Pathological Behaviours in Pilots During Unexpected Critical Events: the Effects of Startle, Freeze and Denial on Situation Outcome

Total Page:16

File Type:pdf, Size:1020Kb

Pathological Behaviours in Pilots During Unexpected Critical Events: the Effects of Startle, Freeze and Denial on Situation Outcome Pathological Behaviours in Pilots during Unexpected Critical Events: The Effects of Startle, Freeze and Denial on Situation Outcome Author Martin, Wayne Leslie Published 2014 Thesis Type Thesis (PhD Doctorate) School School of Biomolecular and Physical Sciences DOI https://doi.org/10.25904/1912/225 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366319 Griffith Research Online https://research-repository.griffith.edu.au Pathological Behaviours in Pilots During Unexpected Critical Events: The Effects of Startle, Freeze and Denial on Situation Outcome Wayne Leslie Martin BAvMan, MAvMgmt, MBus Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Griffith Aviation, School of Biomolecular and Physical Sciences, Griffith University April 2013 ii Abstract Over the last 40 years significant advances in aviation technology have contributed strongly to improvements in aviation safety. Recent figures suggest that fourth generation aircraft are now achieving fatal accident rates in the order of 10-7 and ongoing work continues to improve this rate. Significant improvements in engine and systems reliability, coupled with safety technologies such as Enhanced Ground Proximity Warning (EGPWS), Airborne Collision Avoidance Systems (ACAS), Global Positioning System (GPS), and Vertical Situation Displays (VSD) have contributed to reductions in accident rates. Additionally, initiatives such as RNAV and RNP (AR) approaches continue to improve non-precision approach accuracy and safety while air traffic control improvements continue to accommodate this increased safety as aircraft traffic continues to grow strongly. Nevertheless, the reliability engendered by all these incremental improvements to safety has a downside. While pilots in the earlier years of airline transport had a healthy expectation for engine and systems failures, the modern airline pilot does not necessarily share this. Indeed, the modern airline aircraft is so reliable, and failures are so rare, that pilots are now unwittingly conditioned into an expectation of unwavering reliability. This unintentional complacency means that attention to emergency procedures and an expectation for dealing with real malfunctions is not as well honed as it perhaps once was. The result of this conditioned expectation of normalcy is that when unexpected critical events occur, pilots are often genuinely surprised and don’t have readily accessible mental action plans on how to deal with them, unlike their predecessors who experienced emergencies on a regular basis. Over the last few years in particular, these “surprise” critical events have created situations where pilots have become startled or suffered the effects of acute stress, and as a result have acted inappropriately, ineffectively, or, in some cases, taken no action at all. Startle is a ubiquitous human reflex, which is also common to most animals. Where a real threat persists however, startle can transition from a simple reflex action into a full stress response. This response, commonly known as the “fear-potentiated startle”, involves the arousal of the sympathetic nervous system, with considerable physiological changes occurring as a result. This response to a strong startle has been shown to cause significant impairment to both cognitive and psychomotor performance for some time afterwards, and in the context of a critical aviation iii event could cause reduced situational awareness, decision-making and handling capabilities, with a potential impact on flight safety. Similarly the onset of acute stress as a critical event unfolds has been shown to cause pathological behaviours in pilots. Behavioural inaction or freezing has occurred where pilots have suddenly become overwhelmed by stress to the point where they become unable to process sufficient information to act. Acute stress has also been shown to enact coping and defence mechanisms such as denial. These processes, which are not clearly delineated in the literature, appear to be both a strategic and a tactical means of stress avoidance, which may not be a conscious effort. In examining these pathological behaviours, aircraft accident and incident analyses were conducted from two sources: accident and incident reports from recent history; and personal accounts from pilots who have experienced critical events. These case studies were analysed for iterations of startle, freeze and denial, with a substantial number of those examined revealing these pathological behaviours. Additionally, attempts were made to quantify the effects of startle using a B737 Flight Simulator. Eighteen volunteers were exposed to a startling stimulus at a critical stage of flight, measuring any reactionary delay and other qualitative reactions. Approximately one third of participants (n=7) showed pathological reactions to the startling stimulus. Results from the case study analysis and the startle experiments suggested that the pathological behaviours of startle, freeze and denial have the potential to impact negatively on situation outcome, particularly during unexpected critical events. Further research on these phenomena and training interventions to help better prepare pilots for unexpected critical events is required. iv Statement of Originality This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. Signed: Date: 9 April 2013 v Acknowledgements I would firstly like to thank those people who chose to volunteer for either interviews or the startle experiments. Your willingness to contribute your time and energy towards the cause of improving flight safety was sincerely appreciated. I would also like to thank those aviation organisations across Australasia that provided me with unfettered access to their pilots for the research. Without their assistance there would never have been volunteers to provide the fascinating data which I obtained. I hope that the results of this study will prove useful to you in trying to better deal with the challenges we face in the areas of my research. Secondly, I would like to thank my two supervisors, Associate Professors Paul Bates and Patrick Murray for their hard work and sage advice. Particular thanks go to Pat, who, as one of the aviation industry’s most astute analysts, provided invaluable insight and unwavering support, and I thank him sincerely. Paul’s worldly experience in the aviation and academic fields was especially helpful and proved invaluable in the final stages of constructing this thesis. Both Paul and Pat provided some wonderful guidance and motivation and without this, this study would never have come to fruition. Associate Professor Tim Mavin also deserves a big thank you. As a friend, colleague and informal mentor, his wealth of knowledge and willingness to challenge have been immensely helpful. The brainstorming sessions we have shared over a coffee have proved invaluable in helping me formulate ideas, theories and processes. To Dr Mike Steele, I would like to thank you for your guidance on the statistical analysis in my research. For your patience and understanding I thank you sincerely. To Dr Doug Drury and Captain Peter Williams I would also like to thank you for your time and effort in completing an independent peer review of my study data. I would also like to thank my family and friends. Without your support, your forgiveness for the hours I have worked, and the sacrifices I have made, this project would never have been completed. I look forward to sharing some more of my time with all of you. vi List of Figures Figure 1 The stress reaction (fight or flight) 17 Figure 2 A conceptual model of appraisal, coping and information processing 24 Figure 3 The generalised relationship between arousal and performance 35 Figure 4 Arousal and the effects of complexity on task performance 35 Figure 5 Wickens’ model of human information processing 37 Figure 6 The amygdala 41 Figure 7 The amygdala (medial view) 41 Figure 8 Regions of the human amygdala 42 Figure 9 Typical apparatus used for startle and fear conditioning experiments on mice 43 Figure 10 Neural pathways underlying fear conditioning 44 Figure 11 Subcortical connectivity of the amygdala 47 Figure 12 Contextual fear conditioning neural pathways 49 Figure 13 Output from the amygdala in the human stress response 51 Figure 14 The hpa axis 52 Figure 15 Expanded view of the hypothalamic-pituitary section of the hpa axis 53 Figure 16 Structure of the human nervous system 55 Figure 17 The relationship between the hpa, the sympathetic nervous system and elements of the parasympathetic nervous system 57 Figure 18 Elements in the parasympathetic nervous system 58 Figure 19 Baddeley’s updated model of working memory 61 Figure 20 The structure of long term memory 62 Figure 21 Potential mechanisms by which the amygdala mediates the influence of emotional arousal on memory 64 Figure 22 Defence response cascade underlying the processing of increasingly arousing aversive stimuli. 78 Figure 23 The seven stages of denial 82 Figure 24 Startle simulator exercise profile 187 Figure 25 ILS-Y approach plate runway 19 Brisbane 188 Figure 26 B737 PFD with flight director crosshairs shown 190 Figure 27 Approach 1 delta vs. age 200 Figure 28 Approach 1 delta vs. rank 202 Figure 29 Approach 1 delta
Recommended publications
  • Air Transat Flight 236: the Azores Glider
    Air Transat Flight 236: The Azores Glider Peter B. Ladkin RVS Group, University of Bielefeld ladkin at rvs.uni-bielefeld.de November 18, 2004 1 The Flight On 24 August, 2001, Air Transat Flight 236, an Airbus A330-243 aircraft was flying from Toronto to Lisbon over the Atlantic Ocean at 4244N/2305W when the crew noticed a fuel imbalance at 05:33 UTC (UTC is known as \Zulu" time in aviation, denoted \Z". I shall use this designation). Upon checking the fuel quantities, the crew saw that the imbalance was close to 7 tonnes of fuel. (The aircraft uses about 5 tonnes per hour in cruise flight.) They followed the FUEL IMBALANCE procedure from memory. At 05:45Z, they began a diversion to Lajes airport on Terceira Island in the Azores, a set of mid-Atlantic islands which are part of Portugal. At 06:13Z they informed air traffic control (ATC) that the right engine had flamed out. At 06:26Z, they further informed ATC that the left engine had also flamed out and that a ditching at sea was possible. At this point, the aircraft was about 65 nautical miles (1nm = 6000ft =1.15 statute miles = 1.85km) from the airport at Flight Level 345 (= 34,500 feet pressure altitude = 34,500 ft altitude in an internationally-normed atmosphere). And it was a glider. The aircraft glided in to the airport, carried out an engines-out visual ap- proach at night, in good weather conditions and good visibility. The aircraft landed fast on the runway, with reduced braking possibilities due to lack of some electrical systems, and came to a halt.
    [Show full text]
  • Skydeck Live: the Science of a Meaningful Life 15 June 2018
    Skydeck Live: The Science of a Meaningful Life 15 June 2018 Author Charles Duhigg (MBA 2003) on how we make meaning Charles Duhigg is a Pulitzer Prize winning journalist and a New York Times best selling author. His first book, The Power of Habit, focused on the science of habit formation. And his second, Smarter, Faster, Better, focused on the science of productivity. During spring reunions this year, Duhigg spoke to alumni about his next potential project, understanding the science of a meaningful life-- essentially how can we live lives that are not just happy, but truly meaningful? And what are the conditions that create that meaning? And to illustrate his ideas, he told the story of a fateful 2010 flight from Singapore to Sydney. What do we know about why some experiences give you the sense of progress, give you the sense of accomplishment that you're reaching some potential, you're achieving something new? What are the preconditions that make some hard moments more meaningful than others? To answer this I want to tell you one more story. This is a story about Qantas flight 32. Now before I tell the story, how many of you flew to the reunion-- flew to the reunion, came to the reunion on a plane? OK, you're going to love this story when you're flying back. So Qantas flight 32 is this flight that took off in 2010 from Singapore to Sydney, Australia. It's an Airbus A380. So an Airbus A380, for those of you who don't know-- and you've probably flown in this before if you've gone from one continent to another-- is essentially the most amazing airplane that has ever been invented.
    [Show full text]
  • Australian Court Closes Class.Pdf
    NOVEMBER 2016 COMMENTARY Australian Court “Closes Class” Dismisses Claims of Class Action Members Prior to Judgment or Settlement Key Points • In Australia, class actions operate by way of an opt-out model that does not require the consent or identifica- tion of class members at the time the proceedings are commenced. As such, there can be significant uncer- tainty in settlement negotiations as to which (and accordingly how many) members will ultimately register to share in any settlement amount. To conclude a class action in which the class members receive compensa- tion or other personal benefit, it is necessary to identify the class members. This usually occurs through a class closure process by which class members must register their participation. • In Lam v Rolls Royce PLC (No 5) [2016] NSWSC 1332 (“Lam (No 5)”), opt-out notices and a class closure pro- cess had occurred, but 84 class members had neither opted out nor registered their participation in the class action. On the respondent’s application, the Supreme Court of New South Wales determined that it would dismiss, finally, the claims of those 84 class members. The decision is novel in terms of its timing—prior to any judgment or settlement. • The decision in Lam (No 5) establishes a route for parties to achieve greater certainty in seeking to quantify a class action claim and reaching a settlement. However, the court must ensure that adequate notice is given to unregistered members who stand to lose their rights to compensation. Background By the time the application the subject of Lam (No On 4 November 2010, Qantas Flight 32 departed Changi 5) was heard, the class action was already at an Airport in Singapore with 469 passengers and crew on advanced stage.
    [Show full text]
  • Keilir Conference on Eyjafjallajökull and Aviation September 15-16, Keflavik Airport, Iceland Presentation of Conference Chairmen, Panelists and Speakers
    Keilir Conference on Eyjafjallajökull and Aviation September 15-16, Keflavik Airport, Iceland Presentation of Conference Chairmen, Panelists and Speakers Capt. Eric Moody Ret. BA captain. UK www.ericmoody.com [email protected] Guest of Honour of the Conference and Invited Speaker was Capt. Eric Moody. The captain who glided his B747 to safety out of volcanic ash over Java on 24 June 1982. Capt. Eric Moody and the President of Iceland Olafur Ragnar Grimsson at the president‘s residence, Bessastadir (Sept.2010) Some recent interviwes with Capt. Eric Moody by the press and TV: BBC: Eric Moody: The pilot who flew into volcanic ash in 1982 http://news.bbc.co.uk/2/hi/uk_news/8623210.stm MIRROR NEWS: How hero pilot Eric Moody saved 263 lives after navigating through volcanic ash http://www.mirror.co.uk/news/top-stories/2010/04/16/hero-pilot-eric-saved-263-lives-115875- 22189294/ MAIL ONLINE: The story of BA flight 009 and the words every passenger dreads… http://www.dailymail.co.uk/news/article-431802/The-story-BA-flight-009-words-passenger- dreads-.html Airsidetv.com - Interview With Capt Eric Moody BA Flt 9 Part ( 7 min. video) http://www.youtube.com/watch?v=IZl6WdJF370 AlJazeera English: How ash could damage air planes http://www.youtube.com/watch?v=hkdDRM_kTcY&feature=related Keilir Conference on Eyjafjallajökull and Aviation September 15-16, Keflavik Airport, Iceland Presentation of Conference Chairmen, Panelists and Speakers Some photos of Capt. Eric Moody‘s visit to Keilir Aviation Academy and the Aviation Conference in Keflavik, Iceland in September 2010.
    [Show full text]
  • Real-"Me Early Warning Techniques
    Real-&me Early Warning Techniques Dan “Animal” Javorsek Immanuel Barshi David Iverson The views expressed are those of the authors and do not reflect the official policy or posi&on of the U.S. Air Force, the Department of Defense, or the U.S. Government. The material in this briefing is UNCLASSIFIED and approved for public release: distribu&on is unlimited, reference 412th Test Wing Public Affairs reference number 412TW-PA-#####. I n t e g r i t y - S e r v i c e - E x c e l l e n c e 1 Contemporary System Health Management • Contemporary system health management – High reliance on thresholds – Compromise between early warning and false alarms – “One-sensor, one-indicator” paradigm – Automaon o[en reduces info displayed to the operator • Improve aerospace vehicle safety by monitoring for anomalous paerns of behavior 2 Example 1: Columbia Disaster • Columbia summary – Space shu\le mission STS-107 catastrophic breakup on reentry (1 Feb 03) – Caused by foam impact to le[ wing leading edge 82 seconds into ascent which compromised thermal protec&on • Retrospec&ve Temperature Sensor Analysis – Le[ wing temperatures were within limits – Anomalous le[ wing temperatures • Compared to right wing • Compared to prior flights – Temperature data could have been used to raise alarm earlier – Served as an early test case of the Induc&ve Monitoring System (IMS) 3 Induc&ve Monitoring System (IMS) • Early warning op&on for systems with an established baseline • IMS algorithm specifics – Compares real-&me data to nominal archived data – Employs a hybrid of two
    [Show full text]
  • Fuel Leak Detection on Large Transport Airplanes
    cs & Aero ti sp au a n c o e r E Behbahani-Pour and Radice, J Aeronaut Aerospace Eng 2016, 5:4 e n A g f i o n Journal of Aeronautics & Aerospace DOI: 10.4172/2168-9792.1000174 l e a e r n i r n u g o J Engineering ISSN: 2168-9792 Research Article OMICS International Fuel Leak Detection on Large Transport Airplanes Behbahani-Pour MJ* and Radice G Division of Aerospace Sciences, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK Abstract Fuel leaking from the tanks can be ignited by different sources, with catastrophic consequences for the flight; therefore it is important to detect any fuel leakage before the departure of the aircraft. Currently, there are no fuel leak detection systems installed on commercial aircrafts, to detect fuel tank leakage, while only a small number of more recent aircraft, have a fuel monitoring system, that generates a fuel leak-warning message in cockpit in the case of fuel imbalance between the tanks. The approach proposed in this paper requires the fuel vent ports on the wings to be replaced with fuel vent valves, which can be controlled to be in open or close position. The fuel vent valve will be in close position, when certain conditions are fulfilled (all the related fuel valves closed, pumps not operating, etc.), the fuel tank ullage area is then pressurized to 4 psi and the rate of change of the pressure is measured over a period. Several experiments have been conducted and, the result show that a continuous fuel leak of one liter per minute can be detected.
    [Show full text]
  • 1 Pilots' Decision-Making Under High Workload: Recognition-Primed Or
    Proceedings 19th Triennial Congress of the IEA, Melbourne 9-14 August 2015 Pilots’ Decision-Making under High Workload: Recognition-Primed or Not – An Engineering Point of View Patrick Gontara, Verena Porstnera, Hans-Juergen Hoermannb, Klaus Benglera aInstitute of Ergonomics, Technische Universität München, Munich, GERMANY bInstitute of Aerospace Medicine, German Aerospace Center, Hamburg, GERMANY The objective of this study is to analyse pilots’ decision-making behaviour in terms of naturalistic decision-making. In line with the highly experienced group of pilots (n = 120), recognition-primed decisions are expected to dominate. In a full-flight simulator experiment, with two groups of pilots (short-haul and long-haul pilots) with different levels of practice and training, we were able to show that only about one-third of the pilots make recognition-primed decisions. Results may indicate that the current training practice helps pilots to handle foreseeable problems very well, yet does not support pilots in ambivalent and new decision-making situations. Based on these findings, we recommend the incorporation of more unforeseen events in recurrent training simulator missions to train pilots in handling unknown situations. Practitioner Summary: The results from a flight-simulator study showed that pilots’ decision-making is more analytical than recognition-primed. A possible reason for this could be the pressure for justification, or simply that pilots cannot use their experience in unforeseen situations. Hence, training should include more unforeseen events. Keywords: recognition-primed decision (RPD), naturalistic decision-making (NDM), flight-simulator, crew resource management, FOR-DEC 1. Introduction Checklists and procedures were introduced in the aviation domain decades ago to enhance different aspects of safety, standardisation and human reliability (e.g.
    [Show full text]
  • Glenn Grenier*
    GLENN GRENIER* Categories: People, Lawyers Glenn Grenier is a highly respected commercial litigator with recognized expertise in construction law and aviation law. He is a leader of the firm’s Construction & Infrastructure and Aviation groups. As one of the firm's leading experts on construction litigation, Glenn acts for project owners and developers, financiers, general contractors and major subcontractors, and sureties, as well as suppliers, architects, engineers, designers and planners. His experience includes all manner of construction disputes including claims for liens, extras, and delay and acceleration, as well as negligence and design claims. He also argues tender disputes, and asserts and defends bond and trust claims. Glenn's practice involves the drafting of various contracts and tendering documentation relating to construction projects. He also provides counsel on the proper release of holdbacks and dealing with close-out documents, whether in the context of disputes or offered as ongoing advice. Acting for airlines, airports, fixed base operators (FBOs), aircraft owners, pilots and passengers, Glenn provides advice and representation on regulatory matters, litigation, enforcement proceedings and aircraft accidents across Canada and beyond. He serves as general counsel to the Canadian Owners and Pilots Association (COPA), a national association engaged in the advancement of aviation in Canada. He is also counsel to the Civil Air Search and Rescue Association (CASARA). Glenn has significant expertise in commercial disputes involving aircraft, hangars and airports. Acting for the owners and operators of airports and aerodromes, he has successfully challenged provincial and municipal attempts to regulate, restrict or prohibit aeronautical activities. Experienced in a wide variety of commercial litigation matters, Glenn has acted in real estate and development disputes, commercial tenancy litigation, shareholder disputes, franchise litigation, collection enforcement and defence, as well as repair and storage liens.
    [Show full text]
  • Vickie Norton MS ATP
    Vickie Norton MS ATP Project Engineer, Airline Transport Pilot contact [email protected] 949.273.1129 Los Angeles expertise areas of specialization Aviation Investigations Aircraft Systems/Failure Analysis Human Factors Certification/Maintenance Compliance Analysis FAA Operating Rules/Airworthiness Standards Pilot Training/Evaluation/Human Factors Aircraft Loss of Control/Emergency Landings Engine Failures/Fires/Shutdowns Adverse Weather/High Altitude Meteorology Air Traffic Control Procedures/Airspace Requirements Stabilized Approach Criteria, Glideslope/Localizer, Airspeed and Configuration Deviations Vickie Norton is a project engineer in MEA Forensic’s Aviation Investigation group and a captain with a major commercial airline. With engineering and aviation backgrounds, Vickie investigates a variety of issues relating to aircraft incidents. She reconstructs accidents, looks at pilot actions, assesses system and powerplant malfunctions, analyzes failures, and examines operational, maintenance and regulatory issues. Vickie’s education, training, and more than 30 years of experience in the aviation industry provide MEA’s clients with unparalleled credibility and competence. Vickie provides clients with unbiased and straightforward opinions. “Sometimes clients need an engineer to provide an expert opinion about a mechanical, system, or component failure; other times they can benefit from the opinion of an experienced airline pilot. I provide clients with both areas of expertise.” Vickie has a Bachelor’s degree in Mechanical Engineering from Michigan Technological University and a Master’s degree in MEA Forensic Engineers & Scientists | meaforensic.com Aviation Safety from the Florida Institute of Technology. She holds type ratings on the B737, B757, B767, and A320 aircraft. She has held the prestigious FAA Designated Engineering Representative Certification as well as Certified Flight Instructor/Ground Instructor licenses and she currently holds her Private Rotorcraft-Helicopter license.
    [Show full text]
  • Print This Page
    Vol 60 Page 9 Allan George’s Gems LastPass. If you’re one of us who use their computer for banking, communicating, ordering and a host of other things, then you too will have a bunch of passwords to remember. Some people keep their passwords in a note-book, some on a post- it slip stuck to the computer screen, some in a text file saved to the hard drive, some are lucky enough to be able to just remember them. Most of these methods have a security pass-mark of zero. There has to be a better way, and there is! There are a lot of free programs which you can download which will store all those passwords in a very secure environment and which will automatically fill in the required password when it is needed. All you need to remember is the one master password and the software does the rest. One of the better of these freebies is LastPass. Click the link for a demo. https://youtu.be/ynDcQcsaeck And click HERE if you wish to download it. The CVT gearbox. What is a continuously variable transmission? A continuously variable transmission, or CVT, is a type of automatic transmission that provides more useable power, better fuel economy and a smoother driving experience than a traditional automatic transmission. Conventional automatic transmissions use a set of gears that provides a given number of ratios (or speeds). The transmission shifts gears to provide the most appropriate ratio for a given situation: Lowest gears for starting out, middle gears for acceleration and passing, and higher gears for fuel-efficient cruising.
    [Show full text]
  • Effectiveness of Adaptive Flight Planning in the Occurrence of Total Loss of Thrust Due to Bird Strike by Kivanç A. Avrenli Di
    EFFECTIVENESS OF ADAPTIVE FLIGHT PLANNING IN THE OCCURRENCE OF TOTAL LOSS OF THRUST DUE TO BIRD STRIKE BY KIVANÇ A. AVRENLİ DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Doctoral Committee: Professor William Buttlar, Chair Professor Barry Dempsey, Director of Research Associate Professor Paolo Gardoni Assistant Professor Lavanya Marla ABSTRACT As of today, more than 96 percent of air travelers are transported on twin-engine jets. Although contemporary twin- engine jets are more reliable and efficient than yesterday’s three- and four-engine jets, they have reduced engine redundancy. A statistical analysis of the FAA Wildlife Strike Database shows that contemporary twin-engine jets are approximately 15 times more likely to undergo total loss of thrust in the event of a bird strike compared to yesterday’s three- and four-engine jets. To address the total-loss-of-thrust emergency, quick reference handbooks are designed to enable speedy and successful recovery of at least one engine. Airliner type-rating programs assume that total loss of thrust culminates in at least one engine recovery. If an engine restart cannot be achieved in a real-life emergency, airline pilots are left with virtually no guidance on how to manage the emergency situation. This dissertation hypothesizes that “an adaptive flight planner can significantly increase the odds of safe landing in the occurrence of total loss of thrust”. The objective is to test the research hypothesis through a designed experiment.
    [Show full text]
  • Avionics Evolution Impact on Requirements Issues and Validation and Verification
    NOT FAA POLICY OR GUIDANCE LIMITED RELEASE DOCUMENT 23 NOVEMBER 2015 DOT/FAA/TC-xx/xx SE2020 Task Order 22 Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division Atlantic City International Airport New Jersey 08405 Avionics Evolution Impact on Requirements Issues and Validation and Verification DISCLAIMER This draft document is being made available as a “Limited Release” document by the FAA Software and Digital Systems (SDS) Program and does not constitute FAA policy or guidance. This document is being distributed by permission by the Contracting Officer’s Representative (COR). The research information in this document represents only the viewpoint of its subject matter expert authors. The FAA is concerned that its research is not released to the public before full editorial review is completed. However, a Limited Release distribution does allow exchange of research knowledge in a way that will benefit the parties receiving the documentation and, at the same time, not damage perceptions about the quality of FAA research. This draft document does not include the Appendices due to scope of topics discussed. Applicability of their inclusion in the final version will be considered. NOT FAA POLICY OR GUIDANCE LIMITED RELEASE DOCUMENT 23 November 2015 NOT FAA POLICY OR GUIDANCE LIMITED RELEASE DOCUMENT 23 November 2015 NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report.
    [Show full text]