Extensions of Functions - Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

Extensions of Functions - Lecture Notes Extensions of functions - lecture notes Krzysztof J. Ciosmak University of Oxford, Mathematical Institute, Oxford, United Kingdom Email address: [email protected] Abstract. The aim of the course is to present several results on extensions of functions. Among the most important are Kirszbraun's and Whitney's the- orems. They provide powerful technical tools in many problems of analysis. One way to view these theorems is that they show that there exists an in- terpolation of data with certain properties. In this context they are useful in computer science, e.g. in clustering of data and in dimension reduction. Contents Chapter 1. Extensions of Lipschitz maps 5 1. McShane's theorem 5 2. Kirszbraun's theorem 6 3. Kneser{Poulsen conjecture 8 4. Continuity of extensions 9 Chapter 2. Whitney's extension theorem 13 1. Covering theorems 13 2. Partitions of unity 15 3. Whitney's extension theorem 16 Chapter 3. Minimal Lipschtiz extensions to differentiable functions 19 1. Affine jets 19 2. Extension problem 19 3. Proofs 20 Chapter 4. Ball's extension theorem 27 1. Markov type and cotype 27 2. Statement of the theorem 30 3. Examples 36 Chapter 5. Assesment and references 37 1. Reading list 37 2. Assesment 37 Additional references 37 Bibliography 39 Additionnal Topics and References 41 3 CHAPTER 1 Extensions of Lipschitz maps The first lecture is devoted to study of extensions of Lipschitz maps. Suppose that we are given two metric spaces (X; dX ) and (Y; dY ), then we say that a map f : X ! Y Lipschitz provided that there exists a finite constant L such that dY (f(x1); f(x2)) ≤ LdX (x1; x2) for all x1; x2 2 X: An optimal constant is the Lipschitz constant of f. If L is the optimal constant then we say that f is L-Lipschitz. 1. McShane's theorem In this section we shall consider functions defined on an arbitrary metric space (X; d) with values in the real line. Before we prove the main theorem we shall need simple lemmata. Lemma 1.1. Let L ≥ 0. Suppose that F is a family of L-Lipschitz functions f : X ! R. Then supff j f 2 Fg and infff j f 2 Fg are L-Lipschitz. Proof. Take any f 2 F. Then for any x; y 2 X there is f(x) − f(y) ≤ Ld(x; y): Therefore f(x) ≤ Ld(x; y) + supff(y) j f 2 Fg: Taking the supremum on the left-hand side proves that supff j f 2 Fg is L- Lipschitz. The proof for infff j f 2 Fg follows analogous lines. Lemma 1.2. Let y 2 X. Then the function d(·; y): X ! R is 1-Lipschitz. Proof. This follows immediately from the triangle inequality: jd(x1; y) − d(x2; y)j ≤ d(x1; x2): The following is a theorem of McShane, see [13]. Theorem 1.3 (McShane). Suppose that A ⊂ X and that f : A ! R is a Lipschitz function. Then there exists an extension of f, i.e. a function f~: X ! R ~ such that fjA = f, with with the Lipschitz constant as that of f. Moreover, there exists the smallest and the greatest functions f1 and f2 respec- tively that satisfy these properties. They are given by the formulae f1(x) = supff(a) − Ld(x; a) j a 2 Ag for x 2 X and f2(x) = infff(a) + Ld(a; x) j a 2 Ag for x 2 X: 5 6 1. EXTENSIONS OF LIPSCHITZ MAPS The proof resembles the proof of the Hahn{Banach theorem. Proof. Let L be the Lipschitz constant of f. We want to find an L-Lipschitz f~ such that for x 2 X; a 2 A (1.1) jf~(x) − f(a)j ≤ Ld(x; a): Observe that this already implies that f~ is an extension of f. Now, condition (1.1) is equivalent to that for all a1; a2 2 A and x 2 X there is ~ (1.2) f(a1) − Ld(x; a1) ≤ f(x) ≤ f(a2) + Ld(x; a2): From Lemma 1.2 we infer that functions x 7! f(a1) − Ld(x; a1) and x 7! f(a2) + Ld(a2; x) are both L-Lipschitz. Lemma 1.1 tells us that both f1(x) = supff(a) − Ld(x; a) j a 2 Ag and f2(x) = infff(a) + Ld(a; x) j a 2 Ag are L-Lipschitz. Function f1 satisfies the left-hand side inequality of (1.2) while f2 satisfies the right-hand side inequality of (1.2). Also, as f is L-Lipschtiz f1 ≤ f2. Moreover, if x 2 A, putting a = x in the formulae for f1; f2 yields f(a) ≤ f1(a) ≤ f2(a) ≤ f(a): Thus we have here equalities. The proof is complete. 2. Kirszbraun's theorem Here we consider more delicate question of extending Lipschitz maps with values in a vector space. Suppose that we have map f : A ! `1(N), on a subset A ⊂ X of a metric space (X; d) with values in the space `1(N) of bounded sequences. Then applying McShane's theorem to each coordinate of f we may extend it to the entire space X, preserving its Lipschitz constant. However, this is not true for maps with values in arbitrary metric spaces. Another important positive example is provided by the Kirszbraun's theorem, which addresses the problem in the case of Euclidean spaces. We refer the reader to original paper of Kirszbraun [10], proofs of Valentine [18], of Schoenberg [17] and a proof in the discrete setting by Brehm [6]. Theorem 2.1 (Kirszbraun). Suppose that A ⊂ Rn and that f : A ! Rm is a Lipschitz map with respect to Euclidean metrics on A and on Rm. Then there exists an extension f~: Rn ! Rm of f with the same Lipschitz constant. Proof. Observe first that it is enough to consider a situation when f is 1- Lipschitz. Suppose that A = fx1; : : : ; xkg is a finite set. Suppose that x2 = A and ~ ~ n ~ we want to find a point f(x) such that f : A[fxg ! R is 1-Lipschitz and fjA = f. That is we want f~(x) to belong to the set k \ B(f(xi); kx − xik): i=1 The assumption is that kf(xi) − f(xj)k ≤ kxi − xjk for all i; j = 1; : : : ; k. Define a function on Rm by the formula nky − f(x )k o g(y) = max i j i = 1; : : : ; k : kx − xik 2. KIRSZBRAUN'S THEOREM 7 Clearly, it converges to infinity, as y converges to infinity. Therefore there exists n m y0 2 R such that g(y0) = minfg(y) j y 2 R g. Pick indices i1; : : : ; il for which ky0 − f(xij )k (2.1) = g(y0) for j = 1; : : : ; l: kx − xij k We may assume that y0 2 Convff(xij ) j j = 1; : : : ; lg: Indeed, if not, then there exists a separating hyperplane, i.e. a unit vector v 2 Rm such that for all j = 1; : : : ; l there is hv; y0 − f(xij )i > 0 for some > 0. Set y0 = y0 − v. Let P be the orthogonal projection onto the space perpendicular to v. Then 0 2 2 2 2 ky0 − f(xij )k = kP (y0 − f(xij )k + (hv; y0 − f(xij )i − ) < ky0 − f(xij )k : This contradicts the fact that at y0 the minimum of g is attained. Therefore there exist non-negative real numbers λi1 ; : : : ; λil that sum up to one such that l X y0 = λij f(xij ): j=1 Define a random vector X, with values in Rn so that P(X = xij ) = λij for j = 1; : : : ; l: Then y0 = Ef(X) and 2 2 2 (2.2) kX − xk = g(y0) f(X) − Ef(X) : Let X0 be an independent copy of X. Then 2 1 0 2 1 0 2 2 X − X = kX − X k and kf(X) − f(X )k = f(X) − f(X) : E E 2E 2E E E Taking the expectation of (2.2) yields 2 2 2 2 g(y0) E f(X) − Ef(X) = EkX − xk ≥ E X − EX : Therefore, as f is 1-Lipschitz, 1 1 1 kf(X) − f(X0)k2 ≤ kX − X0k2 ≤ g(y )2 kf(X) − f(X0)k2: 2E 2E 0 2E Hence g(y0) ≤ 1, unless f(X) is constant, so that y0 = f(X). In this case g(y0) = 0. We have proven that for any x 2 Rn and any finite set A the interesection of closed balls \ B(f(y); kx − yk) 6= ;: y2A By compactness, such intersection is also non-empty for any infinite set A. We partially order subsets of Rn containing A and admitting a 1-Lipschitz extension of f by inclusion. By the Kuratowski{Zorn lemma, there exists a maximal element Z of this ordering. If Z 6= Rn, then we could have extended the 1-Lipschitz map to an element x2 = Z, contradicting the choice of Z. This completes the proof. 8 1. EXTENSIONS OF LIPSCHITZ MAPS The Kirszbraun theorem holds true also for Hilbert spaces, with the same proof. 3. Kneser{Poulsen conjecture The Kirszbraun theorem admits also another formulation. n Theorem 3.1. Suppose that x1; : : : ; xk 2 R and let r1; : : : ; rk ≥ 0. Suppose that k \ B(xi; ri) 6= ;: i=1 m Then for any points y1; : : : ; yk 2 R such that kyi − yjk ≤ kxi − xjk for all i; j = 1; : : : ; k there is k \ B(yi; ri) 6= ;: i=1 The above theorem says that if we shrink the centres of the balls, with non- empty intersection, then also the intersection of balls with new centres will be non-empty.
Recommended publications
  • Representation Operators of Metric and Euclidian Charges Philippe Bouafia
    Representation operators of metric and Euclidian charges Philippe Bouafia To cite this version: Philippe Bouafia. Representation operators of metric and Euclidian charges. General Mathematics [math.GM]. Université Paris Sud - Paris XI, 2014. English. NNT : 2014PA112004. tel-01015943 HAL Id: tel-01015943 https://tel.archives-ouvertes.fr/tel-01015943 Submitted on 27 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre: THÈSE Présentée pour obtenir LE GRADE DE DOCTEUR EN SCIENCES DE L’UNIVERSITÉ PARIS-SUD XI Spécialité: Mathématiques par Philippe Bouafia École doctorale de Mathématiques de Paris Sud Laboratoire d’Analyse Harmonique Blow-up analysis of multiple valued stationary functions Soutenue le 7 janvier 2014 devant la Commission d’examen: M. Petru Mironescu (Rapporteur, Université Lyon I) M. Camillo De Lellis (Rapporteur, Universität Zürich) M. Guy David (Directeur de thèse, Université Paris Sud) M. Thierry De Pauw (Promoteur de thèse, IMJ) M. Gilles Godefroy (Professeur d’université, IMJ) M. Stefan Wenger (Full professor, University of Fribourg) Thèse préparée au Département de Mathématiques d’Orsay Laboratoire de Mathématiques (UMR 8628), Bât. 425 Université Paris-Sud 11 91 405 Orsay CEDEX Abstract On étudie les fonctions multivaluées vers un espace de Hilbert.
    [Show full text]
  • Kirszbraun's Theorem
    Version of 14.9.18 Kirszbraun’s theorem D.H.Fremlin University of Essex, Colchester, England Wikipedia gives a statement of this theorem and an outline of its history, but no online source for the proof. It’s so pretty that I write one out here. 1 The essential ideas 1A The context I’ll come to the actual statement of the theorem, taken from http://en.wikipedia.org/ wiki/Kirszbraun theorem, in 1G below. This will be in the standard full-generality form concerning Lipschitz maps between (real) Hilbert spaces H1 and H2. If you aren’t familiar with ‘Hilbert spaces’ (http://en.wikipedia.org/wiki/Hilbert space), then you will probably prefer to start by taking both n H1 and H2 to be a Euclidean space R , with the inner product n (x y)= x.y = ξiηi | Pi=1 n if x =(ξ1,... ,ξn) and y =(η1,... ,ηn) belong to R , and the norm x = (x x)= n ξ2, k k p | pPi=1 i so that n 2 x y = (ξi ηi) k − k pPi=1 − is the Euclidean distance from x to y calculated with the n-dimensional version of Pythagoras’ theorem. In fact all the really interesting ideas of the proof, in 1B-1F below, are needed for the two-dimensional case n = 2. (The case n = 1 is much easier, as noted in Wikipedia.) I do have to warn you, however, that ordinary proofs of Kirszbraun’s theorem involve ‘Tychonoff’s theorem’ (see 2B below), and unless the words ‘topology’, ‘compact set’ and ‘continuous function’ mean something to you, you are going to have a good deal of work to do to understand the ‘first proof’ offered in 2.
    [Show full text]
  • The Nonlinear Geometry of Banach Spaces
    The Nonlinear Geometry of Banach Spaces Nigel J. KALTON Department of Mathematics University of Missouri-Columbia Columbia, MO 65211 [email protected] Received: November 5, 2007 Accepted: January 14, 2008 ABSTRACT We survey some of the recent developments in the nonlinear theory of Banach spaces, with emphasis on problems of Lipschitz and uniform homeomorphism and uniform and coarse embeddings of metric spaces. Key words: Banach space, nonlinear, Lipschitz, uniform homeomorphism, coarse em- bedding. 2000 Mathematics Subject Classification: 46B25, 46T99. The author was supported by NSF grant DMS-0555670. Rev. Mat. Complut. 21 (2008), no. 1, 7–60 7 ISSN: 1139-1138 http://dx.doi.org/10.5209/rev_REMA.2008.v21.n1.16426 Nigel J. Kalton The nonlinear geometry of Banach spaces Contents Introduction 9 1. Preliminaries 11 1.1. Basic Banach space theory . ..................... 11 1.2. Homeomorphisms and isometries between Banach spaces ....... 13 1.3. Various categories of homeomorphisms ................. 14 2. Lipschitz and uniform homeomorphisms between Banach spaces 18 2.1. Classical differentiability results for Lipschitz maps .......... 18 2.2. The Lipschitz isomorphism problem, I .................. 22 2.3. The Lipschitz isomorphism problem, II . .............. 26 2.4. Uniformly and coarsely homeomorphic Banach spaces ......... 30 3. Properties of metric spaces and extension of Lipschitz maps 35 3.1. Nonlinear type and cotype ........................ 35 3.2. The structure of the Arens-Eells space of a metric space ........ 39 3.3. Extension of Lipschitz maps: absolute Lipschitz retracts ........ 41 3.4. Extending Lipschitz maps into Banach spaces ............. 42 4. Uniform and coarse embeddings 48 4.1. Uniform and coarse embeddings in Lp-spaces .............
    [Show full text]
  • Challenges in Hadamard Spaces 3
    OLD AND NEW CHALLENGES IN HADAMARD SPACES MIROSLAV BACˇAK´ Abstract. Hadamard spaces have traditionally played important roles in geometry and geometric group theory. More recently, they have additionally turned out to be a suitable framework for convex analysis, optimization and nonlinear probability theory. The attractiveness of these emerging subject fields stems, inter alia, from the fact that some of the new results have already found their applications both in math- ematics and outside. Most remarkably, a gradient flow theorem in Hadamard spaces was used to attack a conjecture of Donaldson in K¨ahler geometry. Other areas of applications include metric geometry and minimization of submodular functions on modular lattices. There have been also applications into computational phylogenetics and imaging. We survey recent developments in Hadamard space analysis and optimization with the intention to advertise various open problems in the area. We also point out several fallacies in the existing proofs. 1. Introduction The present paper is a follow-up to the 2014 book [16] with the aim to present new advances in the theory of Hadamard spaces and their applications. We focus primarily on analysis and optimization, because their current development stage is, in our opinion, very favorable. On the one hand, these subject fields are very young and offer many new possibilities for further research, and on the other hand, the existing theory is already mature enough to be applied elsewhere. We will highlight the most notable applications including a conjecture of Donaldson on the asymptotic behavior of the Calabi flow in K¨ahler geometry, • the existence of Lipschitz retractions in Finite Subset Space, • submodular function minimization on modular lattices, • computing averages of trees in phylogenetics, • computing averages of positive definite matrices in Diffusion Tensor Imaging.
    [Show full text]
  • IMUS Lecture Notes on Harmonic Analysis, Metric Spaces and PDES, Sevilla 2011
    IMUS Lecture Notes on Harmonic Analysis, Metric Spaces and PDES, Sevilla 2011 Edited By: Lucas Chaffee, Taylor Dupuy, Rafael Espinosa, Jarod Hart, Anna Kairema, Lyudmila Korobenko November 7, 2012 2 Contents 1 Shanmugalingam5 1.1 Lecture One: Sobolev Spaces.......................5 1.2 Lecture 2.................................9 1.3 Lecture 3................................. 13 1.4 Lecture 4................................. 18 1.5 Lecture 5................................. 25 2 Rafa 31 2.1 General Measure Theory. A review.................... 32 2.2 Integration................................. 37 2.3 Covering theorems............................ 41 2.4 Differentiation of Radon measures.................... 44 2.5 Lebesgue differentiation theorem..................... 46 2.6 Hausdorff Measure............................ 49 2.7 Extension of Lipschitz mappings..................... 52 2.8 Rademacher theorem........................... 55 2.9 Linear maps and Jacobians. The area formula.............. 56 2.10 Geodesic spaces of bounded curvature.................. 61 2.11 Gromov hyperbolicity........................... 69 3 Zhong 73 3.1 Lecture One. Poincar´einequalities.................... 73 3.2 Lecture Two................................ 75 3 4 CONTENTS 3.3 Lecture Three. Poncar´e=) Sobolev-Poncar´e.............. 79 3.4 Lecture Four................................ 82 3.5 Lecture Five................................ 85 4 Mateu 89 4.1 Lecture 1................................. 89 4.2 Lecture 2................................. 96 4.3 Appendix................................
    [Show full text]
  • The Nonlinear Geometry of Banach Spaces
    i i i i The Nonlinear Geometry of Banach Spaces Nigel J. KALTON Department of Mathematics University of Missouri-Columbia Columbia, MO 65211 [email protected] Received: November 5, 2007 Accepted: January 14, 2008 ABSTRACT We survey some of the recent developments in the nonlinear theory of Banach spaces, with emphasis on problems of Lipschitz and uniform homeomorphism and uniform and coarse embeddings of metric spaces. Key words: Banach space, nonlinear, Lipschitz, uniform homeomorphism, coarse em- bedding. 2000 Mathematics Subject Classification: 46B25, 46T99. The author was supported by NSF grant DMS-0555670. Rev. Mat. Complut. 21 (2008), no. 1, 7{60 7 ISSN: 1139-1138 i i i i i i i i Nigel J. Kalton The nonlinear geometry of Banach spaces Contents Introduction 9 1. Preliminaries 11 1.1. Basic Banach space theory . 11 1.2. Homeomorphisms and isometries between Banach spaces . 13 1.3. Various categories of homeomorphisms . 14 2. Lipschitz and uniform homeomorphisms between Banach spaces 18 2.1. Classical differentiability results for Lipschitz maps . 18 2.2. The Lipschitz isomorphism problem, I . 22 2.3. The Lipschitz isomorphism problem, II . 26 2.4. Uniformly and coarsely homeomorphic Banach spaces . 30 3. Properties of metric spaces and extension of Lipschitz maps 35 3.1. Nonlinear type and cotype . 35 3.2. The structure of the Arens-Eells space of a metric space . 39 3.3. Extension of Lipschitz maps: absolute Lipschitz retracts . 41 3.4. Extending Lipschitz maps into Banach spaces . 42 4. Uniform and coarse embeddings 48 4.1. Uniform and coarse embeddings in Lp-spaces .
    [Show full text]
  • Metric Embeddings and Lipschitz Extensions
    Metric Embeddings and Lipschitz Extensions Lecture Notes Lectures given by Assaf Naor Department of Mathematics Princeton University Spring 2015 1 Contents 1. Introduction 2 2. Preparatory material 5 3. The H¨olderextension problem 8 4. Kirszbraun's extension theorem 10 5. Bourgain's embedding theorem 13 6. The nonlinear Dvoretzky theorem 19 7. Assouad's embedding theorem 23 8. The Johnson-Lindenstrauss extension theorem 26 9. Embedding unions of metric spaces into Euclidean space 35 10. Extensions of Banach space-valued Lipschitz functions 39 11. Ball's extension theorem 44 12. Uniform convexity and uniform smoothness 53 13. Calculating Markov type and cotype 58 1Notes taken by Alexandros Eskenazis 1. Introduction In this first section, we present the setting for the two basic problems that we will face throughout the course. 1.1. Embeddings and extensions. The first problem is the bi-Lipschitz embedding problem. This consinsts of deciding whether a given metric space (X; dX ) admits a "reasonable" embedding into some other metric space (Y; dY ), in the sense that there is a mapping f : X ! Y , such that if we compute the distance dY (f(x); f(y)), for two points x; y 2 X, then we can almost compute the distance dX (x; y). This can be written formally in the following way: Definition 1.1. Let (X; dX ) and (Y; dY ) be metric spaces. A mapping f : X ! Y has distortion at most D > 1 if there exists a (scaling constant) s > 0, such that (1) sdX (x; y) 6 dY (f(x); f(y)) 6 sDdX (x; y); for every x; y 2 X.
    [Show full text]
  • CONVEX FUNCTIONS and THEIR APPLICATIONS a Contemporary Approach
    Constantin P. Niculescu, Lars-Erik Persson CONVEX FUNCTIONS AND THEIR APPLICATIONS A contemporary approach SPIN Springer's internal project number, if known { Monograph { September 16, 2004 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo To Liliana and Lena Preface It seems to me that the notion of con- vex function is just as fundamental as positive function or increasing function. If am not mistaken in this, the notion ought to ¯nd its place in elementary ex- positions of the theory of real functions. J. L. W. V. Jensen Convexity is a simple and natural notion which can be traced back to Archimedes (circa 250 B.C.), in connection with his famous estimate of the value of ¼ (using inscribed and circumscribed regular polygons). He noticed the important fact that the perimeter of a convex ¯gure is smaller than the perimeter of any other convex ¯gure, surrounding it. As a matter of facts, we experience convexity all the time and in many ways. The most prosaic example is our standing up position, which is secured as long as the vertical projection of our center of gravity lies inside the convex envelope of our feet! Also, convexity has a great impact on our everyday life through its numerous applications in industry, business, medicine, art, etc. So are the problems on optimum allocation of resources and equilibrium of non-cooperative games. The theory of convex functions is part of the general subject of convexity since a convex function is one whose epigraph is a convex set. Nonetheless it is a theory important per se, which touches almost all branches of mathematics.
    [Show full text]
  • LECTURES on LIPSCHITZ ANALYSIS 1. Introduction a Function F
    LECTURES ON LIPSCHITZ ANALYSIS JUHA HEINONEN 1. Introduction A function f : A → Rm, A ⊂ Rn, is said to be L-Lipschitz, L ≥ 0, if (1.1) |f(a) − f(b)| ≤ L |a − b| for every pair of points a, b ∈ A. We also say that a function is Lipschitz if it is L-Lipschitz for some L. The Lipschitz condition as given in (1.1) is a purely metric condi- tion; it makes sense for functions from one metric space to another. In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. In Section 2, we study extension problems and Lipschitz retracts. In Section 3, we prove the classical differentiability theorems of Rademacher and Stepanov. In Section 4, we briefly discuss Sobolev spaces and Lipschitz behavior; another proof of Rademacher’s theorem is given there based on the Sobolev embedding. Section 5 is the most substantial. Therein we carefully develop the basic theory of flat differential forms of Whitney. In particular, we give a proof of the fundamental duality between flat chains and flat forms. The Lipschitz invariance of flat forms is also discussed. In the last section, Section 6, we discuss some recent developments in geometric analysis, where flat forms are used in the search for Lipschitz variants of the measurable Riemann mapping theorem. Despite the Euclidean framework, the material in these lectures should be of interest to students of general metric geometry. Many basic re- sults about Lipschitz functions defined on subsets of Rn are valid in great generality, with similar proofs. Moreover, fluency in the classical theory is imperative in analysis and geometry at large.
    [Show full text]
  • Existence of P Harmonic Multiple Valued Maps Into a Separable Hilbert Space Tome 65, No 2 (2015), P
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET Existence of p harmonic multiple valued maps into a separable Hilbert space Tome 65, no 2 (2015), p. 763-833. <http://aif.cedram.org/item?id=AIF_2015__65_2_763_0> © Association des Annales de l’institut Fourier, 2015, Certains droits réservés. Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/ L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 65, 2 (2015) 763-833 EXISTENCE OF p HARMONIC MULTIPLE VALUED MAPS INTO A SEPARABLE HILBERT SPACE by Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET Abstract. — We study the elementary properties of multiple valued maps between two metric spaces: their measurability, Lebesgue integrability, continuity, Lipschitz continuity, Lipschitz extension, and differentiability in case the range and domain are linear. We discuss F.J. Almgren’s embedding Theorem and we prove a new, more general, embedding from which a Fréchet-Kolmogorov compactness Theorem ensues for multiple valued Lp spaces. In turn, we introduce an intrinsic definition of Sobolev multiple valued maps into Hilbert spaces, together with the relevant Sobolev extension property, Poincaré inequality, Luzin type approxima- tion by Lipschitz maps, trace theory, and the analog of Rellich compactness.
    [Show full text]
  • Compactness of Infinite Dimensional Parameter Spaces
    Compactness of infinite dimensional parameter spaces Joachim Freyberger Matthew Masten The Institute for Fiscal Studies Department of Economics, UCL cemmap working paper CWP01/16 Compactness of Infinite Dimensional Parameter Spaces∗ Joachim Freyberger† Matthew A. Masten‡ December 23, 2015 Abstract We provide general compactness results for many commonly used parameter spaces in non- parametric estimation. We consider three kinds of functions: (1) functions with bounded do- mains which satisfy standard norm bounds, (2) functions with bounded domains which do not satisfy standard norm bounds, and (3) functions with unbounded domains. In all three cases we provide two kinds of results, compact embedding and closedness, which together allow one to show that parameter spaces defined by a s-norm bound are compact under a norm c. We apply these results to nonparametric meank ·k regression and nonparametric instrumentalk variables ·k estimation. JEL classification: C14, C26, C51 Keywords: Nonparametric Estimation, Sieve Estimation, Trimming, Nonparametric Instrumental Variables ∗This paper was presented at Duke and the 2015 Triangle Econometrics Conference. We thank audiences at those seminars as well as Bruce Hansen, Jack Porter, Yoshi Rai, and Andres Santos for helpful conversations and comments. †Department of Economics, University of Wisconsin-Madison, [email protected] ‡Department of Economics, Duke University, [email protected] 1 1 Introduction Compactness is a widely used assumption in econometrics, for both finite and infinite dimensional parameter spaces. It can ensure the existence of extremum estimators and is an important step in many consistency proofs (e.g. Wald 1949). Even for noncompact parameter spaces, compactness results are still often used en route to proving consistency.
    [Show full text]
  • Bibliography
    Bibliography [1] G.E. Albert, Anoteonquasi-metricspaces, Bull. Amer. Math. Soc. 47 (1941), 479–482. [2] C. Alegre, Continuous operators on asymmetric normed spaces,ActaMath. Hungar. 122 (2009), no. 4, 357–372. [3] C. Alegre and I. Ferrando, Quotient subspaces of asymmetric normed linear spaces, Bol. Soc. Mat. Mexicana (3) 13 (2007), no. 2, 357–365. [4] C. Alegre, I. Ferrando, L.M. Garc´ıa-Raffi, and E.A. S´anchez P´erez, Com- pactness in asymmetric normed spaces, Topology Appl. 155 (2008), no. 6, 527–539. [5] C. Alegre, J. Ferrer, and V. Gregori, Quasi-uniformities on real vector spaces, Indian J. Pure Appl. Math. 28 (1997), no. 7, 929–937. [6] , On a class of real normed lattices,CzechoslovakMath.J.48(123) (1998), no. 4, 785–792. [7] , On pairwise Baire bitopological spaces, Publ. Math. Debrecen 55 (1999), no. 1–2, 3–15. [8] , On the Hahn-Banach theorem in certain linear quasi-uniform struc- tures, Acta Math. Hungar. 82 (1999), no. 4, 325–330. [9] E. Alemany and S. Romaguera, On half-completion and bicompletion of quasi-metric spaces, Comment. Math. Univ. Carolin. 37 (1996), no. 4, 749– 756. [10] , On right -sequentially complete quasi-metric spaces,ActaMath. Hungar. 75 (1997), no. 3, 267–278. [11] A.R. Alimov, The Banach-Mazur theorem for spaces with nonsymmetric dis- tance, Uspekhi Mat. Nauk 58 (2003), no. 2, 159–160. [12] , Convexity of Chebyshev sets in a subspace, (Russian) Mat. Zametki 78 (2005), no. 1, 3–15; translation in Math. Notes 78 (2005), no. 1–2, 3–13. [13] A.
    [Show full text]