Context-Aware Configuration

Total Page:16

File Type:pdf, Size:1020Kb

Context-Aware Configuration Context-aware Configuration DISSERTATION submitted in partial fulfillment of the requirements for the degree of Doktor der Technischen Wissenschaften by Dipl.-Ing. Markus Raab, BSc. Registration Number 00425830 to the Faculty of Informatics at the TU Wien Advisor: Dipl.-Ing. Dr.techn. Franz Puntigam The dissertation has been reviewed by: Yuanyuan Zhou Uwe Aßmann Vienna, 9th October, 2017 Markus Raab Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Dipl.-Ing. Markus Raab, BSc. Kandlgasse 7/2/4/8, 1070 Wien Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 9. Oktober 2017 Markus Raab iii Acknowledgements Physics isn’t the most important thing. Love is. — Richard Feynman First of all thanks to all people involved in Elektra. Many people contributed over the years. Others helped by participating in user studies. Special thanks to Kai-Uwe Behrmann and Harald Geyer, who are the pioneer users of Elektra. We had many fruitful discussions about many topics concerning configuration. Thanks to the reviewing committee for finding time. Thanks to the staff of my institute who proofread many of my papers and helped in all aspects around research. I want to give distinct gratitude to Franz Puntigam for guiding me through the work and for being highly responsive to all my concerns and questions. I thank TU Wien for financial support. Furthermore, thanks to the people for helping me with reviews and discussions. In particular, reversely sorted by alphabet, I am grateful to Uwe Zdun, Tianyin Xu, Stefan Winter, Patrick Sabin, Nedko Tantilov, Milan Nosáľ, Maike Löhndorf, Katharina Spiel, Jens Knoop, Helmut Toplitzer, Harald Geyer, Gergö Barany, Geraldine Fitzpatrick, Franz Puntigam, Erik Schnetter, Elisabeth Raab-Steiner, Christian Amsüss, Aotani Tomoyuki, Andreas P. Priesnitz, Andreas Mohrhammer, Andreas Krall, Andreas Falkner, and the anonymous reviewers. I build upon the work of many people who contributed to free software, science, and society. Without them I would not have been able to even start this work. I do apologize to all the people I cannot mention here! Last but not least, I am deeply grateful for the backing I got from my family and friends, especially Natalie Kukuczka and Elisabeth Raab. v Abstract With the help of configuration settings—usually stored in configuration files—applications are highly adaptable. Modern systems give us detailed information about the context the system is situated in. We define context as every information relevant for configuration settings, for example, the location, available hardware, the network settings, settings of other applications, etc. Today, configuration settings and the context are not connected. Adaptations of configu- ration settings to better fit the context happen manually—often in complicated interfaces and without proper feedback on errors. Using a questionnaire survey and a source code analysis, we reveal obstacles why applications rarely account for context: Developers do not have context information readily available and dislike dependences to software that would give them the information. We aim to overcome these problems by introducing a novel system-level configuration specification language, which specifies the relation between context and configuration settings. Including more context into configuration settings improves usability and de- creases misconfiguration. Our configuration specification language orchestrates frontends and backends for unified, context-aware access to configuration settings. We introduce a frontend (an API) that maps via code generation the configuration specification language to context-aware variables. We use it to enable context adaptations in dynamic scopes as suggested by context-oriented programming. The configuration specification language modularizes the system into plugins that build up backends. The modularization miti- gates the previously mentioned applications’ problems of missing context information and unwanted dependences. We implemented different language constructs for the modular configuration specification language to validate our approach. We evaluate the implications of the novel modular abstractions in the configuration specification language in-depth. We discuss emerging tools, debugging support, intro- spection, and development time. Furthermore, we measure the overhead caused by the vii backends and compare solutions, implemented in the frontend and backend, with the result that the overhead in modular backends is small. Despite the context awareness, the frontend enables read access to configuration settings with the run-time efficiency of native variables. Because it is unrealistic that every application gets rewritten to use such type-safe frontends, we demonstrate different ways to connect legacy applications with our backends. With 16 well-known standard applications, such as Firefox, we show the feasibility and practicality of increasing context awareness of configuration settings without modifying any source code. Kurzfassung Software ist mit Hilfe von Konfigurationseinstellungen, welche üblicherweise in Konfi- gurationsdateien gespeichert werden, hochgradig adaptiv. Moderne Systeme beinhalten bereits detaillierte Informationen, in welchem Kontext sich das System gerade befindet. Wir definieren Kontext als jede Information relevant für Konfigurationseinstellungen, zum Beispiel der aktuelle Ort, vorhandene Hardware, Netzwerkkonfigurationen, Konfigu- rationen anderer Programme, etc. Heutzutage sind Konfigurationseinstellungen und Kontext nicht verbunden. Adaptionen von Konfigurationseinstellungen, wie besseres Anpassen an den Kontext, werden manuell durchgeführt – oftmals in komplizierten Schnittstellen und ohne hilfreiche Rückmeldun- gen bei Fehlern. Mit einer in der Arbeit durchgeführten Umfrage und Quelltextanalyse erkannten wir Ursachen dafür, warum Programme derzeit selten Kontext berücksich- tigen: Entwickler haben Informationen über den Kontext nicht bequem verfügbar und vermeiden Abhängigkeiten zu Software, welche die Informationen bereitstellen könnte. Wir zielen darauf ab, diese Probleme durch eine systemnahe Konfigurationsspezifika- tionssprache, welche die Beziehungen zwischen Konfigurationseinstellungen und Kon- text beschreibt, zu lösen. Der Hintergedanke ist, dass die Berücksichtigung von Kontext in den Konfigurationseinstellungen die Benutzerfreundlichkeit erhöht und fehlerhafte Konfigurationseinstellungen reduziert. Unsere Konfigurationsspezifikationssprache orche- striert dabei Frontends und Backends, um den Zugriff auf Konfigurationseinstellungen zu vereinheitlichen. Wir führen ein Frontend (eine Programmierschnittstelle für Entwick- ler) ein, welches mittels Quelltextgenerierung die Konfigurationsspezifikationssprache in kontextsensitive Variablen abbildet und dabei Kontextsensitivität in dynamischen Sichtbarkeitsbereichen ermöglicht. Die Konfigurationsspezifikationssprache modularisiert Quelltexte in Form von Plugins, mit deren Hilfe die Backends aufgebaut werden. Da- durch werden die zuvor genannten Probleme von fehlenden Kontextinformationen in Applikationen und unerwünschten Abhängigkeiten gemindert. Um unseren Ansatz zu ix validieren, haben wir mehrere Sprachkonstrukte einer modularen Konfigurationsspezi- fikationssprache implementiert. Wir haben die Implikationen unserer neuartigen modularen Abstraktionen der Konfigu- rationsspezifikationssprache ausführlich evaluiert. Dabei diskutieren wir Funktionalität zur Introspektion, neu entwickelte Werkzeuge, Analysen zur Fehlerbehebung und Ent- wicklungszeit. Ebenfalls messen wir den durch Backends verursachten Mehraufwand und vergleichen Lösungen, implementiert als Frontends und Backends, mit dem Ergebnis, dass Mehraufwände in modularen Backends gering sind. Trotz Kontextsensitivität ermöglicht das Frontend lesende Zugriffe auf Konfigurationseinstellungen mit der Laufzeit-Effizienz von native Variablen. Da es unrealistisch ist alle existierenden Applikationen auf solche typsicheren Frontends umzuschreiben, demonstrieren wir verschiedene Möglichkeiten, wie bestehende Applikationen ebenfalls an unsere Backends angebunden werden können. Mit 16 bekannten Standardapplikationen, wie etwa Firefox, zeigen wir, dass die Kontext- sensitivität der Konfigurationseinstellungen auch ohne Quelltextänderungen verbessert werden kann. Contents Abstract vii Kurzfassung ix Contents xi 1 Introduction 1 1.1 Challenges in Configuration Access . 2 1.1.1 Stakeholder’s View . 2 1.1.2 System’s View . 3 1.1.3 Context and Beyond . 4 1.1.4 Configuration Integration Problem . 6 1.2 Methodology, History, and Goals . 7 1.2.1 Methodology . 7 1.2.2 Elektra .............................. 8 1.2.3 Elektra’s History . 8 1.2.4 Scientific Gaps . 10 1.2.5 Goals . 12 1.2.6 Limitations and Assumptions . 12 1.3 Solution . 14 1.4 Structure, Research Questions, and Contributions . 17 1.4.1 Introduction . 17 1.4.2 Terminology and Background . 18 1.4.3 Relevance to the Community . 19 1.4.4 Elektra .............................. 20 1.4.5 Frontends . 21 1.4.6 Backends . 21 xi 1.4.7 Implications and Open Topics . 22 1.4.8 Evaluation . 23 1.4.9 Related Work . 25 1.4.10 Conclusion and Future Work . 25 2 Terminology and Background 27 2.1 Configuration
Recommended publications
  • Estimating Parallel Runtimes for Randomized Algorithms in Constraint Solving Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, Philippe Codognet
    Estimating parallel runtimes for randomized algorithms in constraint solving Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, Philippe Codognet To cite this version: Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, Philippe Codognet. Estimating par- allel runtimes for randomized algorithms in constraint solving. Journal of Heuristics, Springer Verlag, 2015, pp.1-36. <10.1007/s10732-015-9292-3>. <hal-01248168> HAL Id: hal-01248168 https://hal.archives-ouvertes.fr/hal-01248168 Submitted on 24 Dec 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Journal of Heuristics manuscript No. (will be inserted by the editor) Estimating Parallel Runtimes for Randomized Algorithms in Constraint Solving Charlotte Truchet · Alejandro Arbelaez · Florian Richoux · Philippe Codognet the date of receipt and acceptance should be inserted later Abstract This paper presents a detailed analysis of the scalability and par- allelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel perfor- mance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics.
    [Show full text]
  • Aggregation and Garbage Collection for Online Optimization⋆
    Aggregation and Garbage Collection for Online Optimization? Alexander Ek1;2[0000−0002−8744−4805], Maria Garcia de la Banda1[0000−0002−6666−514X], Andreas Schutt2[0000−0001−5452−4086], Peter J. Stuckey1;2[0000−0003−2186−0459], and Guido Tack1;2[0000−0003−2186−0459] 1 Monash University, Australia fAlexander.Ek,Maria.GarciadelaBanda,Peter.Stuckey,[email protected] 2 Data61, CSIRO, Australia [email protected] Abstract Online optimization approaches are popular for solving op- timization problems where not all data is considered at once, because it is computationally prohibitive, or because new data arrives in an on- going fashion. Online approaches solve the problem iteratively, with the amount of data growing in each iteration. Over time, many problem variables progressively become realized, i.e., their values were fixed in the past iterations and they can no longer affect the solution. If the solv- ing approach does not remove these realized variables and associated data and simplify the corresponding constraints, solving performance will slow down significantly over time. Unfortunately, simply removing realized variables can be incorrect, as they might affect unrealized de- cisions. This is why this complex task is currently performed manually in a problem-specific and time-consuming way. We propose a problem- independent framework to identify realized data and decisions, and re- move them by summarizing their effect on future iterations in a compact way. The result is a substantially improved model performance. 1 Introduction Online optimization tackles the solving of problems that evolve over time. In online optimization problems, in some areas also called dynamic or reactive, the set of input data is only partially known a priori and new data, such as new customers and/or updated travel times in a dynamic vehicle routing problem, continuously or periodically arrive while the current solution is executed.
    [Show full text]
  • Model-Based Optimization for Effective and Reliable Decision-Making
    Model-Based Optimization for Effective and Reliable Decision-Making Robert Fourer [email protected] AMPL Optimization Inc. www.ampl.com — +1 773-336-2675 DecisionCAMP Bolzano, Italy — 18 September 2019 Model-Based Optimization DecisionCAMP — 18 September 2019 1 Model-Based Optimization for Effective and Reliable Decision-Making Optimization originated as an advanced between the human modeler’s formulation mathematical technique, but it has become an and the solver software’s needs. This talk accessible and widely used decision-making introduces model-based optimization by tool. A key factor in the spread of successful contrasting it to a method-based approach optimization applications has been the that relies on customized implementation of adoption of a model-based approach: A rules and algorithms. Model-based domain expert or operations analyst focuses implementations are illustrated using the on modeling the problem of interest, while AMPL modeling language and popular the computation of a solution is left to solvers. The presentation concludes by general-purpose, off-the-shelf solvers; surveying the variety of modeling languages powerful yet intuitive modeling software and solvers available for model-based manages the difficulties of translating optimization today. Dr. Fourer has over 40 years’ experience in institutes, and corporations worldwide; he is studying, creating, and applying large-scale also author of a popular book on AMPL. optimization software. In collaboration with Additionally, he has been a key contributor to the colleagues in Computing Science Research at NEOS Server project and other efforts to make Bell Laboratories, he initiated the design and optimization services available over the Internet, development of AMPL, which has become one and has supported development of open-source of the most widely used software systems for software for operations research through his modeling and analyzing optimization problems, service on the board of the COIN-OR with users in hundreds of universities, research Foundation.
    [Show full text]
  • MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 2 AMPL and CPLEX, Assignment 1
    AMPL CPLEX Simple problem Assignment 1 References MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 2 AMPL and CPLEX, Assignment 1 Zuzana Sabartov´aˇ 2014{03{21 Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References Overview 1 AMPL 2 CPLEX 3 Simple problem 4 Assignment 1 5 References Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References AMPL Algebraic modeling language for linear and nonlinear optimization problems Formulate optimization models and examine solutions Manage communication with an appropriate solver Natural syntax Separation of model and data Discrete or continuous variables Support for sets and set operators Built in arithmetic functions Looping, if-then-else commands Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References Solvers that work with AMPL CPLEX - linear and quadratic problems in continuous and integer variables Gurobi - linear and quadratic problems in continuous and integer variables CONOPT - nonlinear problems MINOS - linear and nonlinear problems CONDOR, Gecode, IPOPT, MINLP, SNOPT ... Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References Overview 1 AMPL 2 CPLEX 3 Simple problem 4 Assignment 1 5 References Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References CPLEX Optimization software package for solving linear
    [Show full text]
  • Software Tools Supporting Integration
    Software Tools Supporting Integration Tallys Yunes Abstract This chapter provides a brief survey of existing software tools that enable, facilitate and/or support the integration of different optimization techniques. We fo- cus on tools that have achieved a reasonable level of maturity and whose published results have demonstrated their effectiveness. The description of each tool is not in- tended to be comprehensive. We include references and links to detailed accounts of each tool for the interested reader, and we recommend that the reader consult their developers and/or vendors for the latest information about upgrades and improve- ments. Our purpose is to summarize the main features of each tool, highlighting what it can (or cannot) do, given the current version at the time of writing. We con- clude the chapter with suggestions for future research directions. 1 Introduction This chapter provides a brief survey of existing software tools that enable, facilitate and/or support the integration of different optimization techniques. By optimization techniques we mean linear programming (LP), mixed-integer linear programming (MILP), non-linear programming (NLP), constraint programming (CP), local search (LS), large neighborhood search (LNS), and their derivatives. Integration can occur in many ways and at different levels. It ranges from a simple information exchange between two solvers implementing two versions of the same mathematical model, to a full-fledged synchronization of multiple methods that interact closely during an iterative search procedure. Decomposition methods such as branch-and-price (B&P) [12] and Benders decomposition [14] also lend themselves to effective integrated approaches and are, therefore, also covered here.
    [Show full text]
  • Constraint Programming
    Constraint Programming Justin Pearson Uppsala University 1st July 2016 Special thanks to Pierre Flener, Joseph Scott and Jun He CP MiniZinc Strings Other Final Outline 1 Introduction to Constraint Programming (CP) 2 Introduction to MiniZinc 3 Constraint Programming with Strings 4 Some recent, and not so Recent Advances 5 Final Thoughts Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint Programming in a Nutshell Slogan of CP Constraint Program = Model [ + Search ] CP provides: high level declarative modelling abstractions, a framework to separate search from from modelling. Search proceeds by intelligent backtracking with intelligent inference called propagation that is guided by high-level modelling constructs called global constraints. Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Outline 1 Introduction to Constraint Programming (CP) Modelling Propagation Systematic Search History of CP 2 Introduction to MiniZinc 3 Constraint Programming with Strings 4 Some recent, and not so Recent Advances 5 Final Thoughts Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint-Based Modelling Example (Port tasting, PT) Alva Dan Eva Jim Leo Mia Ulla 2011 2003 2000 1994 1977 1970 1966 Constraints to be satisfied: Equal jury size: Every wine is evaluated by 3 judges. Equal drinking load: Every judge evaluates 3 wines. Fairness: Every port pair has 1 judge in common. Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint-Based Modelling Example (Port tasting, PT) Alva Dan Eva Jim Leo Mia Ulla 2011 3 3 3 2003 3 3 3 2000 3 3 3 1994 3 3 3 1977 3 3 3 1970 3 3 3 1966 3 3 3 Constraints to be satisfied: Equal jury size: Every wine is evaluated by 3 judges.
    [Show full text]
  • Cesar Castillo 10140959
    DEFINICIÓN DE UNA ARQUITECTURA RESTFUL ORIENTADA AL RECURSO (RESOURCE-ORIENTED ARCHITECTURE - ROA) EN LA CONSTRUCCIÓN DE UN WEB SERVICE QUE ALOJA ALGORITMOS SOLUCIONADORES (SOLVERS) ORIENTADOS A PROBLEMAS DE PROGRAMACIÓN LINEAL COMO SERVICIOS CESAR MANUEL CASTILLO RODRÍGUEZ UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN PEREIRA 2017 DEFINICIÓN DE UNA ARQUITECTURA RESTFUL ORIENTADA AL RECURSO (RESOURCE-ORIENTED ARCHITECTURE - ROA) EN LA CONSTRUCCIÓN DE UN WEB SERVICE QUE ALOJA ALGORITMOS SOLUCIONADORES (SOLVERS) ORIENTADOS A PROBLEMAS DE PROGRAMACIÓN LINEAL COMO SERVICIOS CESAR MANUEL CASTILLO RODRÍGUEZ Trabajo de grado presentado como reQuisito para optar al título de MAGISTER EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN Director JORGE IVAN RIOS PATIÑO UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN PEREIRA 2017 NOTA DE ACEPTACIÓN _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ FIRMA JURADO Pereira, ____ de ________ de____ 3 CONTENIDOS pág 1.PRESENTACIÓN DEL PROYECTO.............................................................. 8 1.1 INTRODUCCIÓN........................................................................................ 8 1.2 PLANTEAMIENTO DEL PROBLEMA......................................................... 9 1.3 JUSTIFICACIÓN........................................................................................
    [Show full text]
  • Minizinc Handbook Release 2.3.1
    MiniZinc Handbook Release 2.3.1 Peter J. Stuckey, Kim Marrio, Guido Tack Jul 10, 2019 Contents 1 Overview 3 1.1 Introduction 5 1.1.1 Structure ....................................... 5 1.1.2 How to Read This ................................... 6 1.2 Installation 7 1.2.1 Microsoft Windows .................................. 7 1.2.2 Linux .......................................... 8 1.2.2.1 Snap ...................................... 8 1.2.2.2 AppImage ................................... 8 1.2.2.3 Archive .................................... 9 1.2.3 Apple macOS ..................................... 9 1.2.4 Adding Third-party Solvers .............................. 9 1.3 First steps with MiniZinc 11 1.3.1 The MiniZinc IDE ................................... 11 1.3.2 The MiniZinc command line tool .......................... 16 2 A MiniZinc Tutorial 19 2.1 Basic Modelling in MiniZinc 21 2.1.1 Our First Example ................................... 21 2.1.2 An Arithmetic Optimisation Example ........................ 25 2.1.3 Datafiles and Assertions ............................... 26 2.1.4 Real Number Solving ................................. 29 2.1.5 Basic structure of a model .............................. 31 2.2 More Complex Models 35 2.2.1 Arrays and Sets .................................... 35 2.2.2 Global Constraints .................................. 45 2.2.3 Conditional Expressions ............................... 46 2.2.4 Enumerated Types .................................. 48 2.2.5 Complex Constraints ................................. 50
    [Show full text]
  • Modeling with Metaconstraints and Semantic Typing of Variables
    Submitted for publication. Updated on November 13, 2013. Modeling with Metaconstraints and Semantic Typing of Variables Andre Cire, John N. Hooker Tepper School of Business, Carnegie Mellon University, [email protected], [email protected] Tallys Yunes School of Business Administration, University of Miami, [email protected] Recent research in the area of hybrid optimization shows that the right combination of different technologies, which exploits their complementary strengths, simplifies modeling and speeds up computation significantly. A substantial share of these computational gains comes from better communicating problem structure to solvers. Metaconstraints, which can be simple (e.g. linear) or complex (e.g. global) constraints endowed with extra behavioral parameters, allow for such richer representation of problem structure. They do, nevertheless, come with their own share of complicating issues, one of which is the identification of relationships between auxiliary variables of distinct constraint relaxations. We propose the use of additional semantic information in the declaration of decision variables as a generic solution to this issue. We present a series of examples to illustrate our ideas over a wide variety of applications. Key words : modeling; hybrid methods; metaconstraints; semantics 1. Introduction Recent research in the area of hybrid optimization shows that the right combination of different technologies can simplify modeling and speed up computation substantially, over a wide range of problem classes (surveyed in Hooker 2012). These gains come from the complementary strengths of the techniques being combined, such as mathematical pro- gramming, constraint programming, local search, and propositional satisfiability. Search, inference, and relaxation lie at the heart of these techniques, and can be adjusted to ex- ploit the structure of a given problem.
    [Show full text]
  • Modeling with Metaconstraints and Semantic Typing of Variables
    Submitted for publication. Updated on June 19, 2015. Modeling with Metaconstraints and Semantic Typing of Variables Andre A. Cire Department of Management, University of Toronto Scarborough, [email protected] John N. Hooker Tepper School of Business, Carnegie Mellon University, [email protected] Tallys Yunes School of Business Administration, University of Miami, [email protected] Recent research in hybrid optimization shows that a combination of technologies that exploits their complementary strengths can significantly speed up computation. The use of high-level metaconstraints in the problem formulation can achieve a substantial share of these computational gains by better communicating problem structure to the solver. During the solution process, however, metaconstraints give rise to reformulations or relaxations that introduce auxiliary variables, and some of the variables in one metaconstraint's reformulation may be functionally the same as or related to variables in another metaconstraint's reformulation. These relationships must be recognized to obtain a tight overall relaxation. We propose a modeling scheme based on semantic typing that systematically addresses this problem while providing simpler, self-documenting models. It organizes the model around predicates and declares variables by associating each with a predicate through a keyword that is analogous to a database query. We present a series of examples to illustrate this idea over a wide variety of applications. Key words : modeling; hybrid methods; metaconstraints; semantics 1. Introduction Recent research in the area of hybrid optimization shows that the right combination of different technologies can simplify modeling and speed up computation substantially, over a wide range of problem classes (surveyed in Hooker 2012).
    [Show full text]
  • Algorithms for the Restricted Linear Coloring Arrangement Problem Bachelor’S Thesis in Informatics Engineering
    Algorithms for the Restricted Linear Coloring Arrangement Problem Bachelor's Thesis in Informatics Engineering Department of Computer Science Author: Joan Llop Palao Director: Mar´ıaJos´eSerna Iglesias Defence date: Thursday 04th July 2019 Abstract The aim of this project is to develop efficient algorithms for solving or approximating the Minimum Restricted Linear Coloring Arrangement Problem. It is the first approach to its algorithms, and we will face the problem from different perspectives: constraint programming, backtracking, greedy, and genetic algorithms. As a second goal we are interested in providing theoretical results for particular graphs. Acknowledgements I would like to thank Professor Maria Serna from the Department of Computer Science of UPC for having proposed the project and for having directed my Bachelor's Thesis. This project would not have been possible without her contribution and guidance. I would also like to thank Professor Pierre Flener from the Department of Information Technol- ogy of Uppsala University for his great lectures in the Combinatorial Optimisation and Constraint Programming course. Also, executing the algorithms for the project might have been impossible without using the Uppsala University computers. Therefore, I would like to express my deep grat- itude to Professor Pierre Flener and to the Uppsala University for having helped me. I would like to offer my special thanks to my parents and sister for their understanding. Contents 1 Project Definition7 1.1 Introduction.........................................8 1.1.1 The Problem....................................8 1.1.2 Goals of the project and scope.......................... 10 1.1.3 Interest of the problem............................... 10 1.1.4 State of the art..................................
    [Show full text]
  • What Is Constraint Programming (CP)?
    ConstraintProgramming Extensions.jl An MOI/JuMP extension for constraint programming Thibaut Cuvelier — CentraleSupélec (université Paris-Saclay) What is constraint programming (CP)? ▪ Way of formulating combinatorial problems ▪ CP doesn’t really work for continuous problems (exception: Ibex, e.g.) ▪ Initial focus in CP was on feasibility, but optimisation is also possible ▪ Quite different from mathematical optimisation: ▪ No duality, no convexity, no linear/continuous relaxation, no differentiability at all ▪ More generic set of constraints, not just equations and inequalities ▪ Real focus on discrete aspect of the problem ▪ Mathematical optimisation’s support for combinatorial problems is more an afterthought ▪ CP has had many successes in operational research: ▪ Scheduling, time tabling, resource allocation An example of CP model: solving Sudokus ▪ Variables: ▪ 푑푖푗: digit for cell 푖, 푗 , a number between 1 and 9 ▪ Constraints: ▪ Known digits (hints) ▪ Each digit appears once in each row: alldifferent 푑푖푗 ∀푗 , ∀푖 ▪ Each digit appears once in each column: alldifferent 푑푖푗 ∀푖 , ∀푗 ▪ Each digit appears once in each block: 푑3푠,3푡 푑3푠,3푡+1 푑3푠,3푡+2 alldifferent 푑3푠+1,3푡 푑3푠+1,3푡+1 푑3푠+1,3푡+2 , 푠 ∈ 0,1,2 , 푡 ∈ 0,1,2 푑3푠+1,3푡 푑3푠+1,3푡+1 푑3푠+1,3푡+2 ▪ What about your typical MIP model ? ConstraintProgrammingExtensions.jl • What is the state of CP in Julia? • What is the state of the package? • What comes next? • What is missing in Julia/MOI/JuMP? • What is enabled with this package? What is the state of CP in Julia? ▪ Quite a few CP solvers
    [Show full text]