson1 1 Department of Engineering, University of Cambridge, JJ Thomson Avenue, CB3 0FA, Cambridge, United Kingdom 2 Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, United Kingdom 3 NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, United Kingdom 4 Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland 5 Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] Abstract. The gyroid is a continuous and triply periodic cubic morphology which possesses a constant mean curvature surface across a range of volumetric fill fractions. Found in a variety of natural and synthetic systems which form through self-assembly, from butterfly wing scales to block copolymers, the gyroid also exhibits an inherent chirality not observed in any other similar morphologies. These unique geometrical properties impart to gyroid structured materials a host of interesting optical properties. Depending on the length scale on which the constituent materials are organised, these properties arise from starkly different physical mechanisms (such as a complete photonic band gap for photonic crystals and a greatly depressed plasma frequency for optical metamaterials). This article reviews the theoretical predictions and experimental observations of the optical properties of two fundamental classes of gyroid structured materials: photonic crystals (wavelength scale) and metamaterials (sub- wavelength scale).
    [Show full text]
  • Surfaces Minimales : Theorie´ Variationnelle Et Applications
    SURFACES MINIMALES : THEORIE´ VARIATIONNELLE ET APPLICATIONS FERNANDO CODA´ MARQUES - IMPA (NOTES BY RAFAEL MONTEZUMA) Contents 1. Introduction 1 2. First variation formula 1 3. Examples 4 4. Maximum principle 5 5. Calibration: area-minimizing surfaces 6 6. Second Variation Formula 8 7. Monotonicity Formula 12 8. Bernstein Theorem 16 9. The Stability Condition 18 10. Simons' Equation 29 11. Schoen-Simon-Yau Theorem 33 12. Pointwise curvature estimates 38 13. Plateau problem 43 14. Harmonic maps 51 15. Positive Mass Theorem 52 16. Harmonic Maps - Part 2 59 17. Ricci Flow and Poincar´eConjecture 60 18. The proof of Willmore Conjecture 65 1. Introduction 2. First variation formula Let (M n; g) be a Riemannian manifold and Σk ⊂ M be a submanifold. We use the notation jΣj for the volume of Σ. Consider (x1; : : : ; xk) local coordinates on Σ and let @ @ gij(x) = g ; ; for 1 ≤ i; j ≤ k; @xi @xj 1 2 FERNANDO CODA´ MARQUES - IMPA (NOTES BY RAFAEL MONTEZUMA) be the components of gjΣ. The volume element of Σ is defined to be the p differential k-form dΣ = det gij(x). The volume of Σ is given by Z Vol(Σ) = dΣ: Σ Consider the variation of Σ given by a smooth map F :Σ × (−"; ") ! M. Use Ft(x) = F (x; t) and Σt = Ft(Σ). In this section we are interested in the first derivative of Vol(Σt). Definition 2.1 (Divergence). Let X be a arbitrary vector field on Σk ⊂ M. We define its divergence as k X (1) divΣX(p) = hrei X; eii; i=1 where fe1; : : : ; ekg ⊂ TpΣ is an orthonormal basis and r is the Levi-Civita connection with respect to the Riemannian metric g.
    [Show full text]
  • Generating Carbon Schwarzites Via Zeolite-Templating
    Generating carbon schwarzites via zeolite-templating Efrem Brauna, Yongjin Leeb,c, Seyed Mohamad Moosavib, Senja Barthelb, Rocio Mercadod, Igor A. Baburine, Davide M. Proserpiof,g, and Berend Smita,b,1 aDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720; bInstitut des Sciences et Ingenierie´ Chimiques (ISIC), Valais, Ecole´ Polytechnique Fed´ erale´ de Lausanne (EPFL), CH-1951 Sion, Switzerland; cSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; dDepartment of Chemistry, University of California, Berkeley, CA 94720; eTheoretische Chemie, Technische Universitat¨ Dresden, 01062 Dresden, Germany; fDipartimento di Chimica, Universita` degli Studi di Milano, 20133 Milan, Italy; and gSamara Center for Theoretical Materials Science (SCTMS), Samara State Technical University, Samara 443100, Russia Edited by Monica Olvera de la Cruz, Northwestern University, Evanston, IL, and approved July 9, 2018 (received for review March 25, 2018) Zeolite-templated carbons (ZTCs) comprise a relatively recent ZTC can be seen as a schwarzite (24–28). Indeed, the experi- material class synthesized via the chemical vapor deposition of mental properties of ZTCs are exactly those which have been a carbon-containing precursor on a zeolite template, followed predicted for schwarzites, and hence ZTCs are considered as by the removal of the template. We have developed a theoret- promising materials for the same applications (21, 22). As we ical framework to generate a ZTC model from any given zeolite will show, the similarity between ZTCs and schwarzites is strik- structure, which we show can successfully predict the structure ing, and we explore this similarity to establish that the theory of known ZTCs. We use our method to generate a library of of schwarzites/TPMSs is a useful concept to understand ZTCs.
    [Show full text]
  • Minimal Surfaces Saint Michael’S College
    MINIMAL SURFACES SAINT MICHAEL’S COLLEGE Maria Leuci Eric Parziale Mike Thompson Overview What is a minimal surface? Surface Area & Curvature History Mathematics Examples & Applications http://www.bugman123.com/MinimalSurfaces/Chen-Gackstatter-large.jpg What is a Minimal Surface? A surface with mean curvature of zero at all points Bounded VS Infinite A plane is the most trivial minimal http://commons.wikimedia.org/wiki/File:Costa's_Minimal_Surface.png surface Minimal Surface Area Cube side length 2 Volume enclosed= 8 Surface Area = 24 Sphere Volume enclosed = 8 r=1.24 Surface Area = 19.32 http://1.bp.blogspot.com/- fHajrxa3gE4/TdFRVtNB5XI/AAAAAAAAAAo/AAdIrxWhG7Y/s160 0/sphere+copy.jpg Curvature ~ rate of change More Curvature dT κ = ds Less Curvature History Joseph-Louis Lagrange first brought forward the idea in 1768 Monge (1776) discovered mean curvature must equal zero Leonhard Euler in 1774 and Jean Baptiste Meusiner in 1776 used Lagrange’s equation to find the first non- trivial minimal surface, the catenoid Jean Baptiste Meusiner in 1776 discovered the helicoid Later surfaces were discovered by mathematicians in the mid nineteenth century Soap Bubbles and Minimal Surfaces Principle of Least Energy A minimal surface is formed between the two boundaries. The sphere is not a minimal surface. http://arxiv.org/pdf/0711.3256.pdf Principal Curvatures Measures the amount that surfaces bend at a certain point Principal curvatures give the direction of the plane with the maximal and minimal curvatures http://upload.wikimedia.org/wi
    [Show full text]
  • Riemannian Submanifolds: a Survey
    RIEMANNIAN SUBMANIFOLDS: A SURVEY BANG-YEN CHEN Contents Chapter 1. Introduction .............................. ...................6 Chapter 2. Nash’s embedding theorem and some related results .........9 2.1. Cartan-Janet’s theorem .......................... ...............10 2.2. Nash’s embedding theorem ......................... .............11 2.3. Isometric immersions with the smallest possible codimension . 8 2.4. Isometric immersions with prescribed Gaussian or Gauss-Kronecker curvature .......................................... ..................12 2.5. Isometric immersions with prescribed mean curvature. ...........13 Chapter 3. Fundamental theorems, basic notions and results ...........14 3.1. Fundamental equations ........................... ..............14 3.2. Fundamental theorems ............................ ..............15 3.3. Basic notions ................................... ................16 3.4. A general inequality ............................. ...............17 3.5. Product immersions .............................. .............. 19 3.6. A relationship between k-Ricci tensor and shape operator . 20 3.7. Completeness of curvature surfaces . ..............22 Chapter 4. Rigidity and reduction theorems . ..............24 4.1. Rigidity ....................................... .................24 4.2. A reduction theorem .............................. ..............25 Chapter 5. Minimal submanifolds ....................... ...............26 arXiv:1307.1875v1 [math.DG] 7 Jul 2013 5.1. First and second variational formulas
    [Show full text]
  • Bour's Theorem in 4-Dimensional Euclidean
    Bull. Korean Math. Soc. 54 (2017), No. 6, pp. 2081{2089 https://doi.org/10.4134/BKMS.b160766 pISSN: 1015-8634 / eISSN: 2234-3016 BOUR'S THEOREM IN 4-DIMENSIONAL EUCLIDEAN SPACE Doan The Hieu and Nguyen Ngoc Thang Abstract. In this paper we generalize 3-dimensional Bour's Theorem 4 to the case of 4-dimension. We proved that a helicoidal surface in R 4 is isometric to a family of surfaces of revolution in R in such a way that helices on the helicoidal surface correspond to parallel circles on the surfaces of revolution. Moreover, if the surfaces are required further to have the same Gauss map, then they are hyperplanar and minimal. Parametrizations for such minimal surfaces are given explicitly. 1. Introduction Consider the deformation determined by a family of parametric surfaces given by Xθ(u; v) = (xθ(u; v); yθ(u; v); zθ(u; v)); xθ(u; v) = cos θ sinh v sin u + sin θ cosh v cos u; yθ(u; v) = − cos θ sinh v cos u + sin θ cosh v sin u; zθ(u; v) = u cos θ + v sin θ; where −π < u ≤ π; −∞ < v < 1 and the deformation parameter −π < θ ≤ π: A direct computation shows that all surfaces Xθ are minimal, have the same first fundamental form and normal vector field. We can see that X0 is the helicoid and Xπ=2 is the catenoid. Thus, locally the helicoid and catenoid are isometric and have the same Gauss map. Moreover, helices on the helicoid correspond to parallel circles on the catenoid.
    [Show full text]
  • Minimal Surfaces, a Study
    Alma Mater Studiorum · Università di Bologna SCUOLA DI SCIENZE Corso di Laurea in Matematica MINIMAL SURFACES, A STUDY Tesi di Laurea in Geometria Differenziale Relatore: Presentata da: Dott.ssa CLAUDIA MAGNAPERA ALESSIA CATTABRIGA VI Sessione Anno Accademico 2016/17 Abstract Minimal surfaces are of great interest in various fields of mathematics, and yet have lots of application in architecture and biology, for instance. It is possible to list different equivalent definitions for such surfaces, which correspond to different approaches. In the following thesis we will go through some of them, concerning: having mean cur- vature zero, being the solution of Lagrange’s partial differential equation, having the harmonicity property, being the critical points of the area functional, being locally the least-area surface with a given boundary and proving the existence of a solution of the Plateau’s problem. Le superfici minime, sono di grande interesse in vari campi della matematica, e parec- chie sono le applicazioni in architettura e in biologia, ad esempio. È possibile elencare diverse definizioni equivalenti per tali superfici, che corrispondono ad altrettanti approcci. Nella seguente tesi ne affronteremo alcuni, riguardanti: la curvatura media, l’equazione differenziale parziale di Lagrange, la proprietà di una funzione di essere armonica, i punti critici del funzionale di area, le superfici di area minima con bordo fissato e la soluzione del problema di Plateau. 2 Introduction The aim of this thesis is to go through the classical minimal surface theory, in this specific case to state six equivalent definitions of minimal surface and to prove the equiv- alence between them.
    [Show full text]