Conclusions and open problems Conclusions and open problems 905

In these notes I have tried to present a consistent picture of the the- ory of optimal transport, with a dynamical, probabilistic and geometric point of view, insisting on the notions of displacement interpolation, probabilistic representation, and curvature effects. The qualitative description of optimal transport, developed in Part I, now seems to be more or less under control. Even the smoothness of the transport map in curved geometries starts to be better understood, thanks in particular to the recent works of Gr´egoire Loeper, Xinan Ma, Neil Trudinger and Xu-Jia Wang which were described in Chapter 12. Among issues which seem to be of interest I shall mention: • find relevant examples of cost functions with nonnegative, or posi- tive c-curvature (Definition 12.27), and theorems guaranteeing that the optimal transport does not approach singularities of the cost function — so that the smoothness of the transport map can be established; • get a precise description of the singularities of the optimal trans- port map when the latter is not smooth; • further analyze the displacement interpolation on singular spaces, maybe via nonsmooth generalizations of Mather’s estimates (as in Open Problem 8.21). For the applications of optimal transport to Riemannian geometry, a consistent picture is also emerging, as I have tried to show in Part II. The main regularity problems seem to be under control here, but there remain several challenging “structural” problems: • How can one best understand the relation between plain displace- ment convexity and distorted displacement convexity, as described in Chapter 17? Is there an Eulerian counterpart of the latter concept? See Open Problems 17.38 and 17.39 for more precise formulations. • Optimal transport seems to work well to establish sharp geometric inequalities when the “natural dimension of the inequality” coincides with the dimension bound; on the other hand, so far it has failed to es- tablish for instance sharp logarithmic Sobolev or Talagrand inequalities (infinite-dimensional) under a CD(K, N) condition for N<∞ (Open Problems 21.6 and 22.44). The sharp L2-Sobolev inequality (21.9) has also escaped investigations based on optimal transport (Open Problems 21.11). Can one find a more precise strategy to attack such problems by a displacement convexity approach? A seemingly closely related ques- tion is whether one can mimick (maybe by changes of unknowns in the transport problem?) the changes of variables in the Γ2 formalism, which 906 Conclusions and open problems are often at the basis of the derivation of such sharp inequalities, as in the recent papers of J´erˆome Demange. To add to the confusion, the mysterious structure condition (25.10) has popped out in these works; it is natural to ask whether this condition has any interpretation in terms of optimal transport. • Are there interesting examples of displacement convex func- tionals apart from the ones that have already been explored during the ⊗k past ten years — basically all of the form M U(ρ) dν + M k Vdµ ?It is frustrating that so few examples of displacement convex functionals are known, in contrast with the enormous amount of plainly convex functionals that one can construct. Open Problem 15.11 might be re- lated to this question. • Is there a transport-based proof of the famous L´evy–Gromov isoperimetric inequalities (Open Problem 21.16), that would not involve so much “hard analysis” as the currently known arguments? Besides its intrinsic interest, such a proof could hopefully be adapted to nonsmooth spaces such as the weak CD(K, N) spaces studied in Part III. • Caffarelli’s log concave perturbation theorem (alluded to in Chapter 2) is another riddle in the picture. The Gaussian space can be seen as the infinite-dimensional version of the sphere, which is the Riemannian “reference space” with positive constant (sectional) curva- ture; and the space Rn equipped with a log concave measure is a space of nonnegative . So Caffarelli’s theorem can be restated n as follows: If the (R ,d2) is equipped with a ν that makes it a CD(K, ∞) space, then ν can be realized as a 1-Lipschitz push-forward of the reference with curva- ture K. This implies almost obviously that isoperimetric inequalities in n (R ,d2,ν) are not worse than isoperimetric inequalities in the Gaussian space; so there is a strong analogy between Caffarelli’s theorem on the one hand, and the L´evy–Gromov isoperimetric inequality on the other hand. It is natural to ask whether there is a common framework for both results; this does not seem obvious at all, and I have not been able to formulate even a decent guess of what could be a geometric generalization of Caffarelli’s theorem. • Another important remark is that the geometric theory has been almost exclusively developed in the case of the optimal transport with quadratic cost function; the exponent p = 2 here is natural in the context of Riemannian geometry, but working with other exponents (or Conclusions and open problems 907 with radically different Lagrangian cost functions) might lead to new geometric territories. An illustration is provided by the recent work of Shin-ichi Ohta in Finsler geometry. A related question is Open Problem 15.12. In Part III of these notes, I discussed the emerging theory of weak Ricci curvature lower bounds in -measure spaces, based on dis- placement convexity inequalities. The theory has grown very fast and is starting to be rather well-developed; however, some challenging is- sues remain to be solved before one can consider it as mature. Here are three missing pieces of the puzzle: • A globalization theorem that would play the role of the Toponogov–Perelman theorem for Alexandrov spaces with a lower bound on the curvature. This result should state that a weak local CD(K, N) space is automatically a weak CD(K, N) space. Theorem 30.37 shows that this is true at least if K =0,N<∞ and X is non- branching; if Conjecture 30.34 turns out to be true, the same result will be available for all values of K. • The compatibility with the theory of Alexandrov spaces (with lower curvature bounds). Alexandrov spaces have proven their flexibility and have gained a lot of popularity among geometers. Since Alexandrov bounds are weak sectional curvature bounds, they should in principle be able to control weak Ricci curvature bounds. The natural question here can be stated as follows: Let (X ,d) be a finite-dimensional Alexandrov space with dimension n and curvature bounded below by κ, and let Hn be the n-dimensional Hausdorff measure on X ;is(X ,d,Hn) aweakCD((n − 1)κ, n) space? • A thorough discussion of the branching problem: Find exam- ples of weak CD(K, N) spaces that are branching; that are singular but nonbranching; identify simple regularity conditions that prevent branching; etc. It is also of interest to enquire whether the nonbranch- ing assumption can be dispensed with in Theorems 30.26 and 30.37 (recall Remarks 30.27 and 30.39). More generally, we would like to have more information about the structure of weak CD(K, N) spaces, at least when N is finite. It is known from the work of Jeff Cheeger and others that metric-measures spaces in which the measure is (locally) doubling and satisfies a (local) Poincar´e inequality have at least some little bit of regularity: There is a tangent space defined almost everywhere, varying in a measurable way. 908 Conclusions and open problems

In the context of Alexandrov spaces with curvature bounded below, some rather strong structure theorems have been established by Grigori Perelman and others; it is natural to ask whether similar results hold true for weak CD(K, N) spaces. Another relevant problem is to check the compatibility of the CD(K, N) condition with the operations of quotient by Lie group ac- tions, and lifting to the universal covering. As explained in the biblio- graphical notes of Chapter 30, only partial results are known in these directions. Besides these issues, it seems important to find further examples of weak CD(K, N) spaces, apart from the ones presented in Chapter 29, mostly constructed as limits or quotients of manifolds. It was realized in a recent Oberwolfach meeting, as a consequence of discussions between Dario Cordero-Erausquin, Karl-Theodor Sturm and myself, that the Euclidean space Rn, equipped with any norm ·,isaweakCD(0,n) space:

Theorem. Let · be a norm on Rn (considered as a distance on n n R × R ), and let λn be the n-dimensional Lebesgue measure. Then n the metric-measure space (R , ·,λn) is a weak CD(0,n) space in the sense of Definition 29.8.

I did not include this theorem in the body of these notes, because it appeals to some results that have not yet been adapted to a genuinely geometric context, and which I preferred not to discuss. I shall sketch the proof at the end of this text, but first I would like to explain why this result is at the same time motivating, and a bit shocking: (a) As pointed out to me by John Lott, if · is not Euclidean, n then the metric-measure space (R , ·,λn) cannot be realized as a limit of smooth Riemannian manifolds with a uniform CD(0,N) bound, because it fails to satisfy the splitting principle. (If a nonnegatively curved space admits a line, i.e. a geodesic parametrized by R, then the space can be “factorized” by this geodesic.) Results by Jeff Cheeger, Toby Colding and Detlef Gromoll say that the splitting principle holds for CD(0,N) manifolds and their measured Gromov–Hausdorff limits. (b) If · is not the Euclidean norm, the resulting is very singular in certain respects: It is in general not an Alexandrov space, and it can be extremely branching. For instance, if ·is the ∞ norm, then any two distinct points are joined by an uncountable Conclusions and open problems 909

Rn · infinity of geodesics. Since ( , ∞ ,λn) is the (pointed) limit of the Rn · →∞ nonbranching spaces ( , p ,λn)asp , we also realize that weak CD(K, N) bounds do not prevent the appearance of branching in measured Gromov-Hausdorff limits, at least if K ≤ 0. On the other hand, the study of optimal Sobolev inequalities in Rn which I performed together with Bruno Nazaret and Dario Cordero- Erausquin shows that optimal Sobolev inequalities basically do not depend on the choice of the norm on Rn. In a Riemannian context, Sobolev inequalities strongly depend on Ricci curvature bounds; so, our result suggests that it is not absurd to decide that Rn isaweakCD(0,n) space independently of the norm. Shin-ichi Ohta has developed this point of view by studying curvature-dimension conditions in certain classes of Finsler spaces. One can also ask whether there are additional regularity conditions that might be added to the definition of weak CD(K, N) space, in order to enforce nonbranching, or the splitting principle, or both, and in particular rule out non-Euclidean norms. As a side consequence of point (a) above, we realize that smooth CD(K, N) manifolds are not dense in the spaces CDD(K, N, D, m, M) introduced in Theorem 29.32. The interpretation of dissipative equations as gradient flows with respect to optimal transport, and the theory reviewed in Chapters 23 to 25, also lead to fascinating issues that are relevant in smooth or nonsmooth geometry as well as in partial differential equations. For instance, (a) Can one define a reasonably well-behaved heat flow on weak CD(K, N) spaces by taking the gradient flow for Boltzmann’s H func- tional? The theory of gradient flows in abstract metric spaces has been pushed very far, in particular by Luigi Ambrosio, Giuseppe Savar´eand collaborators; so it might not be so difficult to define an object that would play the role of a heat semigroup. But this will be of limited value unless one can prove relevant theorems about this object. Shin-ichi Ohta, and independently Giuseppe Savar´e, recently made progress in this direction by constructing gradient flows in the Wasser- stein space over a finite-dimensional Alexandrov space of curvature bounded below, or over more general spaces satisfying very weak reg- ularity assumptions expressed in terms of distances and angles. In the particular case when the energy functional is the Boltzmann entropy, this provides a natural notion of heat equation and heat semigroup. 910 Conclusions and open problems

Savar´e uses a very elegant argument, based on properties of Wasserstein distances and entropy, to prove the linearity of this semigroup, and other properties as well (positivity, contraction in Wp for 1 ≤ p ≤ 2, contraction in Lp, some regularizing effect). This problem might be related to the possibility of defining a Laplace operator on a singular space, an issue which has been addressed in par- ticular by Jeff Cheeger and Toby Colding, for limits of Riemannian manifolds. However, their construction is strongly based on regular- ity properties enjoyed by such limits, and breaks down, e.g., for Rn equipped with a non-Euclidean norm ·. In fact, as noted by Karl- N Theodor Sturm, the gradient flow of the H functional in P2((R , ·)) yields a nonlinear evolution. The fact that this equation has the same fundamental solution (in the sense of a solution evolving from a Dirac mass) as the Euclidean one is one argument to believe that this is a natural notion of heat equation on the non-Euclidean RN —andmay reinforce us in the conviction that this space deserves its status of weak CD(0,N) space. (b) Can one extend the theory of dissipative equations to other equations, which are of Hamiltonian, or, even more interestingly, of dissipative Hamiltonian nature? As explained in the bibliographical notes of Chapter 23, there has been some recent work in that direction by Luigi Ambrosio, Wilfrid Gangbo and others, however the situation is still far from clear. A loosely related issue is the study of the semi-geostrophic system, which in the simplest situations can formally be written as a Hamil- tonian flow, where the Hamiltonian function is the square Wasserstein distance with respect to some uniform reference measure. I think that the rigorous qualitative understanding of the semi-geostrophic system is one of the most exciting problems that I am aware of in theoretical fluid mechanics; and discussions with Mike Cullen convinced me that it is very relevant in applications to meteorology. Although the theory of the semi-geostrophic system is still full of fundamental open prob- lems, enough has already been written on it to make the substance of a complete monograph. On a much more theoretical level, the geometric understanding of the Wasserstein space P2(X ), where X is a or just a geodesic space, has been the object of several recent studies, and still retains many mysteries. For instance, there is a neat statement accord- ingtowhichP2(X ) is nonnegatively curved, in the sense of Alexandrov, Conclusions and open problems 911 if and only if X itself is nonnegatively curved. But there is no similar statement for nonzero lower bounds on the curvature! In fact, if x is a point of negative curvature, then the curvature of P2(X ) seems to be unbounded in both directions (+∞ and −∞) in the neighborhood of δx. Also it is not clear what exactly is “the right” structure on, say, n P2(R ); recent works on the subject have suggested differing answers. Another relevant open problem is whether there is a natural “volume” measure on P2(M). Karl-Theodor Sturm and Max-Kostja von Renesse have recently managed to construct a natural one-parameter family of 1 “Gibbs” probability measures on P2(S ). A multi-dimensional general- ization would be of great interest. In their book on gradient flows, Luigi Ambrosio, Nicola Gigli and Giuseppe Savar´e make an intriguing observation: One may define “gen- n eralized geodesics” in P2(R ) by considering the law of (1−t) X0 +tX1, where (X0,Z)and(X1,Z) are optimal couplings. These generalized geodesics have intriguing properties: For instance, they still satisfy the characteristic displacement interpolation inequalities; and they provide curves of “nonpositive curvature”, that can be exploited for various pur- poses, such as error estimates for approximate gradient flow schemes. It is natural to further investigate the properties of these objects, which are reminiscent of the c-segments considered in Chapter 12. The list above provides but a sample among the many problems that remain open in the theory of optimal transport. As I already mentioned in the preface, another crucial issue which I did not address at all is the numerical analysis of optimal trans- port. This topic also has a long and complex history, with some famous schemes such as the old simplex algorithm, described for instance in Alexander Schrijver’s monograph Combinatorial Optimization: Polyhe- dra and Efficiency; or the more recent auction algorithm developed by Dimitri Bertsekas. Numerical schemes based on Monge–Amp`ere equa- tions have been suggested, but hardly implemented yet. Recent works by Uriel Frisch and collaborators in cosmology provide an example where one would like to efficiently solve the optimal transport problem with huge sets of data. To add to the variety of methods, continuous schemes based on partial differential equations have been making their way lately. All in all, this subject certainly deserves a systematic study on its own, with experiments, comparisons of algorithms, benchmark problems and so forth. By the way, the optimum matching problem 912 Conclusions and open problems is one of the topics that Donald Knuth has planned to address in his long-awaited Volume 4 of The Art of Computer Programming. Needless to say, the theory might also decide to explore new horizons which I am unable to foresee.

Sketch of proof of the Theorem. First consider the case when N = · is a uniformly convex, smooth norm, in the sense that

2 2 λIn ≤∇ N ≤ ΛIn for some positive constants λ and Λ. Then the cost function c(x, y)= N(x − y)2 is both strictly convex and C1,1, i.e. uniformly semiconcave. This makes it possible to apply Theorem 10.28 (recall Example 10.35) and deduce the following theorem about the structure of optimal maps: If µ0 and µ1 are compactly supported and absolutely continuous, then there is a unique optimal transport, and it takes the form

T (x)=x −∇(N 2)∗(−∇ψ(x)),ψa c-convex function.

Since the norm is uniformly convex, geodesic lines are just straight lines; so the displacement interpolation takes the form (Tt)#(ρ0 λn), where 2 ∗ Tt(x)=x − t ∇(N ) (−∇ψ(x)) 0 ≤ t ≤ 1. Let θ(x)=∇(N 2)∗(−∇ψ(x)). By [814, Remark 2.56], the Jacobian matrix ∇θ, although not symmetric, is pointwise diagonalizable, with eigenvalues bounded above by 1 (this remark goes back at least to a 1996 preprint by Otto [666, Proposition A.4]; a more general statement 1/n is in [30, Theorem 6.2.7]). It follows easily that t → det(In − t∇θ) is a concave function of t [814, Lemma 5.21], and one can reproduce ∈DC the proof of displacement convexity for Uλn ,assoonasU n [814, Theorem 5.15 (i)]. n This shows that (R ,N,λn) satisfies the CD(0,n) displacement con- vexity inequalities when N is a smooth uniformly convex norm. Now if N is arbitrary, it can be approximated by a sequence (Nk)k∈N of smooth n uniformly convex norms, in such a way that (R ,N,λn, 0) is the pointed n measured Gromov–Hausdorff limit of (R ,Nk,λn, 0) as k →∞.Then the general conclusion follows by stability of the weak CD(0,n) crite- rion (Theorem 29.24). 

n Remark. In the above argument the spaces (R ,Nk,λn) satisfy the property that the displacement interpolation between any two absolutely Conclusions and open problems 913 continuous, compactly supported probability measures is unique, while n the limit space (R ,N,λn) does not necessarily satisfy this property. For · instance, if N = ∞ , there is an enormous number of displacement interpolations between two given probability measures; and most of them do not satisfy the displacement convexity inequalities that are used to define CD(0,n) bounds. This shows that if in Definition 29.8 one requires the inequality (29.11) to hold true for any Wasserstein geodesic, rather thanforsomeWassersteingeodesic,thentheresultingCD(K, N)property is not stable under measured Gromov–Hausdorff convergence. References

1. Abdellaoui, T., and Heinich, H. Sur la distance de deux lois dans le cas vectoriel. C. R. Acad. Sci. Paris S´er. I Math. 319, 4 (1994), 397–400. 2. Abdellaoui, T., and Heinich, H. Caract´erisation d’une solution optimale au probl`eme de Monge–Kantorovitch. Bull. Soc. Math. France 127, 3 (1999), 429–443. 3. Agrachev, A., and Lee, P. Optimal transportation under nonholonomic constraints. To appear in Trans. Amer. Math. Soc. 4. Agueh, M. Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory. Adv. Differential Equations 10, 3 (2005), 309–360. 5. Agueh, M., Ghoussoub, N., and Kang, X. Geometric inequalities via a general comparison principle for interacting gases. Geom.Funct.Anal.14,1 (2004), 215–244. 6. Ahmad, N. The geometry of shape recognition via the Monge–Kantorovich optimal transport problem. PhD thesis, Univ. Toronto, 2004. 7. Aida, S. Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Funct. Anal. 158, 1 (1998), 152–185. 8. Ajtai, M., Komlos,´ J., and Tusnady,´ G. On optimal matchings. Combi- natorica 4, 4 (1984), 259–264. 9. Alberti, G. On the structure of singular sets of convex functions. Calc. Var. Partial Differential Equations 2, 1 (1994), 17–27. 10. Alberti, G. Some remarks about a notion of rearrangement. Ann. Scuola Norm.Sup.PisaCl.Sci(4)29, 2 (2000), 457–472. 11. Alberti, G., and Ambrosio, L. A geometrical approach to monotone func- tions in Rn. Math. Z. 230, 2 (1999), 259–316. 12. Alberti, G., Ambrosio, L., and Cannarsa, P. On the singularities of convex functions. Manuscripta Math. 76, 3-4 (1992), 421–435. 13. Alberti, G., and Bellettini, G. A nonlocal anisotropic model for phase transitions. I: The optimal profile problem. Math. Ann. 310, 3 (1998), 527–560. 14. Albeverio, S., and Cruzeiro, A. B. Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two-dimensional fluids. Comm. Math. Phys. 129, 3 (1990), 431–444. 15. Alesker, S., Dar, S., and Milman, V. D. A remarkable measure preserving diffeomorphism between two convex bodies in Rn. Geom. Dedicata 74, 2 (1999), 201–212.

915 916 References

16. Alexandrov, A. D. Existence and uniqueness of a convex surface with given integral curvature. Dokl. Akad. Nauk. SSSR 35 (1942), 131–134. 17. Alexandrov, A. D. Smoothness of a convex surface of bounded Gaussian curvature. Dokl. Akad. Nauk. SSSR 36 (1942), 195–199. 18. Aliprantis, C. D., and Border, K. C. Infinite dimensional analysis. A hithchiker’s guide. Third edition. Springer, Berlin, 2006. 19. Ambrosio, L. Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 191–246. 20. Ambrosio, L. Lecture notes on optimal transport problems. In Mathematical aspects of evolving interfaces (Funchal, 2000), vol. 1812 of Lecture Notes in Math. Springer, Berlin, 2003, pp. 1–52. 21. Ambrosio, L. Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 2 (2004), 227–260. 22. Ambrosio, L. Steepest descent flows and applications to spaces of proba- bility measures. In Recent trends in partial differential equations, vol. 409 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2006, pp. 1–32. 23. Ambrosio, L. Disintegrations of Gaussian measures. Personal communication, 2008. 24. Ambrosio, L., and Figalli, A. Geodesics in the space of measure-preserving maps and plans. To appear in Arch. Ration. Mech. Anal. 25. Ambrosio, L., and Figalli, A. On the regularity of the pressure field of Brenier’s weak solutions to incompressible Euler equations. To appear in Calc. Var. Partial Differential Equations. 26. Ambrosio, L., Fusco, N., and Pallara, D. Functions of bounded varia- tion and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. 2d 27. Ambrosio, L., and Gangbo, W. Hamiltonian flows in P2(R ). Report at the MSRI Optimal Transport meeting, Berkeley, November 2005. 28. Ambrosio, L., and Gangbo, W. Hamiltonian ODE’s in the Wasserstein space of probability measures. Comm. Pure Appl. Math. 51 (2007), 18–53. 29. Ambrosio, L., and Gigli, N. Construction of the parallel transport in the Wasserstein space. To appear in Meth. Appl. Anal. 30. Ambrosio, L., Gigli, N., and Savare,´ G. Gradient flows in metric spaces and in the space of probability measures.LecturesinMathematicsETHZ¨urich. Birkh¨auser Verlag, Basel, 2005. 31. Ambrosio, L., Kirchheim, B., and Pratelli, A. Existence of optimal trans- port maps for crystalline norms. Duke Math. J. 125, 2 (2004), 207–241. 32. Ambrosio, L., and Pratelli, A. Existence and stability results in the L1 theory of optimal transportation. In Optimal transportation and applications (Martina Franca, 2001), vol. 1813 of Lecture Notes in Math. Springer, Berlin, 2003, pp. 123–160. 33. Ambrosio, L., and Rigot, S. Optimal mass transportation in the Heisenberg group. J. Funct. Anal. 208, 2 (2004), 261–301. 34. Ambrosio, L., and Savare,´ G. Personal communication, 2006. 35. Ambrosio, L., Savare,´ G., and Zambotti, L. Existence and stability for Fokker–Planck equations with log-concave reference measure. To appear in Probab. Theory Related Fields. 36. Ambrosio, L., and Serfaty, S. A gradient flow approach to an evolution problem arising in superconductivity. To appear in Comm. Pure Appl. Math. References 917

37. Ambrosio, L., and Tilli, P. Topics on analysis in metric spaces, vol. 25 of Oxford Lecture Series in and its Applications. Oxford University Press, Oxford, 2004. 38. Andres, S., and von Renesse, M.-K. Particle approximation of the Wasserstein diffusion. Preprint, 2007. 39. Andreu, F., Caselles, V., and Mazon,´ J. M. The Cauchy problem for a strongly degenerate quasilinear equation. J. Eur. Math. Soc. (JEMS) 7,3 (2005), 361–393. 40. Andreu, F., Caselles, V., Mazon,´ J., and Moll, S. Finite propagation speed for limited flux diffusion equations. Arch. Rational Mech. Anal. 182,2 (2006), 269–297. 41. Ane,´ C., Blachere,` S., Chafa¨ı, D., Fougeres,` P., Gentil, I., Malrieu, F., Roberto, C., and Scheffer, G. Sur les in´egalit´es de Sobolev logarith- miques, vol. 10 of Panoramas et Synth`eses.Soci´et´eMath´ematique de France, 2000. 42. Appell, P. M´emoire sur les d´eblais et les remblais des syst`emes continus ou discontinus. M´emoires pr´esent´es par divers Savantsal’Acad´ ` emie des Sci- ences de l’Institut de France, Paris No. 29 (1887), 1–208. Available online at gallica.bnf.fr. 43. Arnold, A., Markowich, P., Toscani, G., and Unterreiter, A. On log- arithmic Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Comm. Partial Differential Equations 26, 1–2 (2001), 43–100. 44. Arnold, V. I. Mathematical methods of classical mechanics, vol. 60 of Grad- uate Texts in Mathematics. Springer-Verlag, New York. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the second (1989) edition. 45. Aronson, D. G., and Benilan,´ Ph. R´egularit´edessolutionsdel’´equation des milieux poreux dans RN . C. R. Acad. Sci. Paris S´er. A-B 288, 2 (1979), A103–A105. 46. Aronsson, G. A mathematical model in sand mechanics: Presentation and analysis. SIAM J. Appl. Math. 22 (1972), 437–458. 47. Aronsson, G., and Evans, L. C. An asymptotic model for compression molding. Indiana Univ. Math. J. 51, 1 (2002), 1–36. 48. Aronsson, G., Evans, L. C., and Wu, Y. Fast/slow diffusion and growing sandpiles. J. Differential Equations 131, 2 (1996), 304–335. 49. Attouch, L., and Soubeyran, A. From procedural rationality to routines: A “Worthwile to Move” approach of satisficing with not too much sacrificing. Preprint, 2005. Available online at www.gate.cnrs.fr/seminaires/2006 2007. 50. Aubry, P. Monge, le savant ami de Napol´eon Bonaparte, 1746–1818. Gauthier-Villars, Paris, 1954. 51. Aubry, S. The twist map, the extended Frenkel–Kontorova model and the devil’s staircase. In Order in chaos (Los Alamos, 1982), Phys. D 7, 1–3 (1983), 240–258. 52. Aubry, S., and Le Daeron, P. Y. The discrete Frenkel–Kantorova model and its extensions, I. Phys. D. 8, 3 (1983), 381–422. 53. Bakelman, I. J. Convex analysis and nonlinear geometric elliptic equations. Edited by S. D. Taliaferro. Springer-Verlag, Berlin, 1994. 918 References

54. Bakry, D. L’hypercontractivit´e et son utilisation en th´eorie des semigroupes. In Ecole´ d’´et´edeProbabilit´es de Saint-Flour, no. 1581 in Lecture Notes in Math. Springer, 1994. 55. Bakry, D., Cattiaux, P., and Guillin, A. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincar´e. J. Funct. Anal. 254, 3 (2008), 727–759. 56. Bakry, D., and Emery,´ M. Diffusions hypercontractives. In S´em. Proba. XIX, no. 1123 in Lecture Notes in Math. Springer, 1985, pp. 177–206. 57. Bakry, D., and Ledoux, M. L´evy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123, 2 (1996), 259–281. 58. Bakry, D., and Ledoux, M. Sobolev inequalities and Myers’s diameter the- orem for an abstract Markov generator. DukeMath.J.85, 1 (1996), 253–270. 59. Bakry, D., and Ledoux, M. A logarithmic Sobolev form of the Li–Yau parabolic inequalities. Rev. Mat. Iberoamericana 22, 2 (2006), 683–702. 60. Bakry, D., and Qian, Z. M. Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoamericana 15, 1 (1999), 143–179. 61. Bakry, D., and Qian, Z. M. Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155, 1 (2000), 98–153. 62. Ball, K., Carlen, E., and Lieb, E. H. Sharp uniform convexity and smooth- ness inequalities for trace norms. Invent. Math. 115, 3 (1994), 463–482. 63. Ball, J. M., and Mizel, V. J. Singular minimizers for regular one- dimensional problems in the calculus of variations. Bull. Amer. Math. Soc. (N.S.) 11, 1 (1984), 143–146. 64. Ball, J. M., and Mizel, V. J. One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Rational Mech. Anal. 90, 4 (1985), 325–388. 65. Banavar, J. R., Colaiori, F., Flammini, A., Maritan, A., and Rinaldo, A. Scaling, optimality and landscape evolution. J. Statist. Phys. 104, 1/2 (2001), 1–48. 66. Bangert, V. Mather sets for twist maps and geodesics on tori. In Dynamics reported, Dynam. Report. Ser. Dynam. Systems Appl., no. 1, Wiley, Chichester, 1988, pp. 1–56. 67. Bangert, V. Minimal measures and minimizing closed normal one-currents. Geom. Funct. Anal. 9, 3 (1999), 413–427. 68. Barles, G. Solutions de viscosit´edes´equations de Hamilton–Jacobi,vol.17 of Math´ematiques & Applications. Springer-Verlag, Paris, 1994. 69. Barles, G., and Souganidis, P. E. On the large time behavior of solutions of Hamilton–Jacobi equations. SIAM J. Math. Anal. 31, 4 (2000), 925–939. 70. Barthe, F. Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12, 1 (2002), 32–55. 71. Barthe, F. Autour de l’in´egalit´e de Brunn–Minkowski. Ann. Fac. Sci. Toulouse Math. (6) 12, 2 (2003), 127–178. 72. Barthe, F. L’in´egalit´e de Brunn–Minkowski. Images des Math´ematiques 2006, CNRS, Paris, 2006, pp. 5–10. Available online at www.math.cnrs.fr/ imagesdesmaths. 73. Barthe, F. Handwritten notes about Talagrand’s inequality for the exponen- tial measure on the real line, 2006. 74. Barthe, F., Bakry, D., Cattiaux, P., and Guillin, A. Poincar´e inequal- ities for logconcave probability measures: a Lyapunov function approach. To appear in Electron. Comm. Probab. References 919

75. Barthe, F., Cattiaux, P., and Roberto, C. Interpolated inequalities be- tween exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry. Rev. Mat. Iberoamericana 22, 3 (2006), 993–1067. 76. Barthe, F., and Kolesnikov, A. Mass transport and variants of the loga- rithmic Sobolev inequality. Preprint, 2008. 77. Barthe, F., and Roberto, C. Sobolev inequalities for probability measures on the real line. Studia Math. 159, 3 (2003), 481–497. 78. Beckner, W. A generalized Poincar´e inequality for Gaussian measures. Proc. Amer. Math. Soc. 105, 2 (1989), 397–400. 79. Beiglbock,¨ M., Goldstern, M., Maresch, G., and Schachermayer, W. Optimal and better transport plans. Preprint, 2008. Available online at www.fam.tuwien.ac.at/~wschach/pubs. 80. Bell, E. T. Men of Mathematics. Simon and Schuster, 1937. 81. Benachour, S., Roynette, B., Talay, D., and Vallois, P. Nonlinear self- stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stochastic Process. Appl. 75, 2 (1998), 173–201. 82. Benachour, S., Roynette, B., and Vallois, P. Nonlinear self-stabilizing processes. II. Convergence to invariant probability. Stochastic Process. Appl. 75, 2 (1998), 203–224. 83. Bena¨ım, M., Ledoux, M., and Raimond, O. Self-interacting diffusions. Probab. Theory Related Fields 122, 1 (2002), 1–41. 84. Bena¨ım, M., and Raimond, O. Self-interacting diffusions. II. Convergence in law. Ann. Inst. H. Poincar´e Probab. Statist. 39, 6 (2003), 1043–1055. 85. Bena¨ım, M., and Raimond, O. Self-interacting diffusions. III. Symmetric interactions. Ann. Probab. 33, 5 (2005), 1717–1759. 86. Benamou, J.-D. Transformations conservant la mesure, m´ecanique des flu- ides incompressibles et mod`ele semi-g´eostrophique en m´et´eorologie. M´emoire pr´esent´e en vue de l’Habilitation `a Diriger des Recherches. PhD thesis, Univ. Paris-Dauphine, 1992. 87. Benamou, J.-D., and Brenier, Y. Weak existence for the semigeostrophic equations formulated as a coupled Monge–Amp`ere/transport problem. SIAM J. Appl. Math. 58, 5 (1998), 1450–1461. 88. Benamou, J.-D., and Brenier, Y. A numerical method for the optimal time-continuous mass transport problem and related problems. In Monge Amp`ere equation: applications to geometry and optimization (Deerfield Beach, FL, 1997). Amer. Math. Soc., Providence, RI, 1999, pp. 1–11. 89. Benamou, J.-D., and Brenier, Y. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 3 (2000), 375–393. 90. Benamou, J.-D., and Brenier, Y. Mixed L2-Wasserstein optimal mapping between prescribed density functions. J. Optim. Theory Appl. 111, 2 (2001), 255–271. 91. Benamou, J.-D., Brenier, Y., and Guittet, K. The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation. ICFD Con- ference on Numerical Methods for Fluid Dynamics (Oxford, 2001). Internat. J. Numer. Methods Fluids 40, 1–2 (2002), 21–30. 92. Benedetto, D., Caglioti, E., Carrillo, J. A., and Pulvirenti, M. A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91, 5–6 (1998), 979–990. 920 References

93. Benedetto, D., Caglioti, E., and Pulvirenti, M. A one-dimensional Boltzmann equation with inelastic collisions. Rend. Sem. Mat. Fis. Milano 67 (1997), 169–179 (2000). 94. Benfatto, G., Picco, P., and Pulvirenti, M. On the invariant measures for the two-dimensional Euler flow. J. Statist. Phys. 46, 3–4 (1987), 729–742. 95. Benilan,´ Ph. Solutions int´egrales d’´equations d’´evolution dans un espace de Banach. C. R. Acad. Sci. Paris S´er. A–B 274 (1972), A47–A50. 96. Bennett, G. Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57, 297 (1962), 33–45. 97. Berard,´ P., Besson, G., and Gallot, S. Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4, 4 (1994), 373–398. 98. Berbee, H. C. P. Random walks with stationary increments and re- newal theory. Mathematical Centre Tracts, vol. 112. Mathematisch Centrum, Amsterdam, 1979. 99. Berger, M. A panoramic view of Riemannian geometry. Springer-Verlag, 2003. 100. Berger, M., Gauduchon, P., and Mazet, E. Le spectre d’une vari´et´e riemannienne. Lecture Notes in Math., vol. 194, Springer-Verlag, Berlin, 1971. 101. Berkes, I., and Philipp, W. An almost sure invariance principle for the empirical distribution function of mixing random variables. Z. Wahrschein- lichkeitstheorie und Verw. Gebiete 41, 2 (1977/78), 115–137. 102. Bernard, P. Smooth critical sub-solutions of the Hamilton–Jacobi equation. Math. Res. Lett. 14, 3 (2007), 503–511. 103. Bernard, P. Existence of C1,1 critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds. To appear in Ann. Sci. Ecole´ Norm. Sup. 104. Bernard, P., and Buffoni, B. The Monge problem for supercritical Ma˜n´e potentials on compact manifolds. Adv. Math. 207, 2 (2006), 691–706. 105. Bernard, P., and Buffoni, B. Optimal mass transportation and Mather theory. J. Eur. Math. Soc. (JEMS) 9, 1 (2007), 85–121. 106. Bernard, P., and Buffoni, B. Weak KAM pairs and Monge–Kantorovich duality. To appear in Adv. Studies Pure Math. Available online at www. ceremade.dauphine.fr/~pbernard/publi.html. 107. Bernard, P., and Roquejoffre, J.-M. Convergence to time-periodic solu- tions in time-periodic Hamilton–Jacobi equations on the circle. Comm. Partial Differential Equations 29, 3–4 (2004), 457–469. 108. Bernot, M. Transport optimal et irrigation. PhD thesis, ENS Cachan, 2005. 109. Bernot, M., Caselles, V., and Morel, J.-M. Traffic plans. Publ. Mat. 49, 2 (2005), 417–451. 110. Bernot, M., Caselles, V., and Morel, J.-M. Are there infinite irrigation trees? J. Math. Fluid Mech. 8, 3 (2006), 311–332. 111. Bernot, M., Caselles, V., and Morel, J.-M. The structure of branched transportation networks. To appear in Calc. Var. Partial Differential Equa- tions. 112. Bernot, M., Caselles, V., and Morel, J.-M. The models and theory of optimal transportation networks. To appear in Lect. Notes in Math. 113. Bernot, M., and Figalli, A. Synchronized traffic plans and stability of optima. To appear in ESAIM Control Optim. Calc. Var. 114. Bertrand, J. Existence and uniqueness of optimal maps on Alexandrov spaces. Preprint, 2007. References 921

115. Bertsekas, D. Network optimization: Continuous and discrete models.Athena Scientific, 1998. Referenced online at www.athenasc.com/netbook.html. 116. Bestvina, M. Degenerations of the hyperbolic space. DukeMath.J.56,1 (1988), 143–161. 117. Bialy, M. L., and Polterovich, L. V. Geodesic flows on the two- dimensional torus and phase transitions “commensurability-noncommensura- bility”. Funct. Anal. Appl. 20 (1986), 260–266. 118. Biane, P., and Voiculescu, D. A free probability analogue of the Wasserstein metric on the trace-state space. Geom. Funct. Anal. 11, 6 (2001), 1125–1138. 119. Biler, P., Dolbeault, J., and Esteban, M. J. Intermediate asymptotics in L1 for general nonlinear diffusion equations. Appl. Math. Lett. 15, 1 (2002), 101–107. 120. Billingsley, P. Convergence of probability measures, second ed. John Wiley & Sons Inc., New York, 1999. A Wiley–Interscience Publication. 121. Blanchet, A., Calvez, V., and Carrillo, J. A. Convergence of the mass-transport steepest descent scheme for the sub-critical Patlak–Keller–Segel model. Preprint, 2007. 122. Blower, G. The Gaussian isoperimetric inequality and transportation. Pos- itivity 7, 3 (2003), 203–224. 123. Blower, G. Displacement convexity for the generalized orthogonal ensemble. J. Statist. Phys. 116, 5–6 (2004), 1359–1387. 124. Blower, G., and Bolley, F. Concentration inequalities on product spaces with applications to Markov processes. Studia Math. 175, 1 (2006), 47–72. Archived online at arxiv.org/abs/math.PR/0505536. 125. Bobkov, S. G. A functional form of the isoperimetric inequality for the Gaussian measure. J. Funct. Anal. 135, 1 (1996), 39–49. 126. Bobkov,S.G.Isoperimetric and analytical inequalities for log-concave prob- ability measures. Ann. Probab. 27, 4 (1999), 1903–1921. 127. Bobkov, S. G., Gentil, I., and Ledoux, M. Hypercontractivity of Hamilton–Jacobi equations. J. Math. Pures Appl. 80, 7 (2001), 669–696. 128. Bobkov,S.G.,andGotze,¨ F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163, 1 (1999), 1–28. 129. Bobkov, S. G., and Houdre,´ Ch. Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc. 129, 616 (1997). 130. Bobkov, S. G., and Ledoux, M. Poincar´e’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Related Fields 107, 3 (1997), 383–400. 131. Bobkov, S. G., and Ledoux, M. From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10, 5 (2000), 1028–1052. 132. Bobkov, S. G., and Ledoux, M. From Brunn–Minkowski to sharp Sobolev inequalities. To appear in Ann. Mat. Pura Appl. Available online at www. lsp.ups-tlse.fr/Ledoux. 133. Bobylev, A., and Toscani, G. On the generalization of the Boltzmann H- theorem for a spatially homogeneous Maxwell gas. J. Math. Phys. 33, 7 (1992), 2578–2586. 922 References

134. Bogachev, V. I., Kolesnikov, A. V., and Medvedev, K. V. On triangular transformations of measures. Dokl. Ross. Akad. Nauk 396 (2004), 438–442. Translation in Dokl. Math. 69 (2004). 135. Bogachev, V. I., Kolesnikov, A. V., and Medvedev, K. V. Triangular transformations of measures. Mat. Sb. 196, 3 (2005), 3–30. Translation in Sb. Math. 196, 3-4 (2005), 309–335. 136. Bolley, F. Separability and completeness for the Wasserstein distance. To appear in Seminar on Probability, Lect. Notes in Math. 137. Bolley, F., Brenier, Y., and Loeper, G. Contractive metrics for scalar conservation laws. J. Hyperbolic Differ. Equ. 2, 1 (2005), 91–107. 138. Bolley, F., and Carrillo, J. A. Tanaka theorem for inelastic Maxwell models. Comm. Math. Phys. 276, 2 (2007), 287–314. 139. Bolley, F., Guillin, A., and Villani, C. Quantitative concentration in- equalities for empirical measures on non-compact spaces. Prob. Theory Related Fields 137, 3–4 (2007), 541–593. 140. Bolley, F., and Villani, C. Weighted Csisz´ar–Kullback–Pinsker inequalities and applications to transportation inequalities. Ann. Fac. Sci. Toulouse Math. (6) 14, 3 (2005), 331–352. 141. Boltzmann, L. Lectures on gas theory. University of California Press, Berkeley, 1964. Translated by Stephen G. Brush. Reprint of the 1896–1898 Edition by Dover Publications, 1995. 142. Bonami, A. Etude´ des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier (Grenoble) 20, fasc. 2 (1970), 335–402 (1971). 143. Bonciocat, A.-I., and Sturm, K.-T. Mass transportation and rough curva- ture bounds for discrete spaces. Preprint, 2007. 144. Borell, C. Convex set functions in d-space. Period. Math. Hungar. 6, 2 (1975), 111–136. 145. Borell, C. The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30, 2 (1975), 207–216. 146. Borovkov, A. A., and Utev, S. A. An inequality and a characterization of the connected with it. Teor. Veroyatnost. i Primenen. 28, 2 (1983), 209–218. 147. Bouchitte,´ G., and Buttazzo, G. Characterization of optimal shapes and masses through Monge–Kantorovich equation. J. Eur. Math. Soc. (JEMS) 3, 2 (2001), 139–168. 148. Bouchitte,´ G., Buttazzo, G., and Seppecher, P. Shape optimization so- lutions via Monge–Kantorovich equation. C. R. Acad. Sci. Paris S´er. I Math. 324, 10 (1997), 1185–1191. 149. Bouchitte,´ G., Champion, Th., and Jiemenez, Ch. Completion of the space of measures in the Kantorovich norm. Riv. Mat. Univ. Parma 7, 4 (2005), 127–139. 150. Bouchitte,´ G., Jimenez, Ch., and Rajesh. M. Asymptotique d’un probl`eme de positionnement optimal. C. R. Acad. Sci. Paris, S´er. I, 335 (2002), 835–858. 151. Bouchitte,´ G., Jimenez, Ch., and Rajesh, M. AnewL∞ estimate in optimal mass transport. Proc.Amer.Math.Soc.135, 11 (2007), 3525–3535. 152. Brancolini, A., Buttazzo, G., and Santambrogio, F. Path functionals over Wasserstein spaces. J. Eur. Math. Soc. (JEMS) 8, 3 (2006), 415–434. 153. Brascamp, H. J., and Lieb, E. H. On extensions of the Brunn–Minkowski and Pr´ekopa–Leindler theorems, including inequalities for log concave func- References 923

tions, and with an application to the diffusion equation. J. Functional Analysis 22, 4 (1976), 366–389. 154. Brenier, Y. D´ecomposition polaire et r´earrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris S´er. I Math. 305, 19 (1987), 805–808. 155. Brenier, Y. The least action principle and the related concept of general- ized flows for incompressible perfect fluids. J. Amer. Math. Soc. 2, 2 (1989), 225–255. 156. Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 4 (1991), 375–417. 157. Brenier, Y. The dual least action problem for an ideal, incompressible fluid. Arch. Rational Mech. Anal. 122, 4 (1993), 323–351. 158. Brenier, Y. A homogenized model for vortex sheets. Arch. Rational Mech. Anal. 138, 4 (1997), 319–353. 159. Brenier, Y. Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52,4 (1999), 411–452. 160. Brenier, Y. Derivation of the Euler equations from a caricature of Coulomb interaction. Comm. Math. Phys. 212, 1 (2000), 93–104. 161. Brenier, Y. A Monge–Kantorovich approach to the Maxwell equations. In: Hyperbolic problems: theory, numerics, applications, vol. I, II (Magdeburg, 2000), 2001, pp. 179–186. 162. Brenier, Y. Volume preserving maps, Euler equations and Coulomb interac- tion. XIIIth International Congress on Mathematical Physics (London, 2000), Int. Press, Boston, MA, 2001, pp. 303–309. 163. Brenier, Y. Some geometric PDEs related to hydrodynamics and electrody- namics. Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 761–772. 164. Brenier, Y. Extended Monge–Kantorovich theory. In Optimal transportation and applications (Martina Franca, 2001), vol. 1813 of Lecture Notes in Math. Springer, Berlin, 2003, pp. 91–121. 165. Brenier, Y. A note on deformations of 2D fluid motions using 3D Born–Infeld equations. Monatsh. Math. 142, 1-2 (2004), 113–122. 166. Brenier, Y. Extension of the Monge–Kantorovich theory to classical electro- dynamics. In Recent advances in the theory and applications of mass transport, vol. 353 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, pp.19–41. 167. Brenier, Y. Personal communication, 2006. 168. Brenier, Y., Frisch, U., Henon,´ M., Loeper, G., Matarrese, S., Mohayaee, R., and Sobolevski˘ı, A. Reconstruction of the early Universe as a convex optimization problem. Mon. Not. R. Astron. Soc. 346 (2003), 501–524. 169. Brenier, Y., and Grenier, E. Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35, 6 (1998), 2317–2328. 170. Brenier, Y., and Loeper, G. A geometric approximation to the Euler equa- tion: The Vlasov–Monge–Amp`ere equation. Geom. Funct. Anal. 14, 6 (2004), 1182–1218. 171. Brezis,´ H. Op´erateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. 172. Brezis,´ H. Analyse fonctionnelle. Th´eorie et applications. Masson, Paris, 1983. 924 References

173. Brezis,´ H., and Lieb, E. H. Sobolev inequalities with a remainder term. J. Funct. Anal. 62 (1985), 73–86. 174. Burago, D., Burago, Y., and Ivanov, S. A course in metric geometry, vol. 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Errata list available online at www.pdmi.ras.ru/staff/ burago.html. 175. Burago, Y., Gromov, M., and Perelman, G. A. D. Aleksandrov spaces with curvatures bounded below. Uspekhi Mat. Nauk 47, 2(284) (1992), 3–51, 222. 176. Burago, Y. D., and Zalgaller, V. A. Geometric inequalities. Springer- Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinski˘ı, Springer Series in Soviet Mathematics. 177. Buttazzo, G., Giaquinta, M., and Hildebrandt, S. One-dimensional vari- ational problems. An introduction, vol. 15 of Oxford Lecture Series in Math- ematics and its Applications. The Clarendon Press Oxford University Press, New York, 1998. 178. Buttazzo, G., Pratelli, A., and Stepanov, E. Optimal pricing policies for public transportation networks. SIAM J. Optim. 16, 3 (2006), 826–853. 179. Buttazzo, G., Pratelli, A., Solimini, S., and Stepanov, E. Optimal ur- ban networks via mass transportation. Preprint, 2007. Available online via cvgmt.sns.it. 180. Buttazzo, G., and Santambrogio, F. A model for the optimal planning of an urban area. SIAM J. Math. Anal. 37, 2 (2005), 514–530. 181. Cabre,´ X. Nondivergent elliptic equations on manifolds with nonnegative curvature. Comm. Pure Appl. Math. 50, 7 (1997), 623–665. 182. Cabre,´ X. The isoperimetric inequality via the ABP method. Preprint, 2005. 183. Caceres,´ M., and Toscani, G. Kinetic approach to long time behavior of linearized fast diffusion equations. J. Stat. Phys. 128, 4 (2007), 883–925. 184. Caffarelli, L. A. Interior W 2,p estimates for solutions of the Monge–Amp`ere equation. Ann. of Math. (2) 131, 1 (1990), 135–150. 185. Caffarelli, L. A. The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5, 1 (1992), 99–104. 186. Caffarelli, L. A. Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math. 45, 9 (1992), 1141–1151. 187. Caffarelli, L. A. Boundary regularity of maps with convex potentials. II. Ann. of Math. (2) 144, 3 (1996), 453–496. 188. Caffarelli, L. A. Monotonicity properties of optimal transportation and the FKG and related inequalities. Comm. Math. Phys. 214, 3 (2000), 547–563. Erratum in Comm. Math. Phys. 225 (2002), 2, 449–450. 189. Caffarelli, L. A., and Cabre,´ X. Fully nonlinear elliptic equations, vol. 43 of American Mathematical Society Colloquium Publications.AmericanMath- ematical Society, Providence, RI, 1995. 190. Caffarelli, L. A., Feldman, M., and McCann, R. J. Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math.Soc.15, 1 (2002), 1–26. 191. Caffarelli,L.A.,Gutierrez,´ C., and Huang, Q. On the regularity of reflector antennas. Ann. of Math. (2),toappear. 192. Caffarelli, L. A., and McCann, R. J. Free boundaries in optimal transport and Monge–Amp`ere obstacle problems. To appear in Ann. of Math. (2). References 925

193. Caglioti, E., Pulvirenti, M., and Rousset, F. 2-D constrained Navier– Stokes equation and intermediate asymptotics. To appear in Physica A. 194. Caglioti, E., Pulvirenti, M., and Rousset, F. Quasi-stationary states for the 2-D Navier–Stokes equation. Preprint, 2007. 195. Caglioti, E., and Villani, C. Homogeneous cooling states are not always good approximations to granular flows. Arch. Ration. Mech. Anal. 163,4 (2002), 329–343. 196. Calvez, V. Mod`eles et analyses math´ematiques pour les mouvements collectifs de cellules. PhD thesis, Univ. Paris VI, 2007. 197. Calvez, V. Personal communication. 198. Calvez, V., and Carrillo, J. A. Work in progress. 199. Cannarsa, P., and Sinestrari, C. Semiconcave functions, Hamilton–Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkh¨auser Boston Inc., Boston, MA, 2004. 200. Carfora, M. Fokker–Planck dynamics and entropies for the normalized Ricci flow. Preprint, 2006. Archived online at arxiv.org/abs/math.DG/0507309. 201. Carlen, E. Behind the wave function: stochastic mechanics today. In Proceedings of the Joint Concordia Sherbrooke Seminar Series on Functional Integration Methods in Stochastic Quantum Mechanics (Sherbrooke, PQ and Montreal, PQ, 1987) (1991), vol. 25, pp. 141–156. 202. Carlen, E. A., Carvalho, M. C., Esposito, R., Lebowitz, J. L., and Marra, R. Displacement convexity and minimal fronts at phase boundaries. Preprint, 2007. 203. Carlen, E. A., and Gangbo, W. Constrained steepest descent in the 2-Wasserstein metric. Ann. of Math. (2) 157, 3 (2003), 807–846. 204. Carlen, E. A., and Gangbo, W. Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric. Arch. Ration. Mech. Anal. 172, 1 (2004), 21–64. 205. Carlen,E.A.,andSoffer,A.Entropy production by block variable sum- mation and central limit theorems. Comm. Math. Phys. 140 (1991), 339–371. 206. Carlier, G., and Jimenez, Ch. On Monge’s problem for Bregman-like cost functions. To appear in J. Convex Anal. 207. Carlier, G., Jimenez, Ch., and Santambrogio, S. Optimal transportation with traffic congestion and Wardrop equilibria. Preprint, 2006. 208. Carrillo, J. A., Di Francesco, M., and Lattanzio, C. Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws. J. Differential Equations 231, 2 (2006), 425–458. 209. Carrillo, J. A., Di Francesco, M., and Lattanzio, C. Contractivity and asymptotics in Wasserstein metrics for viscous nonlinear scalar conservation laws. Boll.UnioneMat.Ital.Ser.BArtic.Ric.Mat.10, 2 (2007), 277–292. 210. Carrillo, J. A., Di Francesco, M., and Toscani, G. Intermediate as- ymptotics beyond homogeneity and self-similarity: long time behavior for ut = ∆φ(u). Arch. Ration. Mech. Anal. 180, 1 (2006), 127–149. 211. Carrillo, J. A., Di Francesco, M., and Toscani, G. Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass centering. Proc. Amer. Math. Soc. 135, 2 (2007), 353–363. 212. Carrillo, J. A., Gualdani, M. P., and Toscani, G. Finite speed of prop- agation in porous media by mass transportation methods. C. R. Math. Acad. Sci. Paris 338, 10 (2004), 815–818. 926 References

213. Carrillo, J. A., McCann, R. J., and Villani, C. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19, 3 (2003), 971–1018. 214. Carrillo, J. A., McCann, R. J., and Villani, C. Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ra- tion. Mech. Anal. 179, 2 (2006), 217–263. 215. Carrillo, J. A., and Toscani, G. Asymptotic L1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 1 (2000), 113–142. 216. Carrillo, J. A., and Toscani, G. Contractive probability metrics and as- ymptotic behavior of dissipative kinetic equations. Proceedings of the 2006 Porto Ercole Summer School. Riv. Mat. Univ. Parma 6 (2007), 75–198. 217. Carrillo, J. A., and Vazquez,´ J. L. Fine asymptotics for fast diffusion equations. Comm. Partial Differential Equations 28, 5–6 (2003), 1023–1056. 218. Carrillo, J. A., and Vazquez,´ J. L. Asymptotic complexity in filtration equations. J. Evol. Equ. 7, 3 (2007), 471–495. 219. Cattiaux, P., and Guillin, A. On quadratic transportation cost inequalities. J. Math. Pures Appl. (9) 86, 4 (2006), 341–361. 220. Cattiaux, P., and Guillin, A. Trends to equilibrium in total variation dis- tance. To appear in Ann. Inst. H. Poincar´e Probab. Statist. 221. Cattiaux, P., Guillin, A., and Malrieu, F. Probabilistic approach for granular media equations in the nonuniformly convex case. Probab. Theory Related Fields 140, 1–2 (2008), 19–40. 222. Champion, Th., De Pascale, L., and Juutinen, P. The ∞-Wasserstein distance: local solutions and existence of optimal transport maps. Preprint, 2007. 223. Chavel, I. Riemannian geometry — a modern introduction, vol. 108 of Cam- bridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. 224. Chazal, F., Cohen-Steiner, D., and Merigot,´ Q. Stability of bound- ary measures. INRIA Report, 2007. Available online at www-sop.inria.fr/ geometrica/team/Quentin.Merigot/ 225. Cheeger, J. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton Univ. Press, Princeton, N. J., 1970. 226. Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 3 (1999), 428–517. 227. Cheeger, J., and Colding, T. H. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. (2) 144, 1 (1996), 189–237. 228. Cheeger, J., and Colding, T. H. On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46, 3 (1997), 406–480. 229. Cheeger, J., and Colding, T. H. On the structure of spaces with Ricci curvature bounded below. II. J. Differential Geom. 54, 1 (2000), 13–35. 230. Cheeger, J., and Colding, T. H. On the structure of spaces with Ricci curvature bounded below. III. J. Differential Geom. 54, 1 (2000), 37–74. 231. Chen, M.-F. Trilogy of couplings and general formulas for lower bound of spectral gap. Probability towards 2000 (New York, 1995), 123–136, Lecture Notes in Statist. 128, Springer, New York, 1998. 232. Chen,M.-F.,andWang,F.-Y.Application of coupling method to the first eigenvalue on manifold. Science in China (A) 37, 1 (1994), 1–14. References 927

233. Christensen, J. P. R. Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings. Publ. D´ep. Math. (Lyon) 10, 2 (1973), 29–39. Actes du Deuxi`eme Colloque d’Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, pp. 29–39. 234. Cianchi, A., Fusco, N., Maggi, F., and Pratelli, A. The sharp Sobolev inequality in quantitative form. Preprint, 2007. 235. Clarke, F. H. Methods of dynamic and nonsmooth optimization, vol. 57 of CBMS-NSF Regional Conference Series in Applied Mathematics.Societyfor Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. 236. Clarke, F. H., and Vinter, R. B. Regularity properties of solutions in the basic problem of calculus of variations. Trans. Amer. Math. Soc. 289 (1985), 73–98. 237. Clement, Ph., and Desch, W. An elementary proof of the triangle inequality for the Wasserstein metric. Proc. Amer. Math. Soc. 136, 1 (2008), 333–339. 238. Contreras, G., and Iturriaga, R. Global minimizers of autonomous La- grangians.22o Col´oquio Brasileiro de Matem´atica. Instituto de Matem´atica Pura e Aplicada (IMPA), Rio de Janeiro, 1999. 239. Contreras, G., Iturriaga, R., Paternain, G. P., and Paternain, M. The Palais–Smale condition and Ma˜n´e’s critical values. Ann. Henri Poincar´e 1, 4 (2000), 655–684. 240. Cordero-Erausquin, D. Sur le transport de mesures p´eriodiques. C. R. Acad. Sci. Paris S´er. I Math. 329, 3 (1999), 199–202. 241. Cordero-Erausquin, D. In´egalit´edePr´ekopa–Leindler sur la sph`ere. C. R. Acad. Sci. Paris S´er. I Math. 329, 9 (1999), 789–792. 242. Cordero-Erausquin, D. Some applications of mass transport to Gaussian- type inequalities. Arch. Ration. Mech. Anal. 161, 3 (2002), 257–269. 243. Cordero-Erausquin, D. Non-smooth differential properties of optimal trans- port. In Recent advances in the theory and applications of mass transport, vol. 353 of Contemp. Math., Amer. Math. Soc., Providence, 2004, pp. 61–71. 244. Cordero-Erausquin, D. Quelques exemples d’application du transport de mesure en g´eom´etrie euclidienne et riemannienne. In S´eminaire de Th´eorie Spectrale et G´eom´etrie. Vol. 22, Ann´ee 2003–2004, pp. 125–152. 245. Cordero-Erausquin, D., Gangbo, W., and Houdre,´ Ch. Inequalities for generalized entropy and optimal transportation. In Recent advances in the theory and applications of mass transport, vol. 353 of Contemp. Math.,Amer. Math. Soc., Providence, RI, 2004, pp. 73–94. 246. Cordero-Erausquin, D., McCann, R. J., and Schmuckenschlager,¨ M. A Riemannian interpolation inequality `a la Borell, Brascamp and Lieb. Invent. Math. 146, 2 (2001), 219–257. 247. Cordero-Erausquin, D., McCann, R. J., and Schmuckenschlager,¨ M. Pr´ekopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac. Sci. Toulouse Math. (6) 15, 4 (2006), 613–635. 248. Cordero-Erausquin, D., Nazaret, B., and Villani, C. A mass-transpor- tation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182, 2 (2004), 307–332. 249. Coulhon, Th., and Saloff-Coste, L. Isop´erim´etrie pour les groupes et les vari´et´es. Rev. Mat. Iberoamericana 9, 2 (1993), 293–314. 250. Coulhon, Th., and Saloff-Coste, L. Vari´et´es riemanniennes isom´etriques `a l’infini. Rev. Mat. Iberoamericana 11, 3 (1995), 687–726. 928 References

251. Courtault, J.-M., Kabanov, Y., Bru, B., Crepel,´ P., Lebon, I., and Le Marchand, A. Louis Bachelier on the centenary of “Th´eorie de la sp´eculation.” Math. Finance 10, 3 (2000), 341–353. 252. Cover, T. M., and Thomas, J. A. Elements of information theory. John Wiley & Sons Inc., New York, 1991. A Wiley–Interscience Publication. 253. Csiszar,´ I. Information-type measures of difference of probability distributions and indirect observations. Stud.Sci.Math.Hung.2(1967), 299–318. 254. Cuesta-Albertos, J. A., and Matran,´ C. Notes on the Wasserstein metric in Hilbert spaces. Ann. Probab. 17, 3 (1989), 1264–1276. 255. Cuesta-Albertos, J. A., and Matran,´ C. Stochastic convergence through Skorohod representation theorems and Wasserstein distances. Rend. Circ. Mat. Palermo (2) Suppl. No. 35 (1994), 89–113. 256. Cuesta-Albertos, J. A., Matran,´ C., Rachev, S. T., and Ruschendorf,¨ L. Mass transportation problems in probability theory. Math. Sci. 21, 1 (1996), 34–72. 257. Cuesta-Albertos, J. A., Matran,´ C., and Rodr´ıguez-Rodr´ıguez, J. Ap- proximation to probabilities through uniform laws on convex sets. J. Theoret. Probab. 16, 2 (2003), 363–376. 258. Cuesta-Albertos, J. A., Matran,´ C., and Tuero-D´ıaz, A. On lower bounds for the L2-Wasserstein metric in a Hilbert space. J. Theoret. Probab. 9, 2 (1996), 263–283. 259. Cuesta-Albertos, J. A., Matran,´ C., and Tuero-D´ıaz, A. On the monotonicity of optimal transportation plans. J. Math. Anal. Appl. 215 (1997), 1, 86–94. 260. Cuesta-Albertos, J. A., Matran,´ C., and Tuero-D´ıaz, A. Optimal trans- portation plans and convergence in distribution. J. Multivariate Anal. 60, 1 (1997), 72–83. 261. Cuesta-Albertos, J. A., and Tuero-D´ıaz, A. A characterization for the solution of the Monge–Kantorovich mass transference problem. Statist. Probab. Lett. 16, 2 (1993), 147–152. 262. Cullen, M. J. P. A mathematical theory of large-scale atmosphere/ocean flow. World Scientific, 2006. 263. Cullen, M. J. P., and Douglas, R. J. Applications of the Monge–Amp`ere equation and Monge transport problem to meteorology and oceanography. In Monge Amp`ere equation: applications to geometry and optimization (Deerfield Beach, FL, 1997). Amer. Math. Soc., Providence, RI, 1999, pp. 33–53. 264. Cullen, M. J. P., Douglas, R. J., Roulstone, I., and Sewell, M. J. Generalised semigeostrophic theory on a sphere. J. Fluid Mech. 531 (2005), 123–157. 265. Cullen, M., and Feldman, M. Lagrangian solutions of semigeostrophic equations in physical space. SIAM J. Math. Anal. 37, 5 (2006), 1371–1395. 266. Cullen, M. J. P., and Gangbo, W. A variational approach for the 2-dimensional semigeostrophic shallow water equations. Arch. Ration. Mech. Anal. 156, 3 (2001), 241–273. 267. Cullen, M. J. P., Gangbo, W., and Pisante, G. The semigeostrophic equa- tions discretized in reference and dual variables. To appear in Arch. Ration. Mech. Anal. 268. Cullen, M. J. P., and Maroofi, H. The fully compressible semi-geostrophic system from meteorology. Arch. Ration. Mech. Anal. 167, 4 (2003), 309–336. References 929

269. Cullen, M. J. P., and Purser, R. J. Properties of the Lagrangian semi- geostrophic equations. J. Atmospheric Sci. 46, 17 (1989), 2684–2697. 270. Dacorogna, B., and Moser, J. On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 7,1 (1990), 1–26. 271. Daneri, S., and Savare,´ G. Eulerian calculus for the displacement convexity in the Wasserstein distance. Preprint, 2008. 272. Davies, E. B. Heat kernels and spectral theory, vol. 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1989. 273. de Acosta, A. Invariance principles in probability for triangular arrays of B-valued random vectors and some applications. Ann. Probab. 10, 2 (1982), 346–373. 274. De Giorgi, E. Sulla differenziabilit`a e l’analiticit`a delle estremali degli inte- grali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43. 275. De Giorgi, E. Movimenti minimizzanti. In Aspetti e Problemi della Matem- atica Oggi (Lecce, 1992). 276. De Giorgi, E., Marino, A., and Tosques, M. Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68, 3 (1980), 180–187. 277. De Launay, L. Un grand fran¸cais – Monge, fondateur de l’Ecole´ Polytech- nique. Ed.´ Pierre Roger, Paris, 1933. Available online at www.annales.org/ archives/x/monge0.html. 278. De Pascale, L., Gelli, M. S., and Granieri, L. Minimal measures, one- dimensional currents and the Monge-Kantorovich problem. Calc.Var.27,1 (2006), 1–23. 279. De Pascale, L., Evans, L. C., and Pratelli, A. Integral estimates for transport densities. Bull.LondonMath.Soc.36, 3 (2004), 383–395. 280. De Pascale, L., and Pratelli, A. Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differential Equations 14, 3 (2002), 249–274. 281. De Pascale, L., and Pratelli, A. Sharp summability for Monge transport density via interpolation. ESAIM Control Optim. Calc. Var. 10, 4 (2004), 549–552. 282. del Barrio, E., Cuesta-Albertos, J. A., Matran,´ C., and Rodr´ıguez- Rodr´ıguez, J. M. Tests of goodness of fit based on the L2-Wasserstein dis- tance. Ann. Statist. 27, 4 (1999), 1230–1239. 283. Del Pino, M., and Dolbeault, J. Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. (9) 81, 9 (2002), 847–875. 284. Delanoe,¨ Ph. Classical solvability in dimension two of the second boundary- value problem associated with the Monge-Amp`ere operator. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 8, 5 (1991), 443–457. 285. Delanoe,¨ Ph. Gradient rearrangement for diffeomorphisms of a compact manifold. Differential Geom. Appl. 20, 2 (2004), 145–165. 286. Delanoe,¨ Ph., and Loeper, G. Gradient estimates for potentials of invertible gradient-mappings on the sphere. Calc. Var. Partial Differential Equations 26, 3 (2006), 297–311. 287. Delanoe,¨ Ph., and Ge, Y. Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds. Work in progress. 930 References

288. Dellacherie, C. Ensembles analytiques. Th´eor`emes de s´eparation et ap- plications. In S´eminaire de Probabilit´es, IX (Seconde Partie, Univ. Stras- bourg, ann´ees universitaires 1973/1974 et 1974/1975). Springer, Berlin, 1975, pp. 336–372. Lecture Notes in Math., vol. 465. 289. Delon, J. Personal communication, 2005. 290. Demange, J. From porous media equations to generalized Sobolev inequalities on a Riemannian manifold. Preprint, 2004. 291. Demange, J. Improved Sobolev inequalities under positive curvature. Preprint, 2004. 292. Demange, J. Des ´equationsa ` diffusion rapide aux in´egalit´es de Sobolev sur les mod`eles de la g´eom´etrie. PhD thesis, Univ. Paul Sabatier (Toulouse), 2005. 293. Demange, J. Porous media equation and Sobolev inequalities under negative curvature. Bull. Sci. Math. 129, 10 (2005), 804–830. 294. Dembo, A. Information inequalities and concentration of measure. Ann. Probab. 25, 2 (1997), 927–939. 295. Dembo, A., Cover, T. M., and Thomas, J. A. Information theoretic in- equalities. IEEE Trans. Inform. Theory 37, 6 (1991), 1501–1518. 296. Dembo, A., and Zeitouni, O. Large deviations techniques and applications, second ed. Springer-Verlag, New York, 1998. 297. Denzler, J. Mather sets for plane Hamiltonian systems. Z. Angew. Math. Phys. 38, 6 (1987), 791–812. 298. Denzler, J., and McCann, R. J. Phase transitions and symmetry breaking in singular diffusion. Proc. Natl. Acad. Sci. USA 100, 12 (2003), 6922–6925. 299. Denzler, J., and McCann, R. J. Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology. Arch. Ration. Mech. Anal. 175, 3 (2005), 301–342. 300. Desvillettes, L., and Villani, C. On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications. Comm. Partial Differential Equations 25, 1–2 (2000), 261–298. 301. Desvillettes, L., and Villani, C. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation. Comm. Pure Appl. Math. 54, 1 (2001), 1–42. 302. Deuschel, J.-D., and Stroock, D. W. Large deviations, vol. 137 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1989. 303. Ding, Y. Heat kernels and Green’s functions on limit spaces. Comm. Anal. Geom. 10, 3 (2002), 475–514. 304. DiPerna, R. J., and Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547. 305. Djellout, H., Guillin, A., and Wu, L. Transportation cost-information in- equalities and applications to random dynamical systems and diffusions. Ann. Probab. 32, 3B (2004), 2702–2732. 306. do Carmo, M. P. Riemannian geometry. Mathematics: Theory & Applica- tions. Birkh¨auser Boston Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. 307. Dobric,´ V., and Yukich, J. E. Asymptotics for transportation cost in high dimensions. J. Theoret. Probab. 8, 1 (1995), 97–118. 308. Dobruˇsin, R. L. Prescribing a system of random variables by conditional distributions. Teor. Verojatnost. i Primenen. 15 (1970), 469–497. English translation in Theor. Prob. Appl. 15 (1970), 458–486. References 931

309. Dobruˇsin, R. L. Vlasov equations. Funktsional.Anal.iPrilozhen.13,2 (1979), 48–58, 96. 310. Dobruˇsin, R. L. Perturbation methods of the theory of Gibbsian fields. In Lec- tures on probability theory and statistics (Saint-Flour, 1994). Springer, Berlin, 1996, pp. 1–66. 311. Dobruˇsin, R. L., and Shlosman, S. B. Constructive criterion for the unique- ness of Gibbs field. In Statistical physics and dynamical systems (K¨oszeg, 1984), Progr. Phys., 10, Birkh¨auser Boston, 1985, pp. 347–370. 312. Dolbeault, J., Nazaret, B., and Savare,´ G. Work in progress. 313. Donsker, M., and Varadhan, S. R. S. Asymptotic evaluation of certain Markov process expectations for large time, I. Comm. Pure Appl. Math. 28 (1975), 1–47. 314. Dudley, R. M. The speed of mean Glivenko–Cantelli convergence. Ann. Math. Statist. 40 (1968), 40–50. 315. Dudley, R. M. Speeds of metric probability convergence. Z. Wahrschein- lichkeitstheorie verw. Geb. 22 (1972), 323–332. 316. Dudley, R. M. Probabilities and metrics: Convergence of laws on metric spaces, with a view to statistical testing. Aarhus Universitet, 1976. 317. Dudley, R. M. Uniform central limit theorems, vol. 63 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. 318. Dudley, R. M. Real analysis and probability, vol. 74 of Cambridge Stud- ies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original. 319. Dupin, C. Applications de la g´eom´etrie et de la m´ecanique. Re-edition by Bachelier, Paris (1922). 320. E, W., Rykov, Yu. G., and Sinai, Ya. G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177, 2 (1996), 349–380. 321. Eckmann, J.-P., and Hairer, M. Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm. Math. Phys. 219, 3 (2001), 523–565. 322. Einstein, A. Mouvement des particules en suspension dans un fluide au repos, comme cons´equence de la th´eorie cin´etique mol´eculaire de la chaleur. Annalen der Physik 17 (1905), 549–560. Trad. fran¸caise. 323. Ekeland, I. An optimal matching problem. ESAIM Control Optim. Calc. Var. 11, 1 (2005), 57–71. 324. Ekeland, I., and Temam,´ R. Convex analysis and variational problems, English ed., vol. 28 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. Translated from the French. 325. Eliassen, A. The quasi-static equations of motion. Geofys. Publ. 17, 3 (1948). 326. Evans, L. C. Classical solutions of fully nonlinear convex, second order elliptic equations. Comm. Pure Appl. Math. 25 (1982), 333–363. 327. Evans, L. C. Partial differential equations. American Mathematical Society, Providence, RI, 1998. 328. Evans, L. C. Partial differential equations and Monge–Kantorovich mass transfer. In Current developments in mathematics, 1997 (Cambridge, MA). Int. Press, Boston, MA, 1999, pp. 65–126. 932 References

329. Evans, L. C., Feldman, M., and Gariepy, R. F. Fast/slow diffusion and collapsing sandpiles. J. Differential Equations 137, 1 (1997), 166–209. 330. Evans, L. C. and Gangbo, W. Differential equations methods for the Monge– Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137, no. 653, 1999. 331. Evans, L. C., and Gariepy, R. Measure theory and fine properties of func- tions. CRC Press, Boca Raton, FL, 1992. 332. Evans, L. C., and Gomes, D. A. Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157, 1 (2001), 1–33. 333. Evans, L. C., and Gomes, D. A. Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch. Ration. Mech. Anal. 161, 4 (2002), 271–305. 334. Evans, L. C., and Gomes, D. A. Linear programming interpretations of Mather’s variational principle. ESAIM Control Optim. Calc. Var. 8 (2002), 693–702. 335. Evans, L. C., and Ishii, H. A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 2, 1 (1985), 1–20. 336. Evans, L. C., and Rezakhanlou, F. A stochastic model for growing sand- piles and its continuum limit. Comm. Math. Phys. 197, 2 (1998), 325–345. 337. Falconer,K.J.The geometry of fractal sets, vol. 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986. 338. Falconer,K.J.Fractal geometry, second ed. John Wiley & Sons Inc., Hobo- ken, NJ, 2003. Mathematical foundations and applications. 339. Fang, S., and Shao, J. Optimal transportation maps for Monge–Kantorovich problem on loop groups. Preprint Univ. Bourgogne No. 470, 2006. 340. Fang, S., and Shao, J. Distance riemannienne, th´eor`eme de Rademacher et in´egalit´e de transport sur le groupe des lacets. C. R. Math. Acad. Sci. Paris 341, 7 (2005), 445–450. 341. Fang, S., and Shao, J. Transportation cost inequalities on path and loop groups. J. Funct. Anal. 218, 2 (2005), 293–317. 342. Fang, S., Shao, J., and Sturm, K.-T. Wasserstein space over the Wiener space. Preprint, 2007. 343. Faris, W.,Ed.Diffusion, Quantum Theory, and Radically Elementary Math- ematics,vol.47ofMathematical Notes. Princeton University Press, 2006. 344. Fathi, A. Solutions KAM faibles conjugu´ees et barri`eres de Peierls. C. R. Acad. Sci. Paris S´er. I Math. 325, 6 (1997), 649–652. 345. Fathi, A. Th´eor`eme KAM faible et th´eorie de Mather sur les syst`emes la- grangiens. C. R. Acad. Sci. Paris S´er. I Math. 324, 9 (1997), 1043–1046. 346. Fathi, A. Sur la convergence du semi-groupe de Lax–Oleinik. C. R. Acad. Sci. Paris S´er. I Math. 327, 3 (1998), 267–270. 347. Fathi, A. Weak KAM theorem in Lagrangian dynamics. To be published by Cambridge University Press. 348. Fathi, A., and Figalli, A. Optimal transportation on non-compact mani- folds. To appear in Israel J. Math. 349. Fathi, A., and Mather, J. N. Failure of convergence of the Lax–Oleinik semigroup in the time-periodic case. Bull. Soc. Math. France 128, 3 (2000), 473–483. 350. Fathi, A., and Siconolfi, A. Existence of C1 critical subsolutions of the Hamilton–Jacobi equation. Invent. Math. 155, 2 (2004), 363–388. References 933

351. Federbush, P. Partially alternate derivation of a result by Nelson. J. Math. Phys. 10, 1 (1969), 50–52. 352. Federer, H. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969. 353. Feldman, M. Variational evolution problems and nonlocal geometric motion. Arch. Rational Mech. Anal. 146, 3 (1999), 221–274. 354. Feldman, M., and McCann, R. J. Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. Partial Differential Equa- tions 15, 1 (2002), 81–113. 355. Feng, J., and Kurtz, T. G. Large deviations for stochastic processes, vol. 131 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006. 356. Fernique, X. Sur le th´eor`eme de Kantorovitch–Rubinstein dans les espaces polonais. In Seminar on Probability, XV (Univ. Strasbourg, 1979/1980), vol. 850 of Lecture Notes in Math. Springer, Berlin, 1981, pp. 6–10. 357. Feyel, D. Une d´emonstration simple du th´eor`eme de Kantorovich. Personal communication, 2003. 358. Feyel, D., and Ust¨ unel,¨ A. S. Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris 334, 11 (2002), 1025–1028. 359. Feyel, D., and Ust¨ unel,¨ A. S. Monge–Kantorovitch measure transportation and Monge–Amp`ere equation on Wiener space. Probab. Theory Related Fields 128, 3 (2004), 347–385. 360. Feyel, D., and Ust¨ unel,¨ A. S. Monge–Kantorovitch measure transporta- tion, Monge–Amp`ere equation and the Itˆo calculus. In Stochastic analysis and related topics in Kyoto, vol. 41 of Adv. Stud. Pure Math. Math. Soc. Japan, Tokyo, 2004, pp. 49–74. 361. Feyel, D., and Ust¨ unel,¨ A. S. The strong solution of the Monge–Amp`ere equation on the Wiener space for log-concave densities. C. R. Math. Acad. Sci. Paris 339, 1 (2004), 49–53. 362. Feyel, D., and Ust¨ unel,¨ A. S. Solution of the Monge–Amp`ere equation on Wiener space for general log-concave measures. J. Funct. Anal. 232, 1 (2006), 29–55. 363. Figalli, A. Existence, uniqueness and regularity of optimal transport maps. SIAM J. Math. Anal. 39, 1 (2007), 126–137. 364. Figalli, A. The Monge problem on noncompact manifolds. Rend. Sem. Mat. Univ. Padova 117 (2007), 147–166. 365. Figalli, A. The optimal partial transfer problem. Preprint, 2008. 366. Figalli, A., and Juillet, N. Absolute continuity of Wasserstein geodesics in the Heisenberg group. Preprint, 2007. 367. Figalli, A., Kim, Y.-H., and McCann, R. Work in progress. 368. Figalli, A., and Loeper, G. C1 regularity in two dimensions for potentials of the optimal transport problem. Preprint, 2007. 369. Figalli, A., Maggi, F., and Pratelli, A. A mass transportation approach to quantitative isoperimetric inequalities. Preprint, 2007. 370. Figalli, A., and Rifford, L. Mass transportation on sub-Riemannian man- ifolds. Preprint, 2008. 371. Figalli, A., and Rifford, L. Continuity of optimal transport maps on small deformations of S2. Preprint, 2008. 372. Figalli, A., and Villani, C. Strong displacement convexity on Riemannian manifolds. Math.Z.257, 2 (2007), 251–259. 934 References

373. Fisher, R. A. Theory of statistical estimation. Math. Proc. Cambridge Philos. Soc. 22 (1925), 700–725. 374. Fontbona, J., Guerin,´ H., and Mel´ eard,´ S. Measurability of optimal trans- portation and convergence rate for Landau type interacting particle systems. Preprint, 2007. 375. Fortuin, C. M., Kasteleyn, P. W., and Ginibre, J. Correlation inequali- ties on some partially ordered sets. Comm. Math. Phys. 22 (1971), 89–103. 376. Forzani, L., and Maldonado, D. Properties of the solutions to the Monge– Amp`ere equation. Nonlinear Anal. 57, 5–6 (2004), 815–829. 377. Fournier, N. Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff. J. Statist. Phys. 125, 4 (2006), 927–946. 378. Fournier, N., and Guerin,´ H. On the uniqueness for the spatially homoge- neous Boltzmann equation with a strong angular singularity. To appear in J. Stat. Phys. 379. Fournier, N., and Mouhot, C. On the well-posedness of the spatially ho- mogeneous Boltzmann equation with a moderate angular singularity. Preprint, 2007. 380. Fragala,` I., Gelli, M. S., and Pratelli, A. Continuity of an optimal transport in Monge problem. J. Math. Pures Appl. (9) 84, 9 (2005), 1261– 1294. 381. Frechet,´ M. Sur la distance de deux lois de probabilit´e. C. R. Acad. Sci. Paris 244 (1957), 689–692. 382. Frisch, U., Matarrese, S., Mohayaee, R., and Sobolevsk˘ı, A. A recon- struction of the initial conditions of the Universe by optimal mass transporta- tion. Nature 417 (2002), 260–262. 383. Fujita, Y., Ishii, H., and Loreti, P. Asymptotic solutions of viscous Hamilton–Jacobi equations with Ornstein–Uhlenbeck operator. Comm. Partial Differential Equations 31, 4–6 (2006), 827–848. 384. Fujita, Y., Ishii, H., and Loreti, P. Asymptotic solutions for large time of Hamilton–Jacobi equations in Euclidean n space. To appear in Ann. Inst. H. Poincar´e Anal. Non Lin´eaire. 385. Fujita, Y., Ishii, H., and Loreti, P. Asymptotic solutions of Hamilton– Jacobi equations in Euclidean n space. Indiana Univ. Math. J. 55, 5 (2006), 1671–1700. 386. Fukaya, K. Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87, 3 (1987), 517–547. 387. Fukaya, K. Hausdorff convergence of Riemannian manifolds and its applica- tions. In Recent topics in differential and analytic geometry,vol.18ofAdv. Stud. Pure Math. Academic Press, Boston, MA, 1990, pp. 143–238. 388. Fusco, N., Maggi, F., and Pratelli, A. The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal. 244, 1 (2007), 315–341. 389. Fusco, N., Maggi, F., and Pratelli, A. The sharp quantitative isoperi- metric inequality. To appear in Ann. of Math. 390. Gaffke, N., and Ruschendorf,¨ L. On a class of extremal problems in statistics. Math. Operationsforsch. Statist. Ser. Optim. 12, 1 (1981), 123–135. 391. Galichon, A., and Henry, M. Testing non-identifying restrictions and con- fidence regions for partially identified parameters. Preprint, 2007. References 935

392. Gallay, T., and Wayne, C. E. Global stability of vortex solutions of the two-dimensional Navier–Stokes equation. Comm. Math. Phys. 255, 1 (2005), 97–129. 393. Gallot, S. Isoperimetric inequalities based on integral norms of Ricci curva- ture. Ast´erisque, 157–158 (1988), 191–216. 394. Gallot, S., Hulin, D., and Lafontaine, J. Riemannian geometry,sec- ond ed. Universitext. Springer-Verlag, Berlin, 1990. 395. Gangbo, W. An elementary proof of the polar factorization of vector-valued functions. Arch. Rational Mech. Anal. 128, 4 (1994), 381–399. 396. Gangbo, W. The Monge mass transfer problem and its applications. In Monge Amp`ere equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), vol. 226 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1999, pp. 79–104. 397. Gangbo, W. Review on the book Gradient flows in metric spaces and in the space of probability measures by Ambrosio, Gigli and Savar´e, 2006. Available online at www.math.gatech.edu/~gangbo. 398. Gangbo, W., and McCann, R. J. Optimal maps in Monge’s mass transport problem. C. R. Acad. Sci. Paris S´er. I Math. 321, 12 (1995), 1653–1658. 399. Gangbo, W., and McCann, R. J. The geometry of optimal transportation. Acta Math. 177, 2 (1996), 113–161. 400. Gangbo, W., and McCann, R. J. Shape recognition via Wasserstein dis- tance. Quart. Appl. Math. 58, 4 (2000), 705–737. 401. Gangbo, W., Nguyen, T., and Tudorascu, A. Euler–Poisson systems as action-minimizing paths in the Wasserstein space. Preprint, 2006. Available online at www.math.gatech.edu/~gangbo/publications. 402. Gangbo, W., and Oliker, V. I. Existence of optimal maps in the reflector- type problems. ESAIM Control Optim. Calc. Var. 13, 1 (2007), 93–106. 403. Gangbo, W., and Swie´ ¸ch, A. Optimal maps for the multidimensional Monge–Kantorovich problem. Comm. Pure Appl. Math. 51, 1 (1998), 23–45. 404. Gangbo, W., and Westdickenberg, M. Optimal transport for the system of isentropic Euler equations. Work in progress. 405. Gao, F., and Wu, L. Transportation-Information inequalities for Gibbs mea- sures. Preprint, 2007. 406. Gardner, R. The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. (N.S.) 39, 3 (2002), 355–405. 407. Gelbrich, M. On a formula for the L2 Wasserstein metric between measures on Euclidean and Hilbert spaces. Math. Nachr. 147 (1990), 185–203. 408. Gentil, I. In´egalit´es de Sobolev logarithmiques et hypercontractivit´een m´ecanique statistique et en E.D.P. PhD thesis, Univ. Paul-Sabatier (Toulouse), 2001. Available online at www.ceremade.dauphine.fr/~gentil/maths.html. 409. Gentil, I. Ultracontractive bounds on Hamilton–Jacobi solutions. Bull. Sci. Math. 126, 6 (2002), 507–524. 410. Gentil, I., Guillin, A., and Miclo, L. Modified logarithmic Sobolev in- equalities and transportation inequalities. Probab. Theory Related Fields 133, 3 (2005), 409–436. 411. Gentil, I., Guillin, A., and Miclo, L. Modified logarithmic Sobolev in- equalities in null curvature. Rev. Mat. Iberoamericana 23, 1 (2007), 237–260. 412. Gentil, I., and Malrieu, F. Equations´ de Hamilton–Jacobi et in´egalit´es entropiques g´en´eralis´ees. C. R. Acad. Sci. Paris 335 (2002), 437–440. 936 References

413. Giacomin, G. On stochastic domination in the Brascamp–Lieb framework. Math. Proc. Cambridge Philos. Soc. 134, 3 (2003), 507–514. 414. Gianazza, U., Savare,´ G., and Toscani, G. The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. To appear in Arch. Ration. Mech. Anal. 415. Gigli, N. On the geometry of the space of probability measures endowed with the Kantorovich–Rubinstein distance. PhD Thesis, SNS Pisa, 2008. 416. Gilbarg, D., and Trudinger, N. S. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. 417. Gini, C. Sulla misura della concentrazione e della variabilit`a del caratteri. Atti del R. Instituto Veneto 73 (1914), 1913–1914. 418. Gini, C. Measurement of inequality and incomes. The Economic Journal 31, 124–126. 419. Glimm, T., and Oliker, V. I. Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem. J. of Math. Sciences 117,3 (2003), 4096–4108. 420. Glimm, T., and Oliker, V. I. Optical design of two-reflector systems, the Monge–Kantorovich mass transfer problem and Fermat’s principle. Indiana Univ. Math. J. 53, 5 (2004), 1255–1277. 421. Goldman, D., and McCann, R. J. Chaotic response of the 2D semi- geostrophic and 3D quasi-geostrophic equations to gentle periodic forcing. Preprint, 2007. Available online at www.math.toronto.edu/mccann. 422. Gomes,D.A. A stochastic analogue of Aubry–Mather theory. Nonlinearity 15, 3 (2002), 581–603. 423. Gomes, D. A., and Oberman, A. M. Computing the effective Hamiltonian using a variational approach. SIAM J. Control Optim. 43, 3 (2004), 792–812. 424. Goudon, T., Junca, S., and Toscani, G. Fourier-based distances and Berry–Esseen like inequalities for smooth densities. Monatsh. Math. 135,2 (2002), 115–136. 425. Gozlan, N. Characterization of Talagrand’s like transportation inequalities on the real line. J. Funct. Anal. 250, 2 (2007), 400–425. 426. Gozlan, N. Un crit`ere g´en´eral pour les in´egalit´es de transport sur R associ´ees `a une fonction de coˆut convexe. Preprint, 2006. 427. Gozlan, N. Principe conditionnel de Gibbs pour des contraintes fines ap- proch´ees et In´egalit´es de Transport. PhD thesis, Univ. Paris X–Nanterre, 2005. 428. Gozlan, N. Integral criteria for transportation-cost inequalities. Electron. Comm. Probab. 11 (2006), 64–77. 429. Gozlan, N. A characterization of dimension free concentration in terms of transportation inequalities. Preprint, 2008. 430. Gozlan, N., and Leonard,´ Ch. A large deviation approach to some trans- portation cost inequalities. Probab. Theory Related Fields 139, 1–2 (2007), 235–283. 431. Granieri, L. On action minimizing measures for the Monge–Kantorovich problem. To appear in NoDEA Nonlinear Differential Equations Appl. 432. Greene, R. E., and Shiohama, K. Diffeomorphisms and volume-preserving embeddings of noncompact manifolds. Trans. Amer. Math. Soc. 255 (1979), 403–414. 433. Grigoryan, A. A. The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182, 1 (1991), 55–87. References 937

434. Grigoryan, A. A. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N.S.) 36, 2 (1999), 135–249. 435. Gromov, M. Paul L´evy’s isoperimetric inequality. Preprint IHES, 1980. 436. Gromov, M. Groups of polynomial growth and expanding maps. Inst. Hautes Etudes´ Sci. Publ. Math., 53 (1981), 53–73. 437. Gromov, M. Sign and geometric meaning of curvature. Rend.Sem.Mat.Fis. Milano 61 (1991), 9–123 (1994). 438. Gromov, M. Metric structures for Riemannian and non–Riemannian spaces, vol. 152 of Progress in Mathematics. Birkh¨auser Boston Inc., Boston, MA, 1999. Based on the 1981 French original. With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by S. M. Bates. 439. Gromov, M. Mesoscopic curvature and hyperbolicity. In Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao 2000), vol. 228 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2001, pp. 58–69. 440. Gromov, M., and Milman, V. D. A topological application of the isoperi- metric inequality. Amer. J. Math. 105, 4 (1983), 843–854. 441. Gross, L. Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975), 1061– 1083. 442. Gross, L. Logarithmic Sobolev inequalities and contractivity properties of semigroups. In Dirichlet forms (Varenna, 1992). Springer, Berlin, 1993, pp. 54–88. Lecture Notes in Math., 1563. 443. Grove, K., and Petersen, P. Manifolds near the boundary of existence. J. Differential Geom. 33, 2 (1991), 379–394. 444. Grunewald, N., Otto, F., Villani, C., and Westdickenberg, M. Atwo- scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. To appear in Ann. Inst. H. Poincar´eProbab.Statist. 445. Grunewald, N., Otto, F., Villani, C., and Westdickenberg, M. Work in progress. 446. Guan, P. Monge–Amp`ere equations and related topics. Lecture notes. Avail- able online at www.math.mcgill.ca/guan/notes.html, 1998. 447. Guillin, A. Personal communication. 448. Guillin, A., Leonard,´ C., Wu, L., and Yao, N. Transportation cost vs. Fisher–Donsker–Varadhan information. Preprint, 2007. Available online at www.cmi.univ-mrs.fr/guillin/index3.html 449. Guionnet, A. First order asymptotics of matrix integrals; a rigorous ap- proach towards the understanding of matrix models. Comm. Math. Phys. 244, 3 (2004), 527–569. 450. Guittet, K. Contributionsalar´ ` esolution num´erique de probl`emes de trans- port optimal de masse. PhD thesis, Univ. Paris VI – Pierre et Marie Curie (France), 2003. 451. Guittet, K. On the time-continuous mass transport problem and its approx- imation by augmented Lagrangian techniques. SIAM J. Numer. Anal. 41,1 (2003), 382–399. 452. Gutierrez,´ C. E. The Monge–Amp`ere equation,vol.44ofProgress in Non- linear Differential Equations and their Applications. Birkh¨auser Boston Inc., Boston, MA, 2001. 453. Gutierrez,´ C. E., and Huang, Q. The refractor problem in reshaping light beams. Preprint, 2007. 938 References

454. Hackenbroch, W., and Thalmaier, A. Stochastische Analysis. Eine Einf¨uhrung in die Theorie der stetigen Semimartingale. Mathematische Leitf¨aden. B. G. Teubner, Stuttgart, 1994. 455. Hairer, M. Exponential mixing properties of stochastic PDEs through as- ymptotic coupling. Probab. Theory Related Fields 124, 3 (2002), 345–380. 456. Hairer, M., and Mattingly, J. C. Ergodic properties of highly degenerate 2D stochastic Navier–Stokes equations. C. R. Math. Acad. Sci. Paris 339,12 (2004), 879–882. 457. Hairer, M., and Mattingly, J. C. Ergodicity of the 2D Navier–Stokes equa- tions with degenerate stochastic forcing. Ann. of Maths (2) 164, 3 (2006), 993–1032. 458. Hairer, M., and Mattingly, J. C. Spectral gaps in Wasserstein distances and the 2D Navier–Stokes equation. To appear in Ann. Probab. 459. Hajlasz, P. Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 4 (1996), 403–415. 460. Hajlasz, P. Sobolev spaces on metric-measure spaces. In Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), vol. 338 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2003, pp. 173–218. 461. Hajlasz, P., and Koskela, P. Sobolev meets Poincar´e. C. R. Acad. Sci. Paris S´er. I Math. 320, 10 (1995), 1211–1215. 462. Haker, S., and Tannenbaum, A. On the Monge–Kantorovich problem and image warping. In Mathematical methods in computer vision, vol. 133 of IMA Vol. Math. Appl. Springer, New York, 2003, pp. 65–85. 463. Haker, S., Zhu, L., Tannenbaum, A., and Angenent, S. Optimal mass transport for registration and warping. International Journal on Computer Vision 60, 3 (2004), 225–240. 464. Hanin, L. G. An extension of the Kantorovich norm. In Monge Amp`ere equa- tion: applications to geometry and optimization (Deerfield Beach, FL, 1997). Amer. Math. Soc., Providence, RI, 1999, pp. 113–130. 465. Harge,´ G. A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces. Probab. Theory Related Fields 130, 3 (2004), 415–440. 466. Hauray, M., and Jabin, P.-E. N-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183, 3 (2007), 489–524. 467. Hedlund, G. Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. of Math. (2) 33 (1932), 719–739. 468. Heinich, H., and Lootgieter, J.-C. Convergence des fonctions monotones. C. R. Acad. Sci. Paris S´er. I Math. 322, 9 (1996), 869–874. 469. Heinonen, J. Lectures on analysis on metric spaces. Universitext. Springer- Verlag, New York, 2001. 470. Heinonen, J., and Koskela, P. Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1 (1998), 1–61. 471. Heinz, E. Uber¨ die Differentialungleichung 0 <α≤ rt − s2 ≤ β<∞. Math. Z. 72 (1959/1960), 107–126. 472. Herau,´ F., and Nier, F. Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171, 2 (2004), 151–218. References 939

473. Hiai, F., Ohya, M., and Tsukada, M. Sufficiency and relative entropy in ∗- algebras with applications in quantum systems. Pacific J. Math. 107, 1 (1983), 117–140. 474. Hiai, F., Petz, D., and Ueda, Y. Free transportation cost inequalities via random matrix approximation. Probab. Theory Related Fields 130, 2 (2004), 199–221. 475. Hiai, F., and Ueda, Y. Free transportation cost inequalities for noncommu- tative multi-variables. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9,3 (2006), 391–412. 476. Hohloch, S. Optimale Massebewegung im Monge–Kantorovich-Transport- problem. Diploma thesis, Freiburg Univ., 2002. 477. Holley, R. Remarks on the FKG inequalities. Comm. Math. Phys. 36 (1974), 227–231. 478. Holley, R., and Stroock, D. W. Logarithmic Sobolev inequalities and sto- chastic Ising models. J. Statist. Phys. 46, 5–6 (1987), 1159–1194. 479. Horowitz, J., and Karandikar, R. L. Mean rates of convergence of empir- ical measures in the Wasserstein metric. J. Comput. Appl. Math. 55, 3 (1994), 261–273. (See also the reviewer’s note on MathSciNet.) 480. Hoskins, B. J. Atmospheric frontogenesis models: some solutions. Q.J.R. Met. Soc. 97 (1971), 139–153. 481. Hoskins, B. J. The geostrophic momentum approximation and the semi- geostrophic equations. J. Atmosph. Sciences 32 (1975), 233–242. 482. Hoskins, B. J. The mathematical theory of frontogenesis. Ann. Rev. of Fluid Mech. 14 (1982), 131–151. 483. Hsu, E. P. Stochastic analysis on manifolds, vol. 38 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002. 484. Hsu, E. P., and Sturm, K.-T. Maximal coupling of Euclidean Brownian motions. FB-Preprint No. 85, Bonn. Available online at www-wt.iam.uni-bonn.de/~sturm/de/index.html. 485. Huang, C., and Jordan, R. Variational formulations for Vlasov–Poisson– Fokker–Planck systems. Math. Methods Appl. Sci. 23, 9 (2000), 803–843. 486. Ichihara, K. Curvature, geodesics and the Brownian motion on a Riemannian manifold. I. Recurrence properties, II. Explosion properties. Nagoya Math. J. 87 (1982), 101–114; 115–125. 487. Ishii, H. Asymptotic solutions for large time of Hamilton–Jacobi equations. International Congress of Mathematicians, Vol. III, Eur. Math. Soc., Z¨urich, 2006, pp. 213–227. Short presentation available online at www.edu.waseda.ac.jp/~ishii. 488. Ishii, H. Unpublished lecture notes on the weak KAM theorem, 2004. Available online at www.edu.waseda.ac.jp/~ishii. 489. Itoh, J.-i., and Tanaka, M. The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353, 1 (2001), 21–40. 490. Jian, H.-Y., and Wang, X.-J. Continuity estimates for the Monge–Amp`ere equation. Preprint, 2006. 491. Jimenez, Ch. Dynamic formulation of optimal transport problems. To appear in J. Convex Anal. 492. Jones, P., Maggioni, M., and Schul, R. Universal local parametrizations via heat kernels and eigenfunctions of the Laplacian. Preprint, 2008. 493. Jordan, R., Kinderlehrer, D., and Otto, F. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1 (1998), 1–17. 940 References

494. Joulin, A. Poisson-type deviation inequalities for curved continuous time Markov chains. Bernoulli 13, 3 (2007), 782–798. 495. Joulin, A. A new Poisson-type deviation inequality for Markov jump process with positive Wasserstein curvature. Preprint, 2007. 496. Juillet, N. Geometric inequalities and generalized Ricci bounds in the Heisen- berg group. Preprint, 2006. 497. Jungel,¨ A., and Matthes, D. The Derrida–Lebowitz–Speer–Spohn equation: Existence, nonuniqueness, and decay rates of the solutions. Preprint, 2006. Available online at www.juengel.de.vu. 498. Kalashnikov, V. V., and Rachev, S. T. Mathematical methods for construc- tion of queueing models. The Wadsworth & Brooks/Cole Operations Research Series, Pacific Grove, CA, 1990. 499. Kantorovich, L. V. Mathematical methods in the organization and planning of production. Leningrad Univ., 1939. English translation in Management Science 6, 4 (1960), 363-422. 500. Kantorovich, L. V. On an effective method of solving certain classes of extremal problems. Dokl. Akad. Nauk. USSR 28 (1940), 212–215. 501. Kantorovich, L. V. On the translocation of masses. Dokl. Akad. Nauk. USSR 37 (1942), 199–201. English translation in J. Math. Sci. 133, 4 (2006), 1381–1382. 502. Kantorovich, L. V. On a problem of Monge. Uspekhi Mat. Nauk. 3 (1948), 225–226. English translation in J.Math.Sci.133, 4 (2006), 1383. 503. Kantorovich, L. V. The best use of economic resources. Oxford Pergamon Press, 1965. 504. Kantorovich, L. V. Autobiography. In Nobel Lectures, Economics 1969– 1980, A. Lindbeck, Ed., Les Prix Nobel/Nobel Lectures. World Scien- tific Publishing Co., Singapore, 1992. Available online at nobelprize.org/ economics/laureates/1975/kantorovich-autobio.html. 505. Kantorovich, L. V., and Gavurin, M. L. Application of mathematical methods to problems of analysis of freight flows. In Problems of raising the effi- ciency of transport performance (1949), Moscow-Leningrad Univ., pp. 110–138. 506. Kantorovich, L. V., and Rubinshtein, G. S. On a space of totally additive functions. Vestn. Leningrad. Univ. 13, 7 (1958), 52–59. 507. Karakhanyan, A., and Wang, X.-J. The reflector design problem. Preprint, 2007. 508. Kasue, A., and Kumura, H. Spectral convergence of Riemannian manifolds. Tohoku Math. J. (2) 46, 2 (1994), 147–179. 509. Kasue, A., and Kumura, H. Spectral convergence of Riemannian manifolds. II. Tohoku Math. J. (2) 48, 1 (1996), 71–120. 510. Keith, S. Modulus and the Poincar´e inequality on metric measure spaces. Math.Z.245, 2 (2003), 255–292. 511. Keith, S. A differentiable structure for metric measure spaces. Adv. Math. 183, 2 (2004), 271–315. 512. Kellerer, H. G. Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, 4 (1984), 399–432. 513. Khesin, B., and Lee, P. Poisson geometry and first integrals of geostrophic equations. Preprint, 2008. 514. Khesin, B., and Lee, P. A nonholomic Moser theorem and optimal mass transport. Preprint, 2008. References 941

515. Khesin, B., and Misiolek, G. Shock waves for the Burgers equation and curvatures of diffeomorphism groups. Shock waves for the Burgers equation and curvatures of diffeomorphism groups. Proc. Steklov Inst. Math. 250 (2007), 1–9. 516. Kim, S. Harnack inequality for nondivergent elliptic operators on Riemannian manifolds. Pacific J. Math. 213, 2 (2004), 281–293. 517. Kim, Y. J., and McCann, R. J. Sharp decay rates for the fastest conservative diffusions. C. R. Math. Acad. Sci. Paris 341, 3 (2005), 157–162. 518. Kim, Y.-H. Counterexamples to continuity of optimal transportation on pos- itively curved Riemannian manifolds. Preprint, 2007. 519. Kim, Y.-H., and McCann, R. J. On the cost-subdifferentials of cost-convex functions. Preprint, 2007. Archived online at arxiv.org/abs/0706.1266. 520. Kim, Y.-H., and McCann, R. J. Continuity, curvature, and the general co- variance of optimal transportation. Preprint, 2007. 521. Kleptsyn, V., and Kurtzmann, A. Ergodicity of self-attracting Brownian motion. Preprint, 2008. 522. Kloeckner, B. A geometric study of the Wasserstein space of the line. Preprint, 2008. 523. Knothe, H. Contributions to the theory of convex bodies. Michigan Math. J. 4 (1957), 39–52. 524. Knott, M., and Smith, C. S. On the optimal mapping of distributions. J. Optim. Theory Appl. 43, 1 (1984), 39–49. 525. Knott, M., and Smith, C. S. On a generalization of cyclic monotonicity and distances among random vectors. Linear Algebra Appl. 199 (1994), 363–371. 526. Kolesnikov, A. V. Convexity inequalities and optimal transport of infinite- dimensional measures. J. Math. Pures Appl. (9) 83, 11 (2004), 1373–1404. 527. Kontorovich, L. A linear programming inequality with applications to concentration of measures. Preprint, 2006. Archived online at arxiv.org/ abs/math.FA/0610712. 528. Kontsevich, M., and Soibelman, Y. Homological mirror symmetry and torus fibrations. In Symplectic geometry and mirror symmetry (Seoul, 2000). World Sci. Publ., River Edge, NJ, 2001, pp. 203–263. 529. Koskela, P. Upper gradients and Poincar´e inequality on metric measure spaces. In Lecture notes on Analysis in metric spaces (Trento, 1999), Appunti Corsi Tenuti Docenti Sc., Scuola Norm. Sup., Pisa, 2000, pp. 55–69. 530. Krylov,N.V.Boundedly nonhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR, Ser. Mat. 46, 3 (1982), 487–523. English translation in Math. USSR Izv. 20, 3 (1983), 459–492. 531. Krylov,N.V. Fully nonlinear second order elliptic equations: recent devel- opment. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 3–4 (1998), 569–595. 532. Krylov, N. V., and Safonov, M. V. An estimate of the probability that a diffusion process hits a set of positive measure. Dokl. Acad. Nauk SSSR 245, 1 (1979), 18–20. 533. Kuksin, S., Piatnitski, A., and Shirikyan, A. A coupling approach to ran- domly forced nonlinear PDE’s, II. Comm. Math. Phys. 230, 1 (2002), 81–85. 534. Kullback, S. A lower bound for discrimination information in terms of vari- ation. IEEE Trans. Inform. Theory 4 (1967), 126–127. 535. Kurtzmann, A. The ODE method for some self-interacting diffusions on Rd. Preprint, 2008. 942 References

536. Kuwae, K., Machigashira, Y., and Shioya, T. Beginning of analysis on Alexandrov spaces. In Geometry and topology: Aarhus (1998), vol. 258 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2000, pp. 275–284. 537. Kuwae, K., Machigashira, Y., and Shioya, T. Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z. 238, 2 (2001), 269–316. 538. Kuwae, K., and Shioya, T. On generalized measure contraction property and energy functionals over Lipschitz maps. Potential Anal. 15, 1–2 (2001), 105–121. 539. Kuwae, K., and Shioya, T. Sobolev and Dirichlet spaces over maps between metric spaces. J. Reine Angew. Math. 555 (2003), 39–75. 540. Latala, R., and Oleszkiewicz, K. Between Sobolev and Poincar´e. In Geometric aspects of functional analysis, vol. 1745 of Lecture Notes in Math. Springer, Berlin, 2000, pp. 147–168. 541. Ledoux, M. On an integral criterion for hypercontractivity of diffusion semi- groups and extremal functions. J. Funct. Anal. 105, 2 (1992), 444–465. 542. Ledoux, M. In´egalit´es isop´erim´etriques en analyse et probabilit´es. Ast´erisque, 216 (1993), Exp. No. 773, 5, 343–375. S´eminaire Bourbaki, vol. 1992/93. 543. Ledoux, M. Isoperimetry and Gaussian analysis. In Lectures on probability theory and statistics (Saint-Flour, 1994). Springer, Berlin, 1996, pp. 165–294. 544. Ledoux, M. Concentration of measure and logarithmic Sobolev inequalities. In S´eminaire de Probabilit´es, XXXIII. Springer, Berlin, 1999, pp. 120–216. 545. Ledoux, M. The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. (6) 9, 2 (2000), 305–366. 546. Ledoux, M. The concentration of measure phenomenon. American Mathe- matical Society, Providence, RI, 2001. 547. Ledoux, M. Measure concentration, transportation concentration, and func- tional inequalities. Lecture Notes for the Instructional Conference on Combi- natorial Aspects of Mathematical Analysis (Edinburgh, March 2002) and the Summer School on Singular Phenomena and Scaling in Mathematical Models (Bonn, June 2003), 2003. Available online at www.lsp.ups-tlse.fr/Ledoux. 548. Leindler, L. On a certain converse of H¨older’s inequality. In Linear operators and approximation (Proc. Conf., Oberwolfach, 1971). Birkh¨auser, Basel, 1972, pp. 182–184. Internat. Ser. Numer. Math., vol. 20. 549. Lelievre,` T., Rousset, M., and Stoltz, G. Long-time convergence of an adaptive biasing force method. Preprint, 2007. 550. Leonard,´ Ch. A saddle-point approach to the Monge–Kantorovich optimal transport problem. Preprint, 2008. 551. Li, Y., and Nirenberg, L. The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton–Jacobi equations. Comm. Pure Appl. Math. 58 (2004), 85–146. 552. Li, P., and Yau, S.-T. On the parabolic kernel of the Schr¨odinger operator. Acta Math. 156, 3–4 (1986), 153–201. 553. Lichnerowicz, A. G´eom´etrie des groupes de transformations.Travauxet recherches math´ematiques, Vol. III, Dunod, Paris, 1958. 554. Lieb, E. H., and Loss, M. Analysis, second ed. American Mathematical So- ciety, Providence, RI, 2001. 555. Liebermann, G. M., and Trudinger, N. S. Nonlinear oblique boundary value problems for nonlinear elliptic equations. Trans. Amer. Math. Soc. 295, 2 (1986), 509–546. References 943

556. Liese, F., and Vajda, I. Convex statistical distances,vol.95ofTeubner-Texte zur Mathematik. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987. With German, French and Russian summaries. 557. Lions, J.-L. Quelques m´ethodes de r´esolution des probl`emes aux limites non lin´eaires. Dunod, 1969. 558. Lions, P.-L. Generalized solutions of Hamilton–Jacobi equations.Pitman (Advanced Publishing Program), Boston, Mass., 1982. 559. Lions, P.-L. Personal communication, 2003. 560. Lions, P.-L., and Trudinger, N. S. Linear oblique derivative problems for the uniformly elliptic Hamilton–Jacobi–Bellman equation. Math. Z. 191,1 (1986), 1–15. 561. Lions, P.-L., Trudinger, N. S., and Urbas, J. The Neumann problem for equations of Monge–Amp`ere type. Comm. Pure Appl. Math. 39, 4 (1986), 539–563. 562. Lions, P.-L., Trudinger, N. S., and Urbas, J. The Neumann problem for equations of Monge–Amp`ere type. Proceedings of the Centre for Mathematical Analysis, Australian National University, 10, Canberra, 1986, pp. 135–140. 563. Lions, P.-L., and Lasry, J.-M. R´egularit´e optimale de racines carr´ees. C. R. Acad. Sci. Paris S´er. I Math. 343, 10 (2006), 679–684. 564. Lions, P.-L., Papanicolaou, G., and Varadhan, S. R. S. Homogeneization of Hamilton–Jacobi equations. Unpublished preprint, 1987. 565. Lisini, S. Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differential Equations 28, 1 (2007), 85–120. 566. Liu, J. H¨older regularity of optimal mapping in optimal transportation. To appear in Calc. Var. Partial Differential Equations. 567. Quasi-neutral limit of the Euler–Poisson and Euler–Monge–Amp`ere systems. Comm. Partial Differential Equations 30, 7-9 (2005), 1141–1167. 568. Loeper, G. The reconstruction problem for the Euler-Poisson system in cos- mology. Arch. Ration. Mech. Anal. 179, 2 (2006), 153–216. 569. Loeper, G. A fully nonlinear version of Euler incompressible equations: the Semi-Geostrophic system. SIAM J. Math. Anal. 38, 3 (2006), 795–823. 570. Loeper, G. On the regularity of maps solutions of optimal transportation problems. To appear in Acta Math. 571. Loeper, G. On the regularity of maps solutions of optimal transportation problems II. Work in progress, 2007. 572. Loeper, G., and Villani, C. Regularity of optimal transport in curved geometry: the nonfocal case. Preprint, 2007. 573. Lott, J. Optimal transport and Ricci curvature for metric-measure spaces. To appear in Surveys in Differential Geometry. 574. Lott, J. Some geometric properties of the Bakry–Emery–Ricci´ tensor. Com- ment. Math. Helv. 78, 4 (2003), 865–883. 575. Lott, J. Some geometric calculations on Wasserstein space. To appear in Comm. Math. Phys. Available online at www.math.lsa.umich.edu/~lott. 576. Lott, J. Optimal transport and Perelman’s reduced volume. Preprint, 2008. 577. Lott, J., and Villani, C. Ricci curvature for metric-measure spaces via op- timal transport. To appear in Ann. of Math. (2) Available online at www.umpa. ens-lyon.fr/~cvillani. 578. Lott, J., and Villani, C. Weak curvature bounds and functional inequalities. J. Funct. Anal. 245, 1 (2007), 311–333. 944 References

579. Lott, J., and Villani, C. Hamilton–Jacobi semigroup on length spaces and applications. J. Math. Pures Appl. (9) 88, 3 (2007), 219–229. 580. Lu,P.,Ni,L.,Vazquez,´ J.-L., and Villani, C. Local Aronson–B´enilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. Preprint, 2008. 581. Lusternik, L. A. Die Brunn–Minkowskische Ungleichung f¨ur beliebige mess- bare Mengen. Dokl. Acad. Sci. URSS, 8 (1935), 55–58. 582. Lutwak, E., Yang, D., and Zhang, G. Optimal Sobolev norms and the Lp Minkowski problem. Int. Math. Res. Not. (2006), Art. ID 62987, 21. 583. Lytchak, A. Differentiation in metric spaces. Algebra i Analiz 16, 6 (2004), 128–161. 584. Lytchak, A. Open map theorem for metric spaces. Algebra i Analiz 17,3 (2005), 139–159. 585. Ma, X.-N., Trudinger, N. S., and Wang, X.-J. Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177, 2 (2005), 151–183. 586. Maggi, F. Some methods for studying stability in isoperimetric type problems. To appear in Bull. Amer. Math. Soc. 587. Maggi, F., and Villani, C. Balls have the worst best Sobolev inequalities. J. Geom. Anal. 15, 1 (2005), 83–121. 588. Maggi, F., and Villani, C. Balls have the worst best Sobolev inequalities. Part II: Variants and extensions. Calc. Var. Partial Differential Equations 31, 1 (2008), 47–74. 589. Mallows, C. L. A note on asymptotic joint normality. Ann. Math. Statist. 43 (1972), 508–515. 590. Malrieu, F. Logarithmic Sobolev inequalities for some nonlinear PDE’s. Sto- chastic Process. Appl. 95, 1 (2001), 109–132. 591. Malrieu, F. Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13, 2 (2003), 540–560. 592. Man˜e,´ R. Lagrangian flows: the dynamics of globally minimizing orbits. In International Conference on Dynamical Systems (Montevideo, 1995), vol. 362 of Pitman Res. Notes Math. Ser. Longman, Harlow, 1996, pp. 120–131. 593. Man˜e,´ R. Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.) 28, 2 (1997), 141–153. 594. Maroofi, H. Applications of the Monge–Kantorovich theory.PhDthesis, Georgia Tech, 2002. 595. Marton, K. A measure concentration inequality for contracting Markov chains. Geom. Funct. Anal. 6 (1996), 556–571. 596. Marton, K. Measure concentration for Euclidean distance in the case of de- pendent random variables. Ann. Probab. 32, 3B (2004), 2526–2544. 597. Massart, P. Concentration inequalities and model selection. Lecture Notes from the 2003 Saint-Flour Probability Summer School. To appear in the Springer book series Lecture Notes in Math. Available online at www. math.u-psud.fr/~massart. 598. Mather, J. N. Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21, 4 (1982), 457–467. 599. Mather, J. N. More Denjoy minimal sets for area preserving diffeomorphisms. Comment. Math. Helv. 60 (1985), 508–557. 600. Mather, J. N. Minimal measures. Comment. Math. Helv. 64, 3 (1989), 375–394. References 945

601. Mather, J. N. Action minimizing invariant measures for positive definite Lagrangian systems. Math.Z.207, 2 (1991), 169–207. 602. Mather,J.N. Variational construction of orbits of twist diffeomorphisms. J. Amer. Math. Soc. 4, 2 (1991), 207–263. 603. Mather,J.N.Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble) 43, 5 (1993), 1349–1386. 604. Mather, J. N., and Forni, G. Action minimizing orbits in Hamiltonian systems. In Transition to chaos in classical and quantum mechanics, vol. 1589 of Lecture Notes in Math., Springer-Verlag, Berlin, 1994, pp. 92–186. 605. Mattingly, J. C. Ergodicity of stochastic partial differential equations. Lec- ture Notes for the 2007 Saint-Flour Summer School. 606. Mattingly, J. C., Stuart, A. M., and Higham, D. J. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Sto- chastic Process. Appl. 101, 2 (2002), 185–232. 607. Maurey, B. Some deviation inequalities. Geom. Funct. Anal. 1, 2 (1991), 188–197. 608. Maurey, B. In´egalit´e de Brunn–Minkowski–Lusternik, et autres in´egalit´es g´eom´etriques et fonctionnelles. Ast´erisque, 299 (2005), Exp. No. 928, vii, 95–113. S´eminaire Bourbaki, Vol. 2003/2004. 609. Maz’ja, V. G. The negative spectrum of the higher-dimensional Schr¨odinger operator. Dokl. Akad. Nauk SSSR 144 (1962), 721–722. 610. Maz’ja, V. G. On the solvability of the Neumann problem. Dokl. Akad. Nauk SSSR 147 (1962), 294–296. 611. Maz’ja, V. G. Sobolev spaces. Springer Series in Soviet Mathematics. Springer- Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. 612. McCann, R. J. A convexity theory for interacting gases and equilibrium crys- tals. PhD thesis, Princeton Univ., 1994. 613. McCann, R. J. Existence and uniqueness of monotone measure-preserving maps. DukeMath.J.80, 2 (1995), 309–323. 614. McCann, R. J. A convexity principle for interacting gases. Adv. Math. 128, 1 (1997), 153–179. 615. McCann, R. J. Exact solutions to the transportation problem on the line. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 1984 (1999), 1341– 1380. 616. McCann, R. J. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11, 3 (2001), 589–608. 617. McCann, R. J. Stable rotating binary stars and fluid in a tube. Houston J. Math. 32, 2 (2006), 603–631. 618. McCann, R. J., and Puel, M. Constructing a relativistic heat flow by trans- port time steps. Preprint, 2007. Available at www.math.toronto.edu/mccann. 619. McCann, R. J., and Slepcev,ˇ D. Second-order asymptotics for the fast- diffusion equation. Int. Math. Res. Not. (2006), Art. ID 24947, 22. 620. McCann, R. J., and Topping, P. Ricci flow, entropy and optimal trans- portation. Preprint, 2007. Available online at www.math.toronto.edu/mccann. 621. McDiarmid, C. On the method of bounded differences. In Surveys in com- binatorics, 1989 (Norwich, 1989), vol. 141 of London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge, 1989, pp. 148–188. 622. McNamara, S., and Young, W. R. Kinetics of a one-dimensional granular medium. Phys. Fluids A 5, 1 (1993), 34–45. 946 References

623. Meckes, M. Some remarks on transportation cost and related inequalities. In Geometric aspects of functional analysis, Lect. Notes in Math., vol. 1910, Springer-Verlag, Berlin, 2007, pp. 237–244. 624. Mel´ eard,´ S. Probabilistic interpretation and approximations of some Boltzmann equations. In Stochastic models (Guanajuato, 1998). Soc. Mat. Mexicana, M´exico, 1998, pp. 1–64. 625. Melleray, J., Petrov, F., and Vershik, A. M. Linearly rigid metric spaces. C. R. Math. Acad. Sci. Paris 344, 4 (2007), 235–240. 626. Menguy, X. Examples of nonpolar limit spaces. Amer. J. Math. 122, 5 (2000), 927–937. 627. Mihalas, D., and Mihalas, B. Foundations of Radiation Hydrodynamics. Oxford University Press, 1984. 628. Mikami, T. Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probab. Theory Related Fields 129, 2 (2004), 245–260. 629. Mikami, T. A simple proof of duality theorem for Monge–Kantorovich prob- lem. KodaiMath.J.29, 1 (2006), 1–4. 630. Mikami, T., and Thieullen, M. Optimal transportation problem by stochastic optimal control. Preprint, 2005. Available online at eprints. math.sci.hokudai.ac.jp. 631. Mikami, T., and Thieullen, M. Duality theorem for the stochastic optimal control problem. Stochastic Process. Appl. 116, 12 (2006), 1815–1835. 632. Milakis, E. On the regularity of optimal sets in mass transfer problems. Comm. Partial Differential Equations 31, 4–6 (2006), 817–826. 633. Milman, E. On the role of convexity in isoperimetry, spectral gap and con- centration. Preprint, 2008. 634. Milman, V. D. A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funkcional. Anal. i Priloˇzen. 5, 4 (1971), 28–37. 635. Milman, V. D., and Schechtman, G. Asymptotic theory of finite-dimen- sional normed spaces. With an appendix by M. Gromov. Springer-Verlag, Berlin, 1986. 636. Monge, G. M´emoire sur la th´eorie des d´eblais et des remblais. In Histoire de l’Acad´emie Royale des Sciences de Paris (1781), pp. 666–704. 637. Morse, H. M. A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Amer. Math. Soc. 26 (1924), 25–60. 638. Moser, J. On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14 (1961), 577–591. 639. Moser, J. A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17 (1964), 101–134. Erratum in Comm. Pure Appl. Math. 20 (1967), 231–236. 640. Moser, J. On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286–294. 641. Moser, J. Monotone twist mappings and the calculus of variations. Ergodic Theory Dynam. Systems 6, 3 (1986), 401–413. 642. Moutsinga, O. Approche probabiliste des Particules Collantes et Syst`eme de Gaz Sans Pression. PhD thesis, Univ. Lille I (France), 2003. 643. Muckenhoupt, B. Hardy’s inequality with weights. Studia Math. 44 (1972), 31–38. 644. Murata, H., and Tanaka, H. An inequality for certain functional of multi- dimensional probability distributions. Hiroshima Math. J. 4 (1974), 75–81. References 947

645. Namah, G., and Roquejoffre, J.-M. Remarks on the long time behaviour of the solutions of Hamilton–Jacobi equations. Comm. Partial Differential Equations 24, 5–6 (1999), 883–893. 646. Nash, J. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958), 931–954. 647. Nelson, E. Derivation of the Schr¨odinger equation from Newtonian mechanics. Phys. Rev. 150 (1966), 1079–1085. 648. Nelson, E. Dynamical theories of Brownian motion. Princeton University Press, Princeton, N.J., 1967. 2001 re-edition by J. Suzuki. Available online at www.math.princeton.edu/~nelson/books.html. 649. Nelson, E. The free Markoff field. J. Functional Analysis 12 (1973), 211–227. 650. Nelson, E. Critical diffusions. In S´eminaire de probabilit´es, XIX, 1983/84, vol. 1123 of Lecture Notes in Math. Springer, Berlin, 1985, pp. 1–11. 651. Nelson, E. Quantum fluctuations. Princeton Series in Physics. Princeton University Press, Princeton, NJ, 1985. 652. Nelson, E. Stochastic mechanics and random fields. In Ecole´ d’Et´´ edeProba- bilit´es de Saint-Flour XV–XVII, 1985–87, vol. 1362 of Lecture Notes in Math., Springer, Berlin, 1988, pp. 427–450. 653. Neunzert, H. An introduction to the nonlinear Boltzmann–Vlasov equation. In Kinetic theories and the Boltzmann equation, C. Cercignani, Ed., vol. 1048 of Lecture Notes in Math., Springer, Berlin, Heidelberg, 1984, pp. 60–110. 654. Ohta, S.-i. On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82, 4 (2007), 805–828. 655. Ohta, S.-i. Gradient flows on Wasserstein spaces over compact Alexandrov spaces. To appear in Amer.J.Math. 656. Ohta, S.-i. Products, cones, and suspensions of spaces with the measure con- traction property. J. Lond. Math. Soc. (2) 76, 1 (2007), 225–236. 657. Ohta, S.-i. Finsler interpolation inequalities. Preprint, 2008. Available online at www.math.kyoto-u.ac.jp/~sohta. 658. Øksendal, B. Stochastic differential equations. An introduction with applica- tions, sixth ed. Universitext. Springer-Verlag, Berlin, 2003. 659. Oliker, V. Embedding Sn into Rn+1 with given integral Gauss curvature and optimal mass transport on Sn. Adv. Math. 213, 2 (2007), 600–620. 660. Oliker, V. Variational solutions of some problems in convexity via Monge– Kantorovich optimal mass transport theory. Conference in Oberwolfach, July 2006 (personal communication). 661. Oliker, V., and Prussner, L. D. A new technique for synthesis of offset dual reflector systems. In 10th Annual Review of Progress in Applied Computational Electromagnetics, 1994, pp. 45–52. 662. Ollivier, Y. Ricci curvature of Markov chains on metric spaces. Preprint, 2007. Available online at www.umpa.ens-lyon.fr/~yollivie/publs.html. 663. Ollivier, Y., and Pansu, P. Courbure de Ricci et concentration de la mesure. Working seminar notes. Available online at www.umpa. ens-lyon.fr/~yollivie. 664. Osserman, R. The isoperimetric inequality. Bull. Amer. Math. Soc. 84,6 (1978), 1182–1238. 665. Otsu, Y., and Shioya, T. The Riemannian structure of Alexandrov spaces. J. Differential Geom. 39, 3 (1994), 629–658. 666. Otto, F. Double degenerate diffusion equations as steepest descent. Preprint Univ. Bonn, 1996. 948 References

667. Otto, F. Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Rational Mech. Anal. 141, 1 (1998), 63–103. 668. Otto, F. Lubrication approximation with prescribed nonzero contact angle. Comm. Partial Differential Equations 23, 11–12 (1998), 2077–2164. 669. Otto, F. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26, 1–2 (2001), 101–174. 670. Otto, F., and Tzavaras, A. E. Continuity of velocity gradients in suspensions of rod-like molecules. Preprint, 2004. Available online at www.math.umd.edu/ ~tzavaras/listsu.html. 671. Otto, F., and Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 2 (2000), 361–400. 672. Otto, F., and Villani, C. Comment on: “Hypercontractivity of Hamilton– Jacobi equations”, by S. G. Bobkov, I. Gentil and M. Ledoux. J. Math. Pures Appl. (9) 80, 7 (2001), 697–700. 673. Otto, F., and Westdickenberg, M. Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37, 4 (2005), 1227–1255. 674. Oxtoby, J. C. Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116–136. 675. Paulin, F. Topologie de Gromov ´equivariante, structures hyperboliques et arbres r´eels. Invent. Math. 94, 1 (1988), 53–80. 676. Perelman, G. Alexandrov’s spaces with curvatures bounded from be- low. Unpublished preprint, available online at www.math.psu.edu/petrunin/ papers/papers.html. 677. Perelman, G. DC structure on Alexandrov spaces. Unpublished preprint, preliminary version available online at www.math.psu.edu/petrunin/papers/ papers.html. 678. Perelman, G., and Petrunin, A. Quasigeodesics and gradient curves in Alexandrov spaces. Unpublished preprint, available online at www.math.psu.edu/petrunin/papers/papers.html. 679. Peres, Y. Mixing for Markov chains and spin systems. Unpublished notes, available online at www.stat.berkeley.edu/~peres/ubc.pdf. 680. Petersen, P. Riemannian geometry, vol. 171 of Graduate Texts in Mathemat- ics. Springer-Verlag, New York, 1998. 681. Petrunin, A. Harmonic functions on Alexandrov spaces. Unpub- lished preprint, available online at www.math.psu.edu/petrunin/papers/ papers.html. 682. Pinsker, M. S. Information and information stability of random variables and processes. Holden-Day, San Francisco, 1964. 683. Plakhov, A. Yu. Exact solutions of the one-dimensional Monge–Kantorovich problem. Mat. Sb. 195, 9 (2004), 57–74; English translation in Sb. Math. 195, 9–10 (2004), 1291–1307. 684. Pogorelov, A. V. Monge-Amp`ere equations of elliptic type. Groningen, No- ordhoff, 1964. 685. Pogorelov, A. V. The Dirichlet problem for the multidimensional analogue of the Monge–Amp`ere equation. Dokl. Akad. Nauk SSSR 201 (1971), 790–793. English translation in Soviet Math. Dokl. 12 (1971), 1727–1731. 686. Pratelli, A. How to show that some rays are maximal transport rays in Monge problem. Rend. Sem. Mat. Univ. Padova 113 (2005), 179–201. References 949

687. Pratelli, A. On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation. Ann. Inst. H. Poincar´eProbab. Statist. 43, 1 (2007), 1–13. 688. Pratelli, A. On the sufficiency of c-cyclical monotonicity for optimality of transport plans. To appear in Math. Z. 689. Pratelli, A. Equivalence between some definitions for the optimal mass trans- port problem and for the transport density on manifolds. Ann. Mat. Pura Appl. (4) 184, 2 (2005), 215–238. 690. Prekopa,´ A. On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34 (1973), 335–343. 691. Prigozhin, L. Variational model of sandpile growth. European J. Appl. Math. 7, 3 (1996), 225–235. 692. Pulvirenti, A., and Toscani, G. The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation. Ann. Mat. pura ed appl. 171, 4 (1996), 181–204. 693. Pulvirenti, M. On invariant measures for the 2-D Euler flow. In Mathematical aspects of vortex dynamics (Leesburg, VA, 1988). SIAM, Philadelphia, PA, 1989, pp. 88–96. 694. Rachev, S. The Monge–Kantorovich mass transference problem and its sto- chastic applications. Theory Probab. Appl. 29 (1984), 647–676. 695. Rachev,S.T.Probability metrics and the stability of stochastic models. John Wiley & Sons Ltd., Chichester, 1991. 696. Rachev, S. T., and Ruschendorf,¨ L. Mass Transportation Problems. Vol. I: Theory, Vol. II: Applications. Probability and its applications. Springer- Verlag, New York, 1998. 697. Rademacher, H. Uber¨ partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln unduber ¨ die Transformation der Doppelintegrale. Math. Ann. 79, 4 (1919), 340–359. 698. Ramachandran, D., and Ruschendorf,¨ L. A general duality theorem for marginal problems. Probab. Theory Related Fields 101, 3 (1995), 311–319. 699. Ramachandran, D., and Ruschendorf,¨ L. Duality and perfect probability spaces. Proc. Amer. Math. Soc. 124, 7 (1996), 2223–2228. 700. Reinhard, E., Ashikhmin, M., Gooch, B., and Shirley, P. Color transfer between images. IEEE Computer Graphics and Applications 21, 5 (2001), 34–41. 701. Rey-Bellet, L., and Thomas, L. E. Exponential convergence to non- equilibrium stationary states in classical statistical mechanics. Comm. Math. Phys. 225, 2 (2002), 305–329. 702. Rigot, S. Mass transportation in groups of type H. Commun. Contemp. Math. 7, 4 (2005), 509–537. 703. Rio, E. In´egalit´es de Hoeffding pour les fonctions lipschitziennes de suites d´ependantes. C. R. Acad. Sci. Paris S´er. I Math. 330, 10 (2000), 905–908. 704. Rio, E. Upper bounds for minimal distances in the central limit theorem. Preprint, 2007. 705. Rockafellar, R. T. Convex analysis. Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks. 706. Rodriguez-Iturbe, I., and Rinaldo, A. Fractal River Basins. Cambridge University Press, 1997. 950 References

707. Roquejoffre, J.-M. Convergence to steady states or periodic solutions in a class of Hamilton–Jacobi equations. J. Math. Pures Appl. (9) 80, 1 (2001), 85–104. 708. Rosenau, P. Tempered diffusion: A transport process with propagating front and initial delay. Phys. Rev. A 46 (1992), 7371–7374. 709. Rosenblatt, M. Remarks on a multivariate transformation. Ann. Math. Statistics 23 (1952), 470–472. 710. Rothaus, O. S. Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal. 42 (1981), 102–109. 711. Royer, G. Une initiation aux in´egalit´es de Sobolev logarithmiques,vol.5of Cours Sp´ecialis´es.Soci´et´eMath´ematique de France, Paris, 1999. 712. Rubinstein, J., and Wolansky, G. Intensity control with a free-form lens. J. Opt. Soc. Am. A 24, 2 (2007), 463–469. 713. Rubner, Y., Tomasi, C., and Guibas, L. J. The Earth Mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40,2 (2000), 99–121. 714. Rudin, W. Real and complex analysis, third ed. McGraw-Hill Book Co., New York, 1987. 715. Ruschendorf,¨ L. Sharpness of Fr´echet-bounds. Z. Wahrsch. Verw. Gebiete 57, 2 (1981), 293–302. 716. Ruschendorf,¨ L. The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete 70 (1985), 117–129. 717. Ruschendorf,¨ L. Fr´echet-bounds and their applications. In Advances in probability distributions with given marginals (Rome, 1990), vol. 67 of Math. Appl. Kluwer Acad. Publ., Dordrecht, 1991, pp. 151–187. 718. Ruschendorf,¨ L. Optimal solutions of multivariate coupling problems. Appl. Math. (Warsaw) 23, 3 (1995), 325–338. 719. Ruschendorf,¨ L. On c-optimal random variables. Statist. Probab. Lett. 27, 3 (1996), 267–270. 720. Ruschendorf,¨ L. Wasserstein-metric. Historical note. Personal communica- tion, 2006. 721. Ruschendorf,¨ L. Monge–Kantorovich transportation problem and optimal couplings. Notes based on a talk at the MSRI meeting on Optimal Transport (Berkeley, November 2005), 2006. 722. Ruschendorf,¨ L., and Rachev, S. T. A characterization of random vari- ables with minimum L2-distance. J. Multivariate Anal. 32, 1 (1990), 48–54. Corrigendum in J. Multivariate Anal. 34, 1 (1990), p. 156. 723. Ruschendorf,¨ L., and Uckelmann, L. On optimal multivariate couplings. In Distributions with given marginals and problems (Prague, 1996). Kluwer Acad. Publ., Dordrecht, 1997, pp. 261–273. 724. Ruschendorf,¨ L., and Uckelmann, L. Numerical and analytical results for the transportation problem of Monge–Kantorovich. Metrika 51, 3 (2000), 245–258. 725. Ruschendorf,¨ L., and Uckelmann, L. On the n-coupling problem. J. Mul- tivariate Anal. 81, 2 (2002), 242–258. 726. Saloff-Coste, L. A note on Poincar´e, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices, 2 (1992), 27–38. 727. Saloff-Coste, L. Convergence to equilibrium and logarithmic Sobolev con- stant on manifolds with Ricci curvature bounded below. Colloquium Math. 67 (1994), 109–121. References 951

728. Saloff-Coste, L. Aspects of Sobolev-type inequalities, vol. 289 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cam- bridge, 2002. 729. Sammer, M. D. Aspects of mass transportation in discrete concentration inequalities. PhD thesis, Georgia Institute of Technology, 2005. Avail- able online at etd.gatech.edu/theses/etd-04112005-163457/unrestricted/ sammer marcus d 200505 phd.pdf 730. Samson, P.-M. Concentration of measure inequalities for Markov chains and Φ-mixing processes. Ann. Probab. 28, 1 (2000), 416–461. 731. Santambrogio, F. Transport and concentration problems with interaction effects. J. Global Optim. 38, 1 (2007), 129–141. 732. Santambrogio, F. Optimal channel networks, landscape function and branched transport. Interfaces and Free Boundaries 9 (2007), 149–169. 733. Santambrogio, F. Variational problems in transport theory with mass con- centration. PhD Thesis, Scuola Normale di Pisa, 2006. 734. Santambrogio, F., and Tilli, P. Blow-up of optimal sets in the irrigation problems. J. Geom. Anal. 15, 2 (2005), 343–362. 735. Savare,´ G. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Acad. Sci. Paris S´er. I Math. 345, 3 (2007), 151–154. 736. Savare,´ G. Work in progress. 737. Savin, O. A free boundary problem with optimal transportation. Comm. Pure Appl. Math. 57, 1 (2004), 126–140. 738. Schachermayer, W., and Teichmann, J. Characterization of optimal trans- port plans for the Monge–Kantorovich problem. To appear in Proc. Amer. Math. Soc. Available online at www.fam.tuwien.ac.at/~wschach/pubs. 739. Schachermayer, W., and Teichmann, J. How close are the Option Pricing Formulas of Bachelier and Black–Merton–Scholes? To appear in Math. Finance. 740. Scheffer, G. Isop´erim´etrie fonctionnelle dimensionnelle en courbure positive. C. R. Acad. Sci. Paris S´er. I Math. 331, 3 (2000), 251–254. 741. Schneider, R. Convex bodies: the Brunn–Minkowski theory. Cambridge University Press, Cambridge, 1993. 742. Schochet, S. The point-vortex method for periodic weak solutions of the 2-D Euler equations. Comm. Pure Appl. Math. 49, 9 (1996), 911–965. 743. Schrijver, A. Combinatorial optimization: polyhedra and efficiency,vol.24 of Algorithms and combinatorics. Springer-Verlag, 2003. 744. Schulz, F. Regularity theory for quasilinear elliptic systems and Monge– Amp`ere equations in two dimensions. Lect. Notes in Math., vol. 1445, Springer- Verlag, Berlin, 1990. 745. Sever, M. An existence theorem in the large for zero-pressure gas dynamics. Differential Integral Equations 14, 9 (2001), 1077–1092. 746. Shannon, C. E. A mathematical theory of communication. Bell System Tech. J. 27 (1948), 379–423, 623–656. 747. Shannon, C. E., and Weaver, W. The mathematical theory of communica- tion. The University of Illinois Press, Urbana, Ill., 1949. 748. Shao, J. In´egalit´educoˆut de transport et le probl`eme de Monge–Kantorovich sur le groupe des lacets et l’espace des chemins. PhD thesis, Univ. Bourgogne, 2006. 749. Shao, J. Hamilton–Jacobi semigroups in infinite dimensional spaces. Bull. Sci. Math. 130, 8 (2006), 720–738. 952 References

750. Sheng, W., Trudinger, N. S., and Wang, X.-J. The Yamabe prob- lem for higher order curvatures. Preprint, archived online at arxiv.org/abs/ math/0505463. 751. Shioya, T. Mass of rays in Alexandrov spaces of nonnegative curvature. Com- ment. Math. Helv. 69, 2 (1994), 208–228. 752. Siburg, K. F. The principle of least action in geometry and dynamics, vol. 1844 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004. 753. Simon, L. Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Canberra, 1983. 754. Smith, C., and Knott, M. On Hoeffding–Fr´echet bounds and cyclic monotone relations. J. Multivariate Anal. 40, 2 (1992), 328–334. 755. Sobolevski˘ı, A., and Frisch, U. Application of optimal transportation theory to the reconstruction of the early Universe. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 312, 11 (2004), 303–309, 317. English translation in J.Math.Sci.(N.Y.)133, 4 (2006), 1539–1542. 756. Soibelman, Y. Notes on noncommutative Riemannian geometry. Personal communication, 2006. 757. Spohn, H. Large scale dynamics of interacting particles. Texts and Mono- graphs in Physics. Springer-Verlag, Berlin, 1991. 758. Stam, A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 2 (1959), 101–112. 759. Stroock, D. W. An introduction to the analysis of paths on a Riemannian manifold, vol. 74 of Mathematical Surveys and Monographs. American Mathe- matical Society, Providence, RI, 2000. 760. Sturm, K.-T. Diffusion processes and heat kernels on metric spaces. Ann. Probab. 26, 1 (1998), 1–55. 761. Sturm, K.-T. Convex functionals of probability measures and nonlinear dif- fusions on manifolds. J. Math. Pures Appl. (9) 84, 2 (2005), 149–168. 762. Sturm, K.-T. On the geometry of metric measure spaces. I. Acta Math. 196, 1 (2006), 65–131. 763. Sturm, K.-T. On the geometry of metric measure spaces. II. Acta Math. 196, 1 (2006), 133–177. 764. Sturm, K.-T., and von Renesse, M.-K. Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm. Pure Appl. Math. 58, 7 (2005), 923–940. 765. Sudakov, V. N. Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. Math. 141 (1979), 1–178. 766. Sudakov, V. N. and Cirelson, B. S. Extremal properties of half-spaces for spherically invariant measures. Zap. Nauˇcn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14–24. English translation in J. Soviet Math. 9 (1978), 9–18. 767. Sznitman, A.-S. Equations de type de Boltzmann, spatialement homog`enes. Z. Wahrsch. Verw. Gebiete 66 (1984), 559–562. 768. Sznitman, A.-S. Topics in propagation of chaos. In Ecole´ d’Et´´ edeProbabilit´es de Saint-Flour XIX—1989. Springer, Berlin, 1991, pp. 165–251. 769. Szulga, A. On minimal metrics in the space of random variables. Teor. Veroy- atnost. i Primenen. 27, 2 (1982), 401–405. 770. Talagrand, M. A new isoperimetric inequality for product measure and the tails of sums of independent random variables. Geom. Funct. Anal. 1, 2 (1991), 211–223. References 953

771. Talagrand, M. Matching random samples in many dimensions. Ann. Appl. Probab. 2, 4 (1992), 846–856. 772. Talagrand, M. Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Etudes´ Sci. Publ. Math., 81 (1995), 73–205. 773. Talagrand, M. New concentration inequalities in product spaces. Invent. Math. 126, 3 (1996), 505–563. 774. Talagrand, M. Transportation cost for Gaussian and other product mea- sures. Geom. Funct. Anal. 6, 3 (1996), 587–600. 775. Talagrand, M. Spin Glasses: a challenge for mathematicians. Cavity and mean field models. Vol. 46 of Ergebnisse der Mathematik und ihrer Grenzgebi- ete. Springer-Verlag, Berlin, 2003. 776. Tanaka, H. An inequality for a functional of probability distributions and its application to Kac’s one-dimensional model of a Maxwellian gas. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 47–52. 777. Tanaka, H. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46, 1 (1978/79), 67–105. 778. Taton, R. Gaspard Monge. Birkh¨auser, Basel, 1951. 779. Taton, R.,Ed.L’oeuvre scientifique de Gaspard Monge. P.U.F., Paris, 1951. 780. Thirring, W. Classical mathematical physics, third ed. Springer-Verlag, New York, 1997. Dynamical systems and field theories, Translated from the German by Evans M. Harrell, II. 781. Thorisson, H. Coupling, stationarity, and regeneration. Probability and its Applications. Springer-Verlag, New York, 2000. 782. Topping, P. L-optimal transportation for Ricci flow. Preprint, available online at www.warwick.ac.uk/~maseq. 783. Toscani, G. New a priori estimates for the spatially homogeneous Boltzmann equation. Cont. Mech. Thermodyn. 4 (1992), 81–93. 784. Toscani, G. Sur l’in´egalit´e logarithmique de Sobolev. C.R. Acad. Sci. Paris, S´erie I, 324 (1997), 689–694. 785. Toscani, G. Entropy production and the rate of convergence to equilibrium for the Fokker–Planck equation. Quart. Appl. Math. 57, 3 (1999), 521–541. 786. Trudinger, N. S. Lectures on nonlinear elliptic equations of second order. Notes by N. Ishimura. Lectures in Mathematical Sciences 9, Univ. of Tokyo, 1995, pp. 1–52. 787. Trudinger, N. S. Isoperimetric inequalities for quermassintegrals. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 11, 4 (1994), 411–425. 788. Trudinger, N. S. Recent developments in elliptic partial differential equations of Monge–Amp`ere type. International Congress of Mathematicians, Vol. III, Eur. Math. Soc., Z¨urich, 2006, pp. 291–301. 789. Trudinger, N. S., and Wang, X.-J. Hessian measures. I. Topol. Methods Nonlinear Anal. 10, 2 (1997), 225–239. 790. Trudinger, N. S., and Wang, X.-J. Hessian measures. II. Ann. of Math. (2) 150, 2 (1999), 579–604. 791. Trudinger, N. S., and Wang, X.-J. On the Monge mass transfer problem. Calc. Var. Partial Differential Equations 13 (2001), 19–31. 792. Trudinger, N. S., and Wang, X.-J. Hessian measures. III. J. Funct. Anal. 193, 1 (2002), 1–23. 793. Trudinger, N. S., and Wang, X.-J. On strict convexity and continuous differentiability of potential functions in optimal transportation. To appear in Arch. Ration. Mech. Anal. 954 References

794. Trudinger, N. S., and Wang, X.-J. On the second boundary value problem for Monge–Amp`ere type equations and optimal transportation. Preprint, 2006. Archived online at arxiv.org/abs/math.AP/0601086. 795. Tuero-D´ıaz, A. On the stochastic convergence of representations based on Wasserstein metrics. Ann. Probab. 21, 1 (1993), 72–85. 796. Uckelmann, L. Optimal couplings between one-dimensional distributions. Distributions with given marginals and moment problems (Prague, 1996), Kluwer Acad. Publ., Dordrecht, 1997, pp. 275–281. 797. Unterreiter, A., Arnold, A., Markowich, P., and Toscani, G. On gen- eralized Csisz´ar–Kullback inequalities. Monatsh. Math. 131, 3 (2000), 235–253. 798. Urbas, J. On the second boundary value problem for equations of Monge– Amp`ere type. J. Reine Angew. Math. 487 (1997), 115–124. 799. Urbas, J. Mass transfer problems. Lecture notes from a course given in Univ. Bonn, 1997–1998. 800. Urbas, J. The second boundary value problem for a class of Hessian equations. Comm. Partial Differential Equations 26, 5–6 (2001), 859–882. 801. Valdimarsson, S. I. On the Hessian of the optimal transport potential. Preprint, 2006. 802. Varadhan, S. R. S. Mathematical statistics. Courant Institute of Mathemat- ical Sciences New York University, New York, 1974. Lectures given during the academic year 1973–1974, Notes by Michael Levandowsky and Norman Rubin. 803. Vasershtein, L. N. Markov processes over denumerable products of spaces describing large system of automata. Problemy Peredaˇci Informacii 5, 3 (1969), 64–72. 804. Vazquez,´ J. L. An introduction to the mathematical theory of the porous medium equation. In Shape optimization and free boundaries (Montreal, PQ, 1990). Kluwer Acad. Publ., Dordrecht, 1992, pp. 347–389. 805. Vazquez,´ J. L. The porous medium equation. Mathematical theory. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2006. 806. Vazquez,J.L.´ Smoothing and decay estimates for nonlinear parabolic equa- tions of porous medium type,vol.33ofOxford Lecture Series in Mathematics and its Applications. Oxford University Press, 2006. 807. Vershik, A. M. Some remarks on the infinite-dimensional problems of linear programming. Russian Math. Surveys 25, 5 (1970), 117–124. 808. Vershik, A. M. L. V. Kantorovich and linear programming. Historical note (2001, updated in 2007). Archived at www.arxiv.org/abs/0707.0491. 809. Vershik, A. M. The Kantorovich metric: the initial history and little-known applications. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 312, Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 11 (2004), 69–85, 311. 810. Vershik, A. M.,Ed. J.Math.Sci.133, 4 (2006). Special issue dedicated to L. V. Kantorovich. Springer, New York, 2006. Translated from the Russian: Zapsiki Nauchn. seminarov POMI, vol. 312: “Theory of representation of Dy- namical Systems. Special Issue”. Saint-Petersburg, 2004. 811. Villani, C. Remarks about negative pressure problems. Unpublished notes, 2002. 812. Villani, C. A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I. North-Holland, Amsterdam, 2002, pp. 71–305. References 955

813. Villani, C. Optimal transportation, dissipative PDE’s and functional in- equalities. In Optimal transportation and applications (Martina Franca, 2001), vol. 1813 of Lecture Notes in Mathematics, Springer, Berlin, 2003, pp. 53–89. 814. Villani, C. Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. 815. Villani, C. Trend to equilibrium for dissipative equations, functional inequali- ties and mass transportation. In Recent advances in the theory and applications of mass transport, vol. 353 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, pp. 95–109. 816. Villani, C. Hypocoercive diffusion operators. International Congress of Math- ematicians, Vol. III, Eur. Math. Soc., Z¨urich, 2006, pp. 473–498. 817. Villani, C. Entropy dissipation and convergence to equilibrium. Notes from a series of lectures in Institut Henri Poincar´e, Paris (2001). Updated in 2004. Lect. Notes in Math., vol. 1916, Springer-Verlag, Berlin, 2008, pp. 1–70. 818. Villani, C. Hypocoercivity. Preprint, 2006. To appear as a Memoir of the AMS. 819. Villani, C. Int´egration et analyse de Fourier (in french). Incomplete lecture notes, available online at www.umpa.ens-lyon.fr/~cvillani. 820. Villani, C. Mathematics of granular materials. J. Statist. Phys. 124, 2–4 (2006), 781–822. 821. Villani, C. Transport optimal et courbure de Ricci. To appear in S´emin. Th´eor. Spectr. G´eom. Available online at www.umpa.ens-lyon.fr/~cvillani. 822. Villani, C. Weak stability of a 4th-order curvature condition arising in opti- mal transport theory. Preprint, 2007. 823. Vinter,R.B.Optimal control. Systems & Control: Foundations & Applica- tions, Birkh¨auser, Boston, 2000. 824. von Nessi, G. T. On regularity for potentials of optimal transportation prob- lems on spheres and related Hessian equations. PhD Thesis, Australian Na- tional University, 2008. 825. von Renesse, M.-K. On local Poincar´e via transportation. To appear in Math. Z. Archived online at math.MG/0505588, 2005. 826. von Renesse, M.-K. An optimal transport view on Schr¨odinger’s equation. Preprint, 2008. 827. von Renesse, M.-K., and Sturm, K.-T. Entropic measure and Wasserstein diffusion. To appear in Ann. Probab. 828. Wang, F.-Y. Logarithmic Soblev inequalities on non-compact Riemannian manifolds. Probab. Theory Relat. Fields 109 (1997), 417–424. 829. Wang, F.-Y. Logarithmic Sobolev inequalities: conditions and counterexam- ples. J. Operator Theory 46, 1 (2001), 183–197. 830. Wang, F.-Y. Transportation cost inequalities on path spaces over Riemannian manifolds. Illinois J. Math. 46, 4 (2002), 1197–1206. 831. Wang, F.-Y. Probability distance inequalities on Riemannian manifolds and path spaces. J. Funct. Anal. 206, 1 (2004), 167–190. 832. Wang, X.-J. Some counterexamples to the regularity of Monge–Amp`ere equa- tions. Proc. Amer. Math. Soc. 123, 3 (1995), 841–845. 833. Wang, X.-J. On the design of a reflector antenna. Inverse Problems 12,3 (1996), 351–375. 834. Wang, X.-J. On the design of a reflector antenna. II. Calc. Var. Partial Differential Equations 20, 3 (2004), 329–341. 956 References

835. Wang, X.-J. Schauder estimates for elliptic and parabolic equations. Chin. Ann. Math. 27B, 6 (2006), 637–642. 836. Werner, R. F. The uncertainty relation for joint measurement of position and momentum. Quantum Information and Computing (QIC) 4, 6–7 (2004), 546–562. Archived online at arxiv.org/abs/quant-ph/0405184. 837. Wolansky, G. On time reversible description of the process of coagulation and fragmentation. To appear in Arch. Ration. Mech. Anal. 838. Wolansky, G. Extended least action principle for steady flows under a pre- scribed flux. To appear in Calc. Var. Partial Differential Equations. 839. Wolansky, G. Minimizers of Dirichlet functionals on the n-torus and the weak KAM theory. Preprint, 2007. Available online at www.math.technion.ac.il/ ~gershonw. 840. Wolfson, J. G. Minimal Lagrangian diffeomorphisms and the Monge–Amp`ere equation. J. Differential Geom. 46, 2 (1997), 335–373. 841. Wu, L. Poincar´e and transportation inequalities for Gibbs measures under the Dobrushin uniqueness condition. Ann. Probab. 34, 5 (2006), 1960–1989. 842. Wu, L. A simple inequality for probability measures and applications. Preprint, 2006. 843. Wu, L., and Zhang, Z. Talagrand’s T2-transportation inequality w.r.t. a uniform metric for diffusions. Acta Math. Appl. Sin. Engl. Ser. 20, 3 (2004), 357–364. 844. Wu, L., and Zhang, Z. Talagrand’s T2-transportation inequality and log- Sobolev inequality for dissipative SPDEs and applications to reaction-diffusion equations. Chinese Ann. Math. Ser. B 27, 3 (2006), 243–262. 845. Yukich, J. E. Optimal matching and empirical measures. Proc. Amer. Math. Soc. 107, 4 (1989), 1051–1059. 846. Zhu, S. The comparison geometry of Ricci curvature. In Comparison geometry (Berkeley, CA, 1993–94), vol. 30 of Math. Sci. Res. Inst. Publ., Cambridge University Press, Cambridge, 1997, pp. 221–262. List of short statements

Coupling...... 5 Deterministiccoupling...... 6 Existence of an optimal coupling ...... 43 Lower semicontinuity of the cost functional ...... 43 Tightness of transference plans ...... 44 Optimality is inherited by restriction ...... 46 Convexity of the optimal cost ...... 47 Cyclical monotonicity ...... 52 c-convexity ...... 54 c-concavity...... 56 Alternative characterization of c-convexity...... 57 Kantorovich duality ...... 57 Restriction of c-convexity...... 75 Restriction for the Kantorovich duality theorem ...... 75 Stability of optimal transport ...... 77 Compactness of the set of optimal plans ...... 77 Measurable selection of optimal plans ...... 78 Stability of the transport map ...... 79 Dual transport inequalities ...... 80 Criterion for solvability of the Monge problem ...... 84 Wasserstein distances ...... 93 Kantorovich–Rubinsteindistance...... 94 Wassersteinspace...... 94 Weak convergence in Pp ...... 96 Wp metrizes Pp ...... 96 Continuity of Wp ...... 97 Metrizability of the weak topology ...... 97 Cauchy sequences in Wp are tight ...... 99

957 958 List of short statements

Wasserstein distance is controlled by weighted total variation ...... 103 Topology of the Wasserstein space ...... 104 Classical conditions on a Lagrangian function ...... 118 Lagrangian action ...... 121 Coercive action ...... 122 Properties of Lagrangian actions ...... 123 Dynamical coupling ...... 126 Dynamical optimal coupling ...... 126 Displacement interpolation ...... 127 Displacement interpolation as geodesics ...... 127 Uniqueness of displacement interpolation ...... 128 Wp-Lipschitz continuity of p-moments ...... 137 Interpolation from intermediate times and restriction ...... 138 Nonbranching is inherited by the Wasserstein space ...... 139 Hamilton-Jacobi-Hopf-Lax-Oleinik evolution semigroup ...... 143 Elementary properties of Hamilton–Jacobi semigroups ...... 144 Interpolation of prices ...... 146 Mather’sshorteninglemma...... 166 Mather’s shortening lemma again ...... 167 The transport from intermediate times is locally Lipschitz ...... 168 Absolute continuity of displacement interpolation ...... 170 Focalization is impossible before the cut locus ...... 180 Lipschitzgraphtheorem...... 182 Useful transport quantities describing a Lagrangian system ...... 188 Mather critical value and stationary Hamilton–Jacobi equation . . . . . 189 Aroughnonsmoothshorteninglemma...... 194 Shortening lemma for power cost functions ...... 195 Conditions for single-valued subdifferentials ...... 206 Solution of the Monge problem, I ...... 208 Monge problem for quadratic cost, first result ...... 209 Non-connectedness of the c-subdifferential ...... 210 Differentiability ...... 217 Approximate differentiability ...... 218 Lipschitzcontinuity...... 220 Subdifferentiability, superdifferentiability ...... 220 Sub- and superdifferentiability imply differentiability ...... 221 Regularity and differentiability almost everywhere ...... 222 Semiconvexity...... 228 Local equivalence of semiconvexity and subdifferentiability ...... 229 Properties of Lagrangian cost functions ...... 235 c-subdifferentiability of c-convex functions ...... 239 List of short statements 959

Subdifferentiability of c-convex functions ...... 239 Differentiability of c-convex functions ...... 239 Solution of the Monge problem II ...... 243 Solution of the Monge problem without conditions at infinity ...... 247 Solution of the Monge problem for the square distance ...... 249 Solution of the Monge problem with possibly infinite total cost . . . . 250 Generalized Monge problem for the square distance ...... 256 Tangentcone...... 257 Countable rectifiability ...... 257 Sufficient conditions for countable rectifiability...... 257 Clarke subdifferential ...... 261 Nonsmooth implicit function theorem...... 261 Implicit function theorem for two subdifferentiable functions...... 262 Jacobian equation ...... 274 Changeofvariables ...... 275 An example of discontinuous optimal transport ...... 283 A further example of discontinuous optimal transport ...... 285 Smoothness needs Assumption (C) ...... 288 c-segment...... 291 c-convexity...... 291 regular cost function ...... 292 Reformulation of regularity ...... 293 Nonregularity implies nondensity of differentiable c-convex functions ...... 296 Nonsmoothness of the Kantorovich potential ...... 297 c-secondfundamentalform...... 300 Ma–Trudinger–Wang tensor, or c-curvature operator ...... 300 c-exponential ...... 301 Loeper’sidentity...... 301 Differential formulation of c-convexity...... 303 Differential formulation of regularity ...... 304 Equivalence of regularity conditions ...... 311 Smoothness of the optimal transport needs nonnegative curvature . . 312 Differential criterion for c-convexity...... 313 Control of c-subdifferential by c-convexityoftarget...... 316 Caffarelli’s regularity theory ...... 318 Urbas–Trudinger–Wang regularity theory...... 318 Loeper–Ma–Trudinger–Wangregularitytheory...... 318 Caffarelli’s interior a priori estimates ...... 320 Loeper–Ma–Trudinger–Wang interior a priori estimates ...... 320 Smoothness of optimal transport on Sn−1 ...... 322 960 List of short statements

Standard approximation scheme ...... 337 Regularization of singular transport problems ...... 338 C2-small functions are d2/2-convex...... 341 Representation of Lipschitz paths in P2(M) ...... 344 Second differentiability of semiconvex functions ...... 363 CD(K, N)curvature-dimensionbound...... 386 One-dimensional CD(K, N)modelspaces...... 387 Integral reformulation of curvature-dimension bounds ...... 389 Curvature-dimension bounds with direction of motion taken out . . . 390 Curvature-dimension bounds by comparison ...... 392 Barycenters...... 393 Distortion coefficients ...... 393 Computation of distortion coefficients ...... 395 Reference distortion coefficients ...... 396 Distortion coefficients and concavity of Jacobian determinant ...... 398 Ricci curvature bounds in terms of distortion coefficients ...... 398 Alexandrov’s second differentiability theorem...... 402 One-dimensional comparison for second-order inequalities ...... 409 Jacobi matrices have symmetric logarithmic derivatives ...... 412 Cosymmetrization of Jacobi matrices ...... 412 Jacobi matrices with positive determinant ...... 413 GradientformulainWassersteinspace...... 424 HessianformulainWassersteinspace...... 425 Convexityinageodesicspace...... 435 Convexity and lower Hessian bounds ...... 437 Λ-convexity...... 439 Displacementconvexity...... 441 Displacementconvexityclasses...... 449 Behavior of functions in DCN ...... 451 Moment conditions make sense of Uν (µ) ...... 461 Localdisplacementconvexity...... 464 CD bounds read off from displacement convexity ...... 465 CD(K, ∞) and CD(0,N) bounds via optimal transport ...... 466 Necessary condition for displacement convexity ...... 473 Finiteness of time-integral in displacement convexity inequality . . . . 473 Distorted Uν functional ...... 476 β Domain of definition of Uπ,ν ...... 477 (K,N) βt Definition of Uπ,ν ...... 478 β Definition of Uπ,ν in the limit cases...... 479 Distorteddisplacementconvexity ...... 480 CD bounds read off from distorted displacement convexity ...... 481 List of short statements 961

One-dimensional CD bounds and displacement convexity ...... 486 Intrinsicdisplacementconvexity ...... 486 Doublingproperty...... 493 Doublingmeasureshavefullsupport ...... 494 Distorted Brunn–Minkowski inequality...... 495 Brunn–Minkowski inequality in nonnegative curvature ...... 496 Bishop–Gromov inequality ...... 499 CD(K, N)impliesdoubling...... 501 Dimension-free control on the growth of balls ...... 502 Local Poincar´e inequality ...... 505 CD(K, N) implies pointwise bounds on displacement interpolants. . . 507 Preservation of uniform bounds in nonnegative curvature ...... 507 Jacobian bounds revisited ...... 512 Intrinsic pointwise bounds on the displacement interpolant ...... 513 Democratic condition ...... 515 CD(K, N)impliesDm...... 515 Doubling + democratic imply local Poincar´e ...... 517 CD(K, N) implies local Poincar´e...... 517 Pr´ekopa–Leindler inequalities ...... 520 Finite-dimension distorted Pr´ekopa–Leindler inequality ...... 521 Differentiating an energy along optimal transport ...... 526 Generalized Fisher information ...... 531 Fisher information ...... 531 Distorted HWI inequality ...... 531 HWI inequalities ...... 533 Logarithmic Sobolev inequality ...... 546 Bakry–Emerytheorem...... 547´ Sobolev-L∞ interpolation inequalities ...... 548 Sobolev inequalities from CD(K, N)...... 550 Sobolev inequalities in Rn ...... 551 CD (K, N) implies L1-Sobolev inequalities...... 553 Poincar´e inequality ...... 556 Exponential measure ...... 556 Lichnerowicz’s spectral gap inequality ...... 557 Tp inequality ...... 569 Dual formulation of Tp ...... 570 Dual formulation of T1 ...... 570 Tensorization of Tp ...... 570 T2 inequalities tensorize exactly ...... 570 Additivity of entropy ...... 574 Gaussian concentration ...... 575 962 List of short statements

CKP inequality ...... 582 CD (K, ∞) implies T2(K) ...... 583 Some properties of the quadratic Hamilton–Jacobi semigroup ...... 584 Logarithmic Sobolev ⇒ T2 ⇒ Poincar´e ...... 585 T2 sometimes implies log Sobolev ...... 590 T2 and dimension free Gaussian concentration ...... 590 Quadratic-linearcost...... 593 Reformulations of Poincar´e inequalities ...... 593 From generalized log Sobolev to transport to generalized Poincar´e . . 594 Measure concentration from Poincar´e inequality ...... 600 Product measure concentration from Poincar´e inequality ...... 601 Finite-dimensional transport-energy inequalities ...... 605 Further finite-dimensional transport-energy inequalities ...... 606 Some properties of the Hamilton–Jacobi semigroup on a manifold. . . 610 Reformulations of gradient flows ...... 631 Locally absolutely continuous paths ...... 635 Gradientflowsinageodesicspace...... 635 Derivative of the Wasserstein distance ...... 636 Computation of subdifferentials in Wasserstein space ...... 649 Displacement convexity of H: above-tangent formulation ...... 650 Diffusion equations as gradient flows in the Wasserstein space . . . . . 672 Heat equation as a gradient flow ...... 674 Stability of gradient flows in the Wasserstein space ...... 675 Differentiation through doubling of variables ...... 678 Computations for gradient flow diffusion equations ...... 694 Integrated regularity for gradient flows...... 698 Equilibration in positive curvature ...... 699 Short-time regularization for gradient flows ...... 705 Infinite-dimensional Sobolev inequalities from Ricci curvature ...... 721 Bakry–Emery´ theorem again ...... 721 Generalized Sobolev inequalities under Ricci curvature bounds . . . . . 722 Sobolev inequalities ...... 722 From Sobolev-type inequalities to concentration inequalities ...... 723 From Log Sobolev to Talagrand ...... 724 Metric couplings as semi-distances ...... 748 Metricgluinglemma ...... 748 Approximate isometries converge to isometries ...... 751 Gromov–Hausdorff convergence ...... 752 Convergence of geodesic spaces ...... 754 Compactness criterion in Gromov–Hausdorff topology ...... 754 Local Gromov–Hausdorff convergence ...... 755 List of short statements 963

Geodesic local Gromov–Hausdorff convergence ...... 755 Pointed Gromov–Hausdorff convergence ...... 756 Blow-up...... 757 Ascoli theorem in Gromov–Hausdorff converging sequences ...... 759 Prokhorov theorem in Gromov–Hausdorff converging sequences . . . . 759 Compactness of locally finite measures ...... 760 Doubling lets metric and metric-measure approaches coincide ...... 764 d GP convergence and doubling imply d GHP convergence ...... 765 Doubling implies uniform total boundedness ...... 766 Measured Gromov–Hausdorff topology ...... 767 Compactness in measured Gromov–Hausdorff topology ...... 768 Gromov’sprecompactnesstheorem...... 769 Kinetic energy ...... 774 Regularityofthespeedfield...... 775 If Xk converges then P2(Xk)also...... 777 If f is an approximate isometry then f# also...... 778 Optimal transport is stable under Gromov–Hausdorff convergence . . 780 Gromov–Hausdorff stability of the dual Kantorovichproblem...... 790 Pointed convergence of Xk implies local convergence of P2(Xk).....791 Integral functionals for singular measures ...... 798 Rewriting of the distorted Uν functional ...... 799 Rescaled subadditivity of the distorted Uν functionals ...... 799 Weak curvature-dimension condition ...... 801 Smooth weak CD(K, N) spaces are CD(K, N) manifolds ...... 801 Consistency of the CD(K, N) conditions ...... 802 Bonnet–Myers diameter bound for weak CD(K, N)spaces...... 803 Sufficient condition to be a weak CD(K, N)space...... 803 Legendre transform of a real-valued convex function ...... 808 Legendre representation of Uν ...... 809 β Continuity and contraction properties of Uν and Uπ,ν ...... 809 Another sufficient condition to be a weak CD(K, N)space ...... 825 Stability of weak CD(K, N) under MGH ...... 826 Stability of weak CD(K, N) under pMGH ...... 826 Smooth MGH limits of CD(K, N) manifolds are CD(K, N) ...... 832 Compactness of the space of weak CD(K, N)spaces...... 833 Regularizingkernels...... 834 Separability of L1(C)...... 836 Elementary consequences of weak CD(K, N) bounds...... 848 Restriction of the CD(K, N)propertytothesupport...... 848 β Domain of definition of Uν and Uπ,ν on noncompact spaces ...... 851 964 List of short statements

Displacement convexity inequalities in weak CD(K, N) spaces . . . . . 852 Lower semicontinuity of Uν again ...... 853 Brunn–Minkowski inequality in weak CD(K, N)spaces...... 862 Nonatomicity of the support...... 863 Exhaustion by intermediate points ...... 863 Bishop–Gromov inequality in metric-measure spaces ...... 864 Measure of small balls in weak CD(K, N)spaces...... 865 Dimension of weak CD(K, N)spaces...... 865 Weak CD(K, N) spaces are locally doubling ...... 865 Unique geodesics in nonbranching CD(K, N)spaces...... 866 Regularity of interpolants in weak CD(K, N)spaces...... 868 Uniform bound on the interpolant in nonnegative curvature ...... 868 HWI and log Sobolev inequalities in weak CD(K, ∞)spaces...... 871 Sobolev inequality in weak CD(K, N)spaces ...... 872 Global Poincar´e inequalities in weak CD(K, N)spaces...... 873 Local Poincar´e inequalities in nonbranching CD(K, N) spaces . . . . . 874 Talagrand inequalities and weak curvature bounds ...... 875 Hamilton–Jacobi semigroup in metric spaces ...... 876 Equivalent definitions of CD(K, N) in nonbranching spaces ...... 877 Local-to-global CD(K, N) property along a path ...... 888 Local CD(K, N)space...... 889 From local to global CD(K, N) ...... 889 From local to global CD(K, ∞) ...... 894 Cutoff functions ...... 897 List of figures

1.1 Construction of the Knothe–Rosenblatt map ...... 9

3.1 Monge’s problem of d´eblais and remblais ...... 30 3.2 Economic illustration of Monge’s problem ...... 30

4.1 Monge approximation of a genuine Kantorovich optimal plan . . 48

5.1 An attempt to improve the cost by a cycle ...... 52 5.2 c-convex function ...... 55

8.1 Monge’sshorteninglemma ...... 164 8.2 The map from the intermediate point is well-defined ...... 169 8.3 Principle of the proof of Mather’s shortening lemma ...... 171 8.4 ShortcutsinMather’sproof...... 174 8.5 Oscillations of a pendulum ...... 189

9.1 How to prove that the subdifferential is single-valued ...... 208 9.2 Nonexistence of Monge transport, nonuniqueness of optimal coupling...... 210

10.1 Singularities of the distance function ...... 217 10.2 k-dimensionalgraph...... 261

12.1 Caffarelli’s counterexample ...... 284 12.2 Principle of Loeper’s counterexample ...... 286 12.3 Regular cost function ...... 294

14.1 The Gauss map ...... 358 14.2 Parallel transport ...... 365

965 966 List of figures

14.3 Jacobi fields ...... 366 14.4 Distortion by curvature ...... 394 14.5 Distortion by curvature, again ...... 395 14.6 Model distortion coefficients ...... 397

16.1 The one-dimensional Green function ...... 437 16.2 The lazy gas experiment ...... 446

17.1 Approximation of an element of DCN ...... 453

18.1 An example of a measure that is not doubling ...... 494

26.1 Triangles in a nonnegatively curved world ...... 738

27.1 Principle of the definition of the Hausdorff distance ...... 744 27.2 An example of Gromov–Hausdorff convergence ...... 753 27.3 Approximate isometries cannot in general be continuous ...... 753 27.4 An example of reduction of support ...... 761 Index

absolute continuity contraction principle, 810 of a curve, 115, 635 convergence of a measure, XXI geodesic Gromov–Hausdorff, 755 action, 114, 121 Gromov–Hausdorff, 752 coercive, 122, 127 local Gromov–Hausdorff, 755 Alexandrov space, 193, 737, 739 measured Gromov–Hausdorff, 767 Alexandrov theorem, 363, 402 pointed Gromov–Hausdorff, 756 Aronson–B´enilan estimates, 708, 716 Wasserstein space, 96 Assumption (C), 205, 212, 288, 311 weak, 97 Aubry set, 86, 188 convexity c-concavity, 56 ´ Bakry–Emery theorem, 547, 559, 721, c-convexity, 54, 291 727 c-transform, 55, 56 barycenter, 393 d2/2-convexity, 341 Bishop–Gromov inequality, 377, 499, in Rn,55 864 in P , 441 Bochner formula, 374, 419 2 in a geodesic space, 435 generalized, 383 in a Riemannian manifold, 437 Bonnet–Myers theorem, 378, 872 semiconvexity, 228 Brunn–Minkowski inequality, 495, 503 correspondence, 744 distorted, 495, 862 cost function, 10 Caffarelli perturbation theorem, 26, 28 quadratic, 163, 209, 336 change of variables formula, 12, 18, 274 quadratic-linear, 593, 594 Cheng–Toponogov theorem, 492 recapitulative table, 971 compactness counterexamples (to regularity) in Gromov–Hausdorff topology, 754 Caffarelli, 283 in measured Gromov–Hausdorff Loeper, 285, 297 topology, 768, 833 without Assumption (C), 288 competitivity (of price functions), 54 coupling, 5, 17 concentration of measure, 567, 600, 618 deterministic, 6 Gaussian, 575, 590 dynamical, 126 conservation of mass, 14, 19 exact (classical), 9 contact set, contact point, 88 Holley, 8, 18

967 968 Index

increasing rearrangement, 7 minimal, 107 Knothe–Rosenblatt, 8, 18 Toscani, 98 measurable, 7 total variation, 103 Moser, 7, 16, 18 Wasserstein, 93, 106 optimal, 10 weak-∗,98 trivial, 6 distortion coefficient, 393, 395 covariant derivative, 150 in model space, 396 critical value (Mather’s), 188 divergence, 362 Csisz´ar–Kullback–Pinsker inequality, doubling of variables, 678 582, 620 doubling property, 493, 501, 764 weighted, 580 curvature, 357 entropy, 424, 433, 622, 627, 695 c-curvature, 300 additivity, 574 Gauss, 358 generalized Ricci, 381 Euler equation (pressureless), 340, 373 Ricci, 357, 376 Euler–Lagrange equation, 116, 153 sectional, 193, 359 Eulerian point of view, 14, 373 curvature-dimension bound, 385, 389 exponential map, 153 and displacement convexity, 465, 481, Jacobian determinant, 364, 418 487, 852 exponential measure, 556, 600, 605 stability, 826 weak, 801, 838 fast diffusion equation, 694 cut locus, 181 Finsler structure, 155 and optimal transport, 349 FKG inequalities, 9, 18 cutoff function, 897 focal point, 181, 395 cyclical monotonicity, 52, 57, 89 and cut locus, 180 Fokker–Planck equation, 709 democratic condition, 515 formula differentiability, 217 Bochner, 374, 383 almost everywhere, 222, 363 change of variables, 18, 275 approximate, 13, 218, 269, 271 conservation of mass, 14, 19 sub- and superdifferentiability, 220 diffusion, 15, 20 diffusion equations, 672, 694 first variation, 152 and curvature-dimension bounds, 489 displacement convexity, 441, 446, 487, 852 Gaussian measure, 379, 567, 575, 590 class, 443, 449, 473, 487 geodesic distorted, 480 curve, 116, 153 intrinsic, 486 distance, 148 local, 464, 889 space, 120, 156 displacement interpolation, 126, 158 uniqueness, 154, 244, 866 equations of, 340 geodesic space, 754 distance gluing lemma, 18 bounded Lipschitz, 97 metric, 748 Fortet–Mourier, 97 gradient flow, 629, 631, 681 Gromov–Hausdorff, 746 in a geodesic space, 635 Hausdorff, 743 in Wasserstein space, 672, 694 Kantorovich–Rubinstein, 94 granular media, 711 L´evy–Prokhorov, 97, 744 Green function, 436, 441 Index 969

Gromov–Hausdorff topology, 746, 752, lazy gas, 445 754, 769 length, 119, 148 local, 755, 770 length space, 120, 155 measured, 767, 770 Li–Yau estimates, 378, 708, 716 pointed, 756, 770 linear programming, 31, 34 Lipschitz continuity, 220 Hamilton–Jacobi semigroup, 143, 375, Lipschitz graph theorem, 182 584, 876 locality, 888, 889, 899 Hamiltonian, 117, 145 log Sobolev inequality, 546, 558, 585, Hamiltonian equations, 689, 717 721, 871, 875 heat equation, 16, 674 generalized, 594 Hessian, 361, 437 Holley–Stroock theorem, 547 Ma–Trudinger–Wang tensor, 300, 311 HWI inequality, 529, 871 marginal, 5 hyperbolic space, 360, 738 Mather set, 86, 188 metric (Riemannian), 148 implicit functions, 261 metric coupling, 748 information metric-measure space, 760 Fisher, 433, 530, 685, 695, 871 midpoint, 156 Kullback (Cf. entropy), 81 Monge coupling, 10 interpolation Monge problem, 10 of laws, 126, 127, 158 for quadratic cost, 209 of prices, 143, 146 original, 29 isometry, 746 smoothness, 281 approximate, 750 solvability, 84, 208, 243, 247, 250, 267 isoperimetry Monge–Amp`ere equation, 282, 323 Euclidean, 23 Monge–Kantorovich problem, 10 Gaussian, 564 Moser coupling, 16, 18 isoperimetric inequality, 23, 27, 522, 545, 558, 563 no-crossing property, 139, 163, 167 L´evy–Gromov, 555, 564, 618 nonbranching property, 154, 877 Jacobi equation, 366 Jacobi field, 366 optimal coupling, 10 Jacobian determinant, 13, 274 compactness, 77 dynamical, 126, 779 Kantorovich duality, 57, 60, 85, 95, 146 existence, 43 Kantorovich–Rubinstein distance, 60, stability, 77, 780 94 Otto calculus, 421 kinetic energy, 774 kinetic theory, 35, 201, 433, 542, 689, parallel transport, 149, 365 710 Poincar´e inequality, 593 Knothe–Rosenblatt coupling, 8, 18 generalized, 594 global, 378, 556, 585, 600, 873 Lagrangian, 114, 235 local, 505, 517, 874 classical conditions, 118 polar factorization theorem, 35 Lagrangian point of view, 14 , XX Langevin process, 21 porous medium equation, 694 Laplacian, 361 Pr´ekopa–Leindler inequality, 520 970 Index pressure and iterated pressure, 422 Talagrand inequality, 569, 583, 585, Prokhorov theorem, 43, 759 723, 875 tangent cone, 257 Rademacher’s theorem, 222, 898 total variation, 582 rearrangement, 7 transference plan, 10 rectifiability, 257 dynamical, 126, 779 regular cost function, 292, 311 generalized optimal, 250 regularity theory, 317 optimal, 10 regularizing kernel, 834, 845 transform restriction property, 46 c-transform, 55, 56 dual side, 75 Legendre, 55, 809 Riemannian manifold, 148 transport inequality, 80, 569, 605 transport map, 6 stability, 79 second fundamental form, 300, 304 twist condition, 216, 267 selection theorem, 92 strong, 299 semi-distance, 747 semi-geostrophic system, 35 Vlasov equation, 27 shortening principle, 163, 166, 199 volume (Riemannian), 152 Sobolev inequality, 378, 545, 548, 553, 722, 872 Wasserstein distance, 93, 106 logarithmic, 546 Wasserstein space, 94, 96, 104 Spectral gap inequality, 378 differential structure, 343, 636, 682 speed, 118, 775 geodesics, 127 stochastic mechanics, 159 gradient flows, 672 subdifferential Gromov–Hausdorff convergence, 777 c-subdifferential, 55, 88 representation of curves, 344 Clarke, 261 weak CD(K, N) space, 801, 838 synthetic point of view, 736 weak KAM theory, 189, 201 Some notable cost functions

In the following table I have compiled a few remarkable cost functions which have appeared in various applications. The list is by no means exhaustive and the suggested references should be considered just as entry points to the corresponding literature.

971 972 Some notable cost functions [484] [328] [501] [269] [660] [659] [712] [268] [164] [399] [20, 636] [419, 834] [520, 788] Chapter 6 Chapter 6 [39, 40, 164] [493, 669, 671] [814, Chapter 6] Where quoted [814, Appendix 1.4] [814, Appendix 1.4] [777] [814, Section 7.5] [24, 154, 156, 159] [814, Section 3.2] n R Use relativistic theory -Wasserstein distances modeling in economy p relativistic heat equation (flat) conformal geometry Strassen’s duality theorem semi-geostrophic equations semi-geostrophic equations Kantorovich’s cost function Monge’s original cost function representation of total variation Far-field reflector antenna design Near-field reflector antenna design Rubinstein–Wolansky’s design of lens prescribed integral curvature problem Tanaka’s study of Boltzmann equation Brenier’s study of incompressible fluids definition of Kantorovich distance/norm diffusion equations of Fokker–Planck type most useful for geometric applications in Hsu–Sturm’s maximal coupling of Brownian paths shape optimization, sandpile growth, compression molding 2 S ∈ 3 y 2 R R 3 2 3 3 2 n n n R or S R R R R S R R or 2 R Setting R surface, Polish space Polish space Polish space Polish space ∈ x 2 ) 2 1 ) 2 y | y ) y 2 · ) y | − | | ) · ) y y − 2 y ε + 3 x 2 p | x  ) x y | ( ≥ − x ) − y <β< y − ) y − x x −  = 0 x | | − +( −| x, y | x, y − x − , x,y x, y 3  ( ( 1 2 α Cost ( x 1 β x x d | ) | d d | log ( 1 1 y 1+ log f log(1 y − erf( log(1 − − − − x − 1 | 1 x ( Some notable cost functions 973 [576, 782] [24, 25, 155] Where quoted [774] and Chapter 22 [246, 616] and Part II [577, 762, 763] and Part III [104, 105, 601] and Chapter 8 Use Study of Ricci flow Riemannian geometry incompressible Euler equation Mather’s theory of Lagrangian mechanics Talagrand’s study of exponential concentration Lott–Sturm–Villani’s nonsmooth Ricci curvature bounds n R Setting subset of geodesic space product metric space Riemannian manifold Riemannian manifold Riemannian manifold ) 2 dt ) ) i dt ) ± ,y ) i L dt t, x x , ) ( 0 t, x ( L 2 2 ,d p ) ) ) i x, v, t − +Scal( ( ,y x, y x, y i 2 2 L ( ( Cost | | x 2 d d v ( v | | d inf min( and variants ( i inf inf 1 2 Grundlehren der mathematischen Wissenschaften A Series of Comprehensive Studies in Mathematics A Selection

247. Suzuki: Group Theory I 248. Suzuki: Group Theory II 249. Chung: Lectures from Markov Processes to Brownian Motion 250. Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations 251. Chow/Hale: Methods of Bifurcation Theory 252. Aubin: Nonlinear Analysis on Manifolds. Monge-Ampère Equations 253. Dwork: Lectures on ρ-adic Differential Equations 254. Freitag: Siegelsche Modulfunktionen 255. Lang: Complex Multiplication 256. Hörmander: The Analysis of Linear Partial Differential Operators I 257. Hörmander: The Analysis of Linear Partial Differential Operators II 258. Smoller: Shock Waves and Reaction-Diffusion Equations 259. Duren: Univalent Functions 260. Freidlin/Wentzell: Random Perturbations of Dynamical Systems 261. Bosch/Güntzer/Remmert: Non Archimedian Analysis – A System Approach to Rigid Analytic Geometry 262. Doob: Classical Potential Theory and Its Probabilistic Counterpart 263. Krasnosel’skiˇı/Zabreˇıko: Geometrical Methods of Nonlinear Analysis 264. Aubin/Cellina: Differential Inclusions 265. Grauert/Remmert: Coherent Analytic Sheaves 266. de Rham: Differentiable Manifolds 267. Arbarello/Cornalba/Griffiths/Harris: Geometry of Algebraic Curves, Vol. I 268. Arbarello/Cornalba/Griffiths/Harris: Geometry of Algebraic Curves, Vol. II 269. Schapira: Microdifferential Systems in the Complex Domain 270. Scharlau: Quadratic and Hermitian Forms 271. Ellis: Entropy, Large Deviations, and Statistical Mechanics 272. Elliott: Arithmetic Functions and Integer Products 273. Nikol’skiˇı: Treatise on the shift Operator 274. Hörmander: The Analysis of Linear Partial Differential Operators III 275. Hörmander: The Analysis of Linear Partial Differential Operators IV 276. Liggett: Interacting Particle Systems 277. Fulton/Lang: Riemann-Roch Algebra 278. Barr/Wells: Toposes, Triples and Theories 279. Bishop/Bridges: Constructive Analysis 280. Neukirch: Class Field Theory 281. Chandrasekharan: Elliptic Functions 282. Lelong/Gruman: Entire Functions of Several Complex Variables 283. Kodaira: Complex Manifolds and Deformation of Complex Structures 284. Finn: Equilibrium Capillary Surfaces 285. Burago/Zalgaller: Geometric Inequalities 286. Andrianaov: Quadratic Forms and Hecke Operators 287. Maskit: Kleinian Groups 288. Jacod/Shiryaev: Limit Theorems for Stochastic Processes 289. Manin: Gauge Field Theory and Complex Geometry 290. Conway/Sloane: Sphere Packings, Lattices and Groups 291. Hahn/O’Meara: The Classical Groups and K-Theory 292. Kashiwara/Schapira: Sheaves on Manifolds 293. Revuz/Yor: Continuous Martingales and Brownian Motion 294. Knus: Quadratic and Hermitian Forms over Rings 295. Dierkes/Hildebrandt/Küster/Wohlrab: Minimal Surfaces I 296. Dierkes/Hildebrandt/Küster/Wohlrab: Minimal Surfaces II 297. Pastur/Figotin: Spectra of Random and Almost-Periodic Operators 298. Berline/Getzler/Vergne: Heat Kernels and Dirac Operators 299. Pommerenke: Boundary Behaviour of Conformal Maps 300. Orlik/Terao: Arrangements of Hyperplanes 301. Loday: Cyclic Homology 302. Lange/Birkenhake: Complex Abelian Varieties 303. DeVore/Lorentz: Constructive Approximation 304. Lorentz/v. Golitschek/Makovoz: Construcitve Approximation. Advanced Problems 305. Hiriart-Urruty/Lemaréchal: Convex Analysis and Minimization Algorithms I. Fundamentals 306. Hiriart-Urruty/Lemaréchal: Convex Analysis and Minimization Algorithms II. Advanced Theory and Bundle Methods 307. Schwarz: Quantum Field Theory and Topology 308. Schwarz: Topology for Physicists 309. Adem/Milgram: Cohomology of Finite Groups 310. Giaquinta/Hildebrandt: Calculus of Variations I: The Lagrangian Formalism 311. Giaquinta/Hildebrandt: Calculus of Variations II: The Hamiltonian Formalism 312. Chung/Zhao: From Brownian Motion to Schrödinger’s Equation 313. Malliavin: Stochastic Analysis 314. Adams/Hedberg: Function spaces and Potential Theory 315. Bürgisser/Clausen/Shokrollahi: Algebraic Complexity Theory 316. Saff/Totik: Logarithmic Potentials with External Fields 317. Rockafellar/Wets: Variational Analysis 318. Kobayashi: Hyperbolic Complex Spaces 319. Bridson/Haefliger: Metric Spaces of Non-Positive Curvature 320. Kipnis/Landim: Scaling Limits of Interacting Particle Systems 321. Grimmett: Percolation 322. Neukirch: Algebraic Number Theory 323. Neukirch/Schmidt/Wingberg: Cohomology of Number Fields 324. Liggett: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes 325. Dafermos: Hyperbolic Conservation Laws in Continuum Physics 326. Waldschmidt: Diophantine Approximation on Linear Algebraic Groups 327. Martinet: Perfect Lattices in Euclidean Spaces 328. Van der Put/Singer: Galois Theory of Linear Differential Equations 329. Korevaar: Tauberian Theory. A Century of Developments 330. Mordukhovich: Variational Analysis and Generalized Differentiation I: Basic Theory 331. Mordukhovich: Variational Analysis and Generalized Differentiation II: Applications 332. Kashiwara/Schapira: Categories and Sheaves. An Introduction to Ind-Objects and Derived Categories 333. Grimmett: The Random-Cluster Model 334. Sernesi: Deformations of Algebraic Schemes 335. Bushnell/Henniart: The Local Langlands Conjecture for GL(2) 336. Gruber: Convex and Discrete Geometry 337. Maz'ya/Shaposhnikova: Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators 338. Villani: Optimal Transport: Old and New