481221 1 En Bookbackmatter 379..403
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Question 1 Microscopy Is the Technical Field of Using Microscopes to View Objects and Areas of Objects That Cannot Be Seen with Seen with the Naked Eye
Question 1 Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with seen with the naked eye. Microscopy dates back to the 17th- century. In the first century A.D Seneca described actual magnification by a globe of water. The first modern application of optics occurred in Florence around 1280 A.D with the use of glasses as an aid to vision. The early history of the microscope and its inventors is shrouded in much confusion. Credit for the first compound microscope is given to Hans Jansen or his son Zacharias around 1595. The description of Jansen’s microscope was preserved until the early 1600’s. The instrument consisted of three sliding tubes measuring 18 inches in length when fully extended and two inches in diameter. The microscope was said to have a magnification of 3 x when closed and 9 x when fully extended. In the 18th century many mechanical improvements were made in the microscope but images had colourful haloes and were blurry. As the lenses multiplied, so did the distortions. The best simple microscopes attain about two micron resolutions but the best compound resolutions only had five micron resolution. The colour haloes are due to chromatic aberration. This is when light is transmitted through a substance and it will be bent different amounts depending upon its wavelength. This means that a lens will have a different focus for different colours of light. The solution to this problem came not from microscopes but telescopes in the 1730’s. -
Open Etoth Dissertation Corrected.Pdf
The Pennsylvania State University The Graduate School The College of Arts and Architecture FROM ACTIVISM TO KIETISM: MODERIST SPACES I HUGARIA ART, 1918-1930 BUDAPEST – VIEA – BERLI A Dissertation in Art History by Edit Tóth © 2010 Edit Tóth Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2010 The dissertation of Edit Tóth was reviewed and approved* by the following: Nancy Locke Associate Professor of Art History Dissertation Adviser Chair of Committee Sarah K. Rich Associate Professor of Art History Craig Zabel Head of the Department of Art History Michael Bernhard Associate Professor of Political Science *Signatures are on file in the Graduate School ii ABSTRACT From Activism to Kinetism: Modernist Spaces in Hungarian Art, 1918-1930. Budapest – Vienna – Berlin investigates modernist art created in Central Europe of that period, as it responded to the shock effects of modernity. In this endeavor it takes artists directly or indirectly associated with the MA (“Today,” 1916-1925) Hungarian artistic and literary circle and periodical as paradigmatic of this response. From the loose association of artists and literary men, connected more by their ideas than by a distinct style, I single out works by Lajos Kassák – writer, poet, artist, editor, and the main mover and guiding star of MA , – the painter Sándor Bortnyik, the polymath László Moholy- Nagy, and the designer Marcel Breuer. This exclusive selection is based on a particular agenda. First, it considers how the failure of a revolutionary reorganization of society during the Hungarian Soviet Republic (April 23 – August 1, 1919) at the end of World War I prompted the Hungarian Activists to reassess their lofty political ideals in exile and make compromises if they wanted to remain in the vanguard of modernity. -
Optimization of the Input Fundamental Beam by Using a Spatial Filter Consisting of Two Apertures
Journal of the Korean Physical Society, Vol. 56, No. 1, January 2010, pp. 325∼328 Optimization of the Input Fundamental Beam by Using a Spatial Filter Consisting of Two Apertures Bonghoon Kang∗ Department of Visual Optics, Far East University, Chungbuk Eumseong-gun 369-700 Gi-Tae Joo Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 136-791 Bum Ku Rhee Department of Physics, Sogang University, Seoul 121-742 (Received 17 August 2009) The primary importance of the power efficiency of second-harmonic generation (SHG) is deter- mined by using the spatial shape of the fundamental input beam, its confocal parameter. The improvement of the fundamental input beam by using a spatial filter consisting of two apertures. The beam quality factor M2 of the improved fundamental beam was about 2.3. PACS numbers: 42.62.-b, 42.79.Nv, 42.25.Bs Keywords: Second-harmonic generation (SHG), Spatial filter, Beam quality factor, Confocal parameter DOI: 10.3938/jkps.56.325 I. INTRODUCTION Beam shaping requires a specific input beam. In order for the shaping to create an undistorted flat top beam or Gaussian-like beam, the input beam must be Gaus- Second harmonic generation (SHG) is widely used in sian. If the input beam does not have the proper profile, nonlinear optical spectroscopy. The optimization of the then measurements will tell the user that adjustments power efficiency of SHG is of primary importance in a to the source beam must be made before attempting to number of applications, especially when continuous wave perform the laser beam shaping. -
Ernst Abbe 1840-1905: a Social Reformer
We all do not belong to ourselves Ernst Abbe 1840-1905: a Social Reformer Fritz Schulze, Canada Linda Nguyen, The Canadian Press, Wednesday, January 2014: TORONTO – By the time you finish your lunch on Thursday, Canada’s top paid CEO will have already earned (my italics!) the equivalent of your annual salary.* It is not unusual these days to read such or similar headlines. Each time I am reminded of the co-founder of the company I worked for all my active life. Those who know me, know that I worked for the world-renowned German optical company Carl Zeiss. I also have a fine collection of optical instruments, predominantly microscopes, among them quite a few Zeiss instruments. Carl Zeiss founded his business as a “mechanical atelier” in Jena in 1846 and his mathematical consultant, Ernst Abbe, a poorly paid lecturer at the University Jena, became his partner in 1866. That was the beginning of a comet-like rise of the young company. Ernst Abbe was born in Eisenach, Thuringia, on January 23, 1840, as the first child of a spinnmaster of a local textile mill.Till the beginning of the 50s each and every day the Lord made my father stood at his machines, 14, 15, 16 hours, from 5 o’clock in the morning till 7 o’clock in the evening during quiet periods, 16 hours from 4 o’clock in the morning till 8 o’clock in the evening during busy times, without any interruption, not even a lunch break. I myself as a small boy of 5 – 9 years brought him his lunch, alternately with my younger sister, and watched him as he gulped it down leaning on his machine or sitting on a wooden box, then handing me back the empty pail and immediately again tending his machines." Ernst Abbe remembered later. -
Medical News
1378 Hospital; Adolf Lucas Jacob Vischer, M.D. Bâle, Bàle University and St. Bartholomew’s Hospital; Lawrence Cecil Walker, B.A. Cantab., Cambridge University and St. Mary’s Hospital; Ronald News. Ogier Ward, B.A. Uxon., Oxford University and St. Bartholomew’s Medical Hospital; John Glegg Watson, London Hospital; Percy Whitehead, St. George’s Hospital; Frederic St. Barbe Wickham, St. Mary’s Hospital; and Harold Addison Woodruff, M.R.C.V.S., University EXAMINING BOARD IN ENGLAND BY THE ROYAL College Hospital. * COLLEGES OF PHYSICIANS OF LONDON AND SURGEONS OF M.R.C.S. Diploma granted on April llth. ENGLAND.—At the quarterly meetings of the above ROYAL COLLEGE OF SURGEONS OF ENGLAND.- Colleges held on April 25th and May 9th respectively, the At the First Professional Examination in Anatomy and Licence of the Royal College of Physicians and the Diploma Physiology for the Diploma of Fellow of the above College, of Member of the of were conferred Royal College Surgeons held on May 2nd, 3rd, 7th, 8th, 9th, and 10th, 118 on 96 gentlemen who have completed their examinations and candidates presented themselves for examination, of whom have with the The are the complied by-laws. following 31 passed and 87 were rejected. The following are the names of the successful candidates :- names of the successful candidates :- Edward Smith Abraham, Bristol University and University College Harold George Alexander, M.R.C.S., L.R.C.P., Middlesex Hospital; Hospital; Rupert Blake Adams. St. Mary’s and Middlesex Hospitals ; Lancelot Bromley, M.B., B.C., B.A. -
Bernhard Riemann 1826-1866
Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. -
Optical Expert Named New Professor for History of Physics at University and Founding Director of German Optical Museum
URL: http://www.uni-jena.de/en/News/PM180618_Mappes_en.pdf Optical Expert Named New Professor for History of Physics at University and Founding Director of German Optical Museum Dr Timo Mappes to assume new role on 1 July 2018 / jointly appointed by University of Jena and German Optical Museum Dr Timo Mappes has been appointed Professor for the History of Physics with a focus on scientific communication at the Friedrich Schiller University Jena (Germany). He will also be the founding Director of the new German Optical Museum in Jena. Mappes will assume his new duties on 1 July 2018. Scientist, manager and scientific communicator "The highly complex job profile for this professorship meant the search committee faced a difficult task. We were very fortunate to find an applicant with so many of the necessary qualifications," says Prof. Dr Gerhard G. Paulus, Chairman of the search committee, adding: "If the committee had been asked to create its ideal candidate, it would have produced someone that resembled Dr Mappes." Mappes has a strong background in science and the industrial research and development of optical applications, and over the last twenty years has become very well-respected in the documentation and history of microscope construction from 1800 onwards. Last but not least, he has management skills and experience in sharing his knowledge with the general public, and with students in particular. All of this will be very beneficial for the German Optical Museum. The new concept and the extensive renovation of the traditional Optical Museum in Jena will make way for the new German Optical Museum, a research museum and forum for showcasing the history of optics and photonics. -
Fourier Optics
Fourier Optics 1 Background Ray optics is a convenient tool to determine imaging characteristics such as the location of the image and the image magni¯cation. A complete description of the imaging system, however, requires the wave properties of light and associated processes like di®raction to be included. It is these processes that determine the resolution of optical devices, the image contrast, and the e®ect of spatial ¯lters. One possible wave-optical treatment considers the Fourier spectrum (space of spatial frequencies) of the object and the transmission of the spectral components through the optical system. This is referred to as Fourier Optics. A perfect imaging system transmits all spectral frequencies equally. Due to the ¯nite size of apertures (for example the ¯nite diameter of the lens aperture) certain spectral components are attenuated resulting in a distortion of the image. Specially designed ¯lters on the other hand can be inserted to modify the spectrum in a prede¯ned manner to change certain image features. In this lab you will learn the principles of spatial ¯ltering to (i) improve the quality of laser beams, and to (ii) remove undesired structures from images. To prepare for the lab, you should review the wave-optical treatment of the imaging process (see [1], Chapters 6.3, 6.4, and 7.3). 2 Theory 2.1 Spatial Fourier Transform Consider a two-dimensional object{ a slide, for instance that has a ¯eld transmission function f(x; y). This transmission function carries the information of the object. A (mathematically) equivalent description of this object in the Fourier space is based on the object's amplitude spectrum ZZ 1 F (u; v) = f(x; y)ei2¼ux+i2¼vydxdy; (1) (2¼)2 where the Fourier coordinates (u; v) have units of inverse length and are called spatial frequencies. -
Rudi Mathematici
Rudi Mathematici Y2K Rudi Mathematici Gennaio 2000 52 1 S (1803) Guglielmo LIBRI Carucci dalla Somaja Olimpiadi Matematiche (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE P1 (1912) Boris GNEDENKO 2 D (1822) Rudolf Julius Emmanuel CLAUSIUS Due matematici "A" e "B" si sono inventati una (1905) Lev Genrichovich SHNIRELMAN versione particolarmente complessa del "testa o (1938) Anatoly SAMOILENKO croce": viene scritta alla lavagna una matrice 1 3 L (1917) Yuri Alexeievich MITROPOLSHY quadrata con elementi interi casuali; il gioco (1643) Isaac NEWTON consiste poi nel calcolare il determinante: 4 M (1838) Marie Ennemond Camille JORDAN 5 M Se il determinante e` pari, vince "A". (1871) Federigo ENRIQUES (1871) Gino FANO Se il determinante e` dispari, vince "B". (1807) Jozeph Mitza PETZVAL 6 G (1841) Rudolf STURM La probabilita` che un numero sia pari e` 0.5, (1871) Felix Edouard Justin Emile BOREL 7 V ma... Quali sono le probabilita` di vittoria di "A"? (1907) Raymond Edward Alan Christopher PALEY (1888) Richard COURANT P2 8 S (1924) Paul Moritz COHN (1942) Stephen William HAWKING Dimostrare che qualsiasi numero primo (con (1864) Vladimir Adreievich STELKOV l'eccezione di 2 e 5) ha un'infinita` di multipli 9 D nella forma 11....1 2 10 L (1875) Issai SCHUR (1905) Ruth MOUFANG "Die Energie der Welt ist konstant. Die Entroopie 11 M (1545) Guidobaldo DEL MONTE der Welt strebt einem Maximum zu" (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR Rudolph CLAUSIUS 12 M (1906) Kurt August HIRSCH " I know not what I appear to the world, -
To Take Into Consideration the Propriety Of
his was the subject for discussion amongst the seventeen microscopists who met at Edwin Quekett’s house No 50 Wellclose Square, in the Borough of Stepney, East London on 3rd September 1839. It was resolved that such a society be formed Tand a provisional committee be appointed to carry this resolution into effect. The appointed provisional committee of seven were to be responsible for the formation of our society, they held meetings at their homes and drew up a set of rules. They adopted the name ‘Microscopical Society of London’ and arranged a public meeting on the 20th December 1839 at the rooms of the Horticultural Society, 21 Regent Street. Where a Nathaniel Bagshaw Ward © National Portrait Gallery, London President, Treasurer and Secretary were elected, the provisional committee also selected the size of almost airtight containers. Together with George 3 x 1 inch as a standard for glass slides. Loddiges, he saw the potential benefit of protection from sea air damage allowing the transport of plants Each of the members of the provisional committee between continents. This Ward published in 1834 had their own background which we have briefly and eventually his cases enabled the introduction described on the following pages, as you will see of the tea plant to Assam from China and rubber they are a diverse range of professionals. plants to Malaysia from South America. His glass plant cases allowed the growth of orchids and ferns in the Victorian home and in 1842 he wrote a book on the subject. However glass was subject to a tax making cases expensive so Ward lobbied successfully for its repeal in 1845. -
Diffraction and Spatial Filtering P
Diffraction and Spatial Filtering P. Bennett PHY452 "Optics" Concepts Fraunhofer and Fresnel Diffraction; Spatial Filtering; Geometric optics (lenses, conjugate object- image points, focal plane, magnification); Fast-Fourier Transform; Analytic functions for N-slit apertures. Background Reading “Diffraction and Fourier Optics” (RiceUnivOpticsLab.pdf). This is an excellent write-up, particularly for theory. We follow it closely. Diffraction Physics, J. M. Cowley - definitive reference for general principles and elegant presentation. Optics, text by E. Hecht - detailed reference document with much practical information. “Geometric optics” (image formation with lenses) and “diffraction” - any UG text. Edmund Optics catalog - excellent technical info, with online tutorials and prices! SpatialFilter.xlt and *.doc Fresnel diffraction calculations (XL template and help) Special Equipment and Skills Alignment of optical components; CCD camera; Laser (Edmund P54-025, 5mW, = 635nm). Precautions Never allow the laser beam into your eye, either directly (“looking” at it) or indirectly (by spurious reflection from metal, glass, etc). Even with viewing screens, the focused spot is extremely bright, so be sure to attenuate the beam to a comfortable viewing level at all times. This will save your eyes and also the detector! Do note exceed 5V for the laser diode ($600). Handle the optical components (lenses, pinhole, apertures, slits) carefully: always store them in the vertical mounts or the wooden rack. Never lay them flat on the table, since they scratch, clog or deform easily. Lens-cleaning tissues and an air brush are available for gentle cleaning. Vinyl gloves are available for handling (mounting, etc), if necessary. Check for scratches by reflections of a bright light. -
Heimstätten Aktuell
Ausgabe 11 · Juni 2016 heimstätten aktuell EINE SCHÖNE TRADITION: DAS SCHMÜCKEN DES HEIMSTÄTTENBRUNNENS ZUM OSTERFEST VORWORT. Auch in diesem Jahr schmückten zum Osterfest die Hortkinder der Klas sen 2 und 3 der Talschule mit viel Liebe und Eifer den Brunnen in der Liebe Leserinnen und Leser, Heimstättenstraße. der Sommer steht in den Start- Am 18. März verschönerten die Schüler mit selbstgebastelten Girlanden löchern und somit wird es und Osterschmuck den Brunnen und sorgten so für einen bunten Blick auch wieder Zeit für eine neue fang im Ziegenhainer Tal. Sie wurden dabei tatkräftig von ihren Erziehern Ausgabe ihrer Mieterzeitung und Erzieherinnen sowie unserem Hausmeister Herr Franz mit seinen Männern unterstützt. »Heimstätten aktuell«. Wie immer haben wir uns bemüht, Nach getaner Arbeit erhielten sie von der Genossenschaft als Dank einen Neuigkeiten, Wissenswertes großen Korb mit Süßigkeiten und einen Gutschein zur Beschaffung neuer und Interessantes rund um Bastelmaterialien. die Heimstätten-Genossen- schaft und ihre Wohngebiete für Sie zusammen zutragen. Wir berichten von den angelau- fenen Sanierungsarbeiten im Südviertel, werfen einen Blick ins Ziegenhainer Tal, wo die Tal- schule ein besonderes Jubiläum feierte, befassen uns mit dem Thema Anschaffung von Mobi- litätshilfen und geben Tipps zur Wohnungssicherheit wäh- rend Ihrer Abwesenheit, damit Sie Ihren Urlaub unbeschwert genießen können. In eigener Sache möchten wir Sie noch einmal zur Mitarbeit an unserer Zeitung einladen. Wenden Sie sich mit Ihren Anregungen, Themenvorschlä- gen oder Beiträgen direkt an das Redaktionsteam oder die Geschäftsstelle der Genossen- schaft. Darüber hinaus suchen wir auch personelle Verstär- kung. Wer Lust hat sich an der Gestaltung und Herausgabe von »Heimstätten aktuell« zu beteiligen, ist jederzeit herzlich willkommen! Ihr Redaktionsteam von »Heimstätten aktuell« Seite 2 Ausgabe 11 · Juni 2016 NEUE KITA »IM ZIEGENHAINER TAL« Seit dem Richtfest im August 2015 Gespräche und Elternstammtische und die Inbetriebnahme des Kinder ist viel passiert.