Causal Structure of Acoustic Spacetimes

Total Page:16

File Type:pdf, Size:1020Kb

Causal Structure of Acoustic Spacetimes Causal structure of acoustic spacetimes Carlos Barcel´o ∗, Stefano Liberati †, Sebastiano Sonego ‡, and Matt Visser § ∗Instituto de Astrof´ısica de Andaluc´ıa (CSIC), Camino Bajo de Hu´etor 24, 18008 Granada, Spain †International School for Advanced Studies (SISSA), Via Beirut 2-4, 34013 Trieste, Italy and INFN, Trieste, Italy ‡Universit`adi Udine, Via delle Scienze 208, 33100 Udine, Italy § School of Mathematical and Computing Sciences, Victoria University of Wellington, New Zealand 8 August 2004; V2: 1 Sept 2004; LATEX-ed February 7, 2008; gr-qc/0408022 Abstract The so-called “analogue models of general relativity” provide a number of spe- cific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of acoustic disturbances in moving fluids are described by “effective metrics” that carry with them notions of “causal structure” as deter- mined by an exchange of sound signals. These acoustic causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the un- derlying fluid mechanics is governed by the equations of traditional hydrodynamics, not by the Einstein equations.) In this article we take a careful look at what can be said about the causal structure of acoustic spacetimes, focusing on those containing sonic points or horizons, both with a view to seeing what is different from standard general relativity, and to seeing what the similarities might be. PACS: 02.40.Ma. 04.20.Cv, 04.20.Gz, 04.70.-s Keywords: analogue models, acoustic spacetime, causal structure, conformal struc- ture, Penrose–Carter diagrams. ∗[email protected][email protected]; http://www.sissa.it/~liberati ‡[email protected] §[email protected]; http://www.mcs.vuw.ac.nz/~visser 1 Causal structure of acoustic spacetimes 2 1 Introduction Acoustic spacetimes are curved Lorentzian manifolds that are used to describe the prop- agation of sound in moving fluids [1, 2, 3, 4, 5, 6]. As such they are equipped with a Lorentzian spacetime metric (strictly speaking, a pseudo-metric) that is associated with the “sound cones” emanating from each event in the spacetime. Though the acoustic spacetimes are in general curved manifolds, with nonzero Riemann tensor, their curvature and evolution (their geometrodynamics) are not determined by the Einstein equations, but are instead implicit in the equations of traditional fluid mechanics [3, 5, 6]. The acoustic effective geometry must not be confused with the “real” spacetime geometry. Indeed, the “real” physical spacetime structure that we experience in a condensed matter laboratory is approximately Minkowskian. Moreover, under normal circumstances the ve- locities involved are so small in comparison with the velocity of light that we can perfectly well assume that the system is non-relativistic (Galilean), be it classical or quantum. Because of these features, the acoustic spacetimes play a rather special role with re- spect to traditional general relativity. They are examples of Lorentzian manifolds without “gravity” and their existence forces us to think deeply and carefully about the distinc- tion between kinematics and dynamics in general relativity — specifically how much of standard general relativity depends on the Einstein equations and how much of it de- pends on more general considerations that continue to hold independently of the Einstein equations? In particular, this forces us to think about the deep connections and funda- mental differences between Lorentzian geometry, the Einstein equivalence principle, and full general relativity. Some features that one normally thinks of as intrinsically aspects of gravity, both at the classical and semiclassical levels (such as horizons and Hawking radiation), can in the context of acoustic manifolds be instead seen to be rather generic features of curved spacetimes and quantum field theory in curved spacetimes, that have nothing to do with gravity per se [1, 5, 7, 8]. In this article we will develop an entire bestiary of (1+1)-dimensional acoustic geome- tries, specifically chosen because of their naturalness from the point of view of flowing fluids. We will focus on the particularly interesting cases in which the acoustic geometries possess one or two sonic points. These geometries will be the starting point of a follow-up paper in which we will investigate their different effects in terms of curved-space quantum field theoretic vacuum polarization. After describing each of these geometries, we will investigate their global causal struc- ture by the use of Carter–Penrose diagrams. These diagrams make it clear that because the acoustic geometries are not governed by the Einstein equations, their causal structure can be quite different from what is usually encountered in the context of general relativity. In this context, we will also discuss the notion of “maximal analytic extension” in these acoustic geometries on both mathematical and physical grounds. While mathematically the notion of analytic extension makes perfectly good sense, there are now good physical reasons for being cautious. This may have implications for physical gravity and in partic- ular for the ability to characterize spacetime structure by a single well-behaved metric (as opposed to a multi-metric theory). Since this is the first step towards implementing any version of the equivalence principle, it strikes at the very foundations of general relativity. The geometrical analyses of acoustic spacetimes we are going to present are also in- teresting for two additional reasons: 1. Because we have a very specific and concrete physical picture for these acoustic Causal structure of acoustic spacetimes 3 spacetimes it is sometimes easier for a classically trained physicist to see what is going on, and to then use this as a starting point for investigations of the perhaps more formal causal structure in standard general relativity. 2. Conversely, relativists can adopt their training to ask questions in acoustics that might not normally occur to classically trained acoustic physicists. After dealing with some fundamental issues in section 2 we shall introduce the concept of null coordinates in section 3. In section 4 we develop a “zoo” of stationary acoustic spacetimes, focussing on situations with either one or two sonic points. Section 5 looks at the dynamical evolution of acoustic horizons as the fluid flow is switched on from zero flow to the fully developed flows considered in section 4. In sections 6 and 7 we investigate the global causal structure of the stationary and dynamical acoustic spacetimes by the use of Penrose–Carter diagrams, while the mathematical possibility of performing an analytical extension for acoustic spacetimes will be considered and discussed in section 8. Finally, our summary and conclusions are presented in section 9. 2 Fundamental features We start by pointing out that in acoustic spacetimes, as in general relativity, causal structure can be characterized in two complementary ways — in terms of the rays of geometrical acoustics/optics or in terms of the characteristics of the partial differential equations (wave equations) of physical acoustics/optics [6, 9]. At the level of geometrical acoustics we need only assume that: the speed of sound c, relative to the fluid, is well defined; • the velocity of the fluid ~v, relative to the laboratory, is well defined. • Then, relative to the laboratory, the velocity of a sound ray propagating, with respect to the fluid, along the direction defined by the unit vector ~n is d~x = c ~n + ~v, (2.1) dt which defines a sound cone in spacetime given by the condition ~n2 = 1, i.e., c2dt2 + (d~x ~v dt)2 =0 . (2.2) − − This is associated with a conformal class of Lorentzian metrics [5, 6] (c2 v2) ~v T g = Ω2 − − − , (2.3) " ~v I # − where Ω is an unspecified non-vanishing function. The virtues of the geometric approach are its extreme simplicity and the fact that the basic structure is dimension-independent. At the level of physical acoustics, setting up an acoustic spacetime is a little trickier. For technical reasons it is easiest to confine attention to an irrotational flow for a fluid Causal structure of acoustic spacetimes 4 with a barotropic equation of state, in which case it is relatively straightforward to derive, in any number of dimensions, a wave equation of the form [5, 6] ab ∂a f ∂bθ =0 . (2.4) Turning this into a statement about a metric requires the identification ( det g)1/2 gab = f ab , (2.5) − where, as usual, g denotes the matrix [g ], obtained by inverting g−1 [gab]. Defining ab ≡ now det f =1/ det[f ab] we have det g =( det f)−2/(d−2) , (2.6) − − and gab =( det f)1/(d−2) f ab . (2.7) − With this procedure one gets, for a fluid with mass density ρ, a metric of the form (2.3), with Ω2 equal to an unspecified positive constant multiplied by some power of ρ/c. ab However, the exponent in equation (2.7) indicates that g and gab are not defined in d = 2 (that is, in 1+1 dimensions). Fortunately this problem is formal rather than funda- mental. One can always augment any interesting (1+1)-dimensional acoustic geometry by two extra flat space dimensions — which is after all exactly how such a geometry would actually be experimentally realised, letting the fluid flow along a thin pipe — and simply phrase physical questions in terms of the plane symmetric 3+1 geometry. Alternatively, one could forget the extra dimensions and simply ask questions based on the geomet- ric acoustics approximation, which, after all, is quite sufficient for dealing with issues of causal structure. We mention in passing that attempts to include vorticity into the physical acoustics formalism lead to a more complicated mathematical structure of which the “effective metric” is only one part.
Recommended publications
  • Dynamics of the Four Kinds of Trapping Horizons & Existence of Hawking
    Dynamics of the four kinds of Trapping Horizons & Existence of Hawking Radiation Alexis Helou1 AstroParticule et Cosmologie, Universit´eParis Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cit´e Bˆatiment Condorcet, 10, rue Alice Domon et L´eonieDuquet, F-75205 Paris Cedex 13, France Abstract We work with the notion of apparent/trapping horizons for spherically symmetric, dynamical spacetimes: these are quasi-locally defined, simply based on the behaviour of congruence of light rays. We show that the sign of the dynamical Hayward-Kodama surface gravity is dictated by the in- ner/outer nature of the horizon. Using the tunneling method to compute Hawking Radiation, this surface gravity is then linked to a notion of temper- ature, up to a sign that is dictated by the future/past nature of the horizon. Therefore two sign effects are conspiring to give a positive temperature for the black hole case and the expanding cosmology, whereas the same quantity is negative for white holes and contracting cosmologies. This is consistent with the fact that, in the latter cases, the horizon does not act as a separating membrane, and Hawking emission should not occur. arXiv:1505.07371v1 [gr-qc] 27 May 2015 [email protected] Contents 1 Introduction 1 2 Foreword 2 3 Past Horizons: Retarded Eddington-Finkelstein metric 4 4 Future Horizons: Advanced Eddington-Finkelstein metric 10 5 Hawking Radiation from Tunneling 12 6 The four kinds of apparent/trapping horizons, and feasibility of Hawking radiation 14 6.1 Future-outer trapping horizon: black holes . 15 6.2 Past-inner trapping horizon: expanding cosmology .
    [Show full text]
  • New Journal of Physics the Open–Access Journal for Physics
    New Journal of Physics The open–access journal for physics Relativistic Bose–Einstein condensates: a new system for analogue models of gravity S Fagnocchi1,2, S Finazzi1,2,3, S Liberati1,2, M Kormos1,2 and A Trombettoni1,2 1 SISSA via Beirut 2-4, I-34151 Trieste, Italy 2 INFN, Sezione di Trieste, Italy E-mail: [email protected], fi[email protected], [email protected], [email protected] and [email protected] New Journal of Physics 12 (2010) 095012 (19pp) Received 20 January 2010 Published 30 September 2010 Online at http://www.njp.org/ doi:10.1088/1367-2630/12/9/095012 Abstract. In this paper we propose to apply the analogy between gravity and condensed matter physics to relativistic Bose—Einstein condensates (RBECs), i.e. condensates composed by relativistic constituents. While such systems are not yet a subject of experimental realization, they do provide us with a very rich analogue model of gravity, characterized by several novel features with respect to their non-relativistic counterpart. Relativistic condensates exhibit two (rather than one) quasi-particle excitations, a massless and a massive one, the latter disappearing in the non-relativistic limit. We show that the metric associated with the massless mode is a generalization of the usual acoustic geometry allowing also for non-conformally flat spatial sections. This is relevant, as it implies that these systems can allow the simulation of a wider variety of geometries. Finally, while in non-RBECs the transition is from Lorentzian to Galilean relativity, these systems represent an emergent gravity toy model where Lorentz symmetry is present (albeit with different limit speeds) at both low and high energies.
    [Show full text]
  • Gravity As an Emergent Phenomenon: Fundamentals and Applications
    Gravity as an emergent phenomenon: fundamentals and applications Ra´ulCarballo Rubio Universidad de Granada Programa de Doctorado en F´ısicay Matem´aticas Escuela de Doctorado de Ciencias, Tecnolog´ıase Ingenier´ıas Granada, 2016 Editor: Universidad de Granada. Tesis Doctorales Autor: Raúl Carballo Rubio ISBN: 978-84-9125-879-7 URI: http://hdl.handle.net/10481/43711 Gravity as an emergent phenomenon: fundamentals and applications Ra´ulCarballo Rubio1 In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Under the supervision of: Carlos Barcel´oSer´on1 Luis Javier Garay Elizondo2;3 1 Instituto de Astrof´ısicade Andaluc´ıa(IAA-CSIC), Glorieta de la Astronom´ıa,18008 Granada, Spain 2 Departamento de F´ısicaTe´oricaII, Universidad Complutense de Madrid, 28040 Madrid, Spain 3 Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid, Spain Consejo Superior de Investigaciones Cient´ıficas Estructuraci´onde contenidos en la memoria Los contenidos exigidos en una tesis doctoral en la Universidad de Granada para los pro- gramas de doctorado regulados por el RD99/2011 se encuentran en la presente memoria estructurados en las siguientes secciones: T´ıtulo Portada Compromiso de respeto de derechos de autor Compromiso de respeto de derechos de autor Resumen Resumen Introducci´on Introduction Objetivos Introduction, Secs. 1.1, 2.1, 3.1 and 4.1 Metodolog´ıa Secs. 1.2, 1.3, 2.2, 4.2, 4.3 and 4.4 Resultados Secs. 1.4, 1.5, 1.6, 2.3, 2.4, 2.5, 3.2, 3.3, 4.5 and 4.6 Conclusiones Secs. 1.7, 2.6, 3.4 and 4.7; Main conclusions and future directions Bibliograf´ıa Bibliography Resumen En esta tesis se ha realizado un estudio de distintos aspectos de la aproximaci´ona la construcci´onde una teor´ıade gravedad cu´antica conocida como gravedad emergente, con el objetivo de analizar preguntas fundamentales en el marco de este programa de investi- gaci´on,as´ıcomo posibles aplicaciones a problemas actuales de la f´ısicate´oricagravitacional.
    [Show full text]
  • Superfluidity
    SUPERFLUIDITY Superfluidity is a consequence of having zero viscosity. Superfluids and Bose- Einstein condensates share this quality. A Bose–Einstein condensate (BEC) is a state, or phase, of a quantized medium normally obtained via confining bosons (particles that are governed by Bose-Einstein statistics and are not restricted from occupying the same state) in an external potential and cooling them to temperatures very near absolute zero. As the bosons cool, more and more of them drop into the lowest quantum state of the external potential (or “condense”). As they do, they collectively begin to exhibit macroscopic quantum properties. Through this process the fluid transforms into something that is no longer viscous, which means that it has the ability to flow without dissipating energy. At this point the fluid also loses the ability to take on homogeneous rotations. Instead, when a beaker containing a BEC (or a superfluid) is rotated, quantized vortices form throughout the fluid, but the rest of the fluid’s volume remains stationary. The BEC phase is believed to be available to any medium so long as it is made up of identical particles with integer spin (bosons), and its statistical distributions are governed by Bose-Einstein statistics. It has been observed to occur in gases, liquids, and also in solids made up of quasiparticles. In short, all fluids, whose constituents are subject to Bose-Einstein statistics, should undergo BEC condensation once the fluid’s particle density and temperature are related by the following equation. where: Tc is the critical temperature of condensation, n is the particle density, m is the mass per boson, and ζ is the Riemann zeta function.
    [Show full text]
  • Redalyc.Quantization of Horizon Entropy and the Thermodynamics of Spacetime
    Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Skákala, Jozef Quantization of Horizon Entropy and the Thermodynamics of Spacetime Brazilian Journal of Physics, vol. 44, núm. 2-3, -, 2014, pp. 291-304 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46431122018 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Braz J Phys (2014) 44:291–304 DOI 10.1007/s13538-014-0177-y PARTICLES AND FIELDS Quantization of Horizon Entropy and the Thermodynamics of Spacetime Jozef Skakala´ Received: 10 August 2013 / Published online: 20 February 2014 © Sociedade Brasileira de F´ısica 2014 Abstract This is a review of my work published in the basic results from some of the papers I published during papers of Skakala (JHEP 1201:144, 2012; JHEP 1206:094, that period [1–4]. It gives a more detailed discussion of the 2012) and Chirenti et al. (Phys. Rev. D 86:124008, 2012; results than the accounts in those papers, and it connects the Phys. Rev. D 87:044034, 2013). It offers a more detailed dis- results in [1–4] to certain conclusions recently reached by cussion of the results than the accounts in those papers, and other researchers. It also presents some new results, such it links my results to some conclusions recently reached by that provide additional support for the basic idea presented other authors.
    [Show full text]
  • Black Hole Evaporation and Stress Tensor Correlations
    Alma Mater Studiorum · Universita` di Bologna Scuola di Scienze Corso di Laurea Magistrale in Fisica Black Hole Evaporation and Stress Tensor Correlations Relatore: Presentata da: Prof. Roberto Balbinot Mirko Monti SessioneI Anno Accademico 2013/2014 Black Hole evaporation and Stress Tensor Correlations Mirko Monti - Tesi di Laurea Magistrale Abstract La Relativit`a Generale e la Meccanica Quantistica sono state le due pi´u grandi rivoluzioni scientifiche del ventesimo secolo. Entrambe le teorie sono estremamente eleganti e verificate sperimentalmente in numerose situazioni. Apparentemente per`o,esse sono tra loro incompatibili. Alcuni indizi per comprendere queste difficolt`a possono essere scoperti studiando i buchi neri. Essi infatti sono sistemi in cui sia la gravit`a, sia la meccanica quantistica sono ugualmente importanti. L'argomento principale di questa tesi magistrale `elo studio degli effetti quantis- tici nella fisica dei buchi neri, in particolare l'analisi della radiazione Hawking. Dopo una breve introduzione alla Relativit`a Generale, `estudiata in dettaglio la metrica di Schwarzschild. Particolare attenzione viene data ai sistemi di coor- dinate utilizzati ed alla dimostrazione delle leggi della meccanica dei buchi neri. Successivamente `eintrodotta la teoria dei campi in spaziotempo curvo, con par- ticolare enfasi sulle trasformazioni di Bogolubov e sull'espansione di Schwinger- De Witt. Quest'ultima in particolare sar`a fondamentale nel processo di rinor- malizzazione del tensore energia impulso. Viene quindi introdotto un modello di collasso gravitazionale bidimensionale. Dimostrata l'emissione di un flusso termico di particelle a grandi tempi da parte del buco nero, vengono analizzati in dettaglio gli stati quantistici utilizzati, le correlazioni e le implicazioni fisiche di questo effetto (termodinamica dei buchi neri, paradosso dell'informazione).
    [Show full text]
  • Condensed Matter Physics and the Nature of Spacetime
    Condensed Matter Physics and the Nature of Spacetime This essay considers the prospects of modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. It evaluates three examples of spacetime analogues in condensed matter systems that have appeared in the recent physics literature, and suggests how they might lend credence to an epistemological structural realist interpretation of spacetime that emphasizes topology over symmetry in the accompanying notion of structure. Keywords: spacetime, condensed matter, effective field theory, emergence, structural realism Word count: 15, 939 1. Introduction 2. Effective Field Theories in Condensed Matter Systems 3. Spacetime Analogues in Superfluid Helium and Quantum Hall Liquids 4. Low-Energy Emergence and Emergent Spacetime 5. Universality, Dynamical Structure, and Structural Realism 1. Introduction In the philosophy of spacetime literature not much attention has been given to concepts of spacetime arising from condensed matter physics. This essay attempts to address this. I look at analogies between spacetime and a quantum liquid that have arisen from effective field theoretical approaches to highly correlated many-body quantum systems. Such approaches have suggested to some authors that spacetime can be modeled as a phenomenon that emerges in the low-energy limit of a quantum liquid with its contents (matter and force fields) described by effective field theories (EFTs) of the low-energy excitations of this liquid. While directly relevant to ongoing debates over the ontological status of spacetime, this programme also has other consequences that should interest philosophers of physics. It suggests, for instance, a particular approach towards quantum gravity, as well as an anti-reductionist attitude towards the nature of symmetries in quantum field theory.
    [Show full text]
  • Quasinormal Modes of Black Holes and Black Branes
    Home Search Collections Journals About Contact us My IOPscience Quasinormal modes of black holes and black branes This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 Class. Quantum Grav. 26 163001 (http://iopscience.iop.org/0264-9381/26/16/163001) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 160.36.192.221 The article was downloaded on 15/04/2013 at 15:54 Please note that terms and conditions apply. IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 26 (2009) 163001 (108pp) doi:10.1088/0264-9381/26/16/163001 TOPICAL REVIEW Quasinormal modes of black holes and black branes Emanuele Berti1,2, Vitor Cardoso1,3 and Andrei O Starinets4 1 Department of Physics and Astronomy, The University of Mississippi, University, MS 38677-1848, USA 2 Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, CA 91125, USA 3 Centro Multidisciplinar de Astrof´ısica-CENTRA, Departamento de F´ısica, Instituto Superior Tecnico,´ Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal 4 Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, UK E-mail: [email protected], [email protected] and [email protected] Received , in final form 18 May 2009 Published 24 July 2009 Online at stacks.iop.org/CQG/26/163001 Abstract Quasinormal modes are eigenmodes of dissipative systems. Perturbations of classical gravitational backgrounds involving black holes or branes naturally lead to quasinormal modes.
    [Show full text]
  • Exotic Compact Object Behavior in Black Hole Analogues
    Exotic compact object behavior in black hole analogues Carlos A. R. Herdeiro and Nuno M. Santos Centro de Astrofísica e Gravitação − CENTRA, Departamento de Física, Instituto Superior Técnico − IST, Universidade de Lisboa − UL, Avenida Rovisco Pais 1, 1049, Lisboa, Portugal (Dated: February 2019) Classical phenomenological aspects of acoustic perturbations on a draining bathtub geometry where a surface with reflectivity R is set at a small distance from the would-be acoustic horizon, which is excised, are addressed. Like most exotic compact objects featuring an ergoregion but not a horizon, this model is prone to instabilities 2 2 when jRj ≈ 1. However, stability can be attained for sufficiently slow drains when jRj . 70%. It is shown that the superradiant scattering of acoustic waves is more effective when their frequency approaches one of the system’s quasi-normal mode frequencies. I. INTRODUCTION cannot escape from the region around the drain. The phenomenology of the draining bathtub model has been widely addressed over the last two decades. For instance, Analogue models for gravity have proven to be a power- works on quasi-normal modes (QNMs) [6,7], absorption pro- ful tool in understanding and probing several classical and cesses [8] and superradiance [9–12] showed that this vortex quantum phenomena in curved spacetime, namely the emis- geometry shares many properties with Kerr spacetime. sion of Hawking radiation and the amplification of bosonic Kerr BHs are stable against linear bosonic perturbations field perturbations scattered off spinning objects, commonly [13–16]. The event horizon absorbs any negative-energy dubbed superradiance. It was Unruh who first drew an ana- physical states which may form inside the ergoregion and logue model for gravity relating the propagation of sound would otherwise trigger an instability.
    [Show full text]
  • Analogue Gravity
    Analogue Gravity Carlos Barcel´o, Instituto de Astrof´ısica de Andaluc´ıa Granada, Spain e-mail: [email protected] http://www.iaa.csic.es/ Stefano Liberati, International School for Advanced Studies and INFN Trieste, Italy e-mail: [email protected] http://www.sissa.it/˜liberati and Matt Visser, Victoria University of Wellington New Zealand e-mail: [email protected] http://www.mcs.vuw.ac.nz/˜visser (Friday 13 May 2005; Updated 1 June 2005; LATEX-ed February 4, 2008) 1 Abstract Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity). 2 Contents 1 Introduction 8 1.1 Going further ........................... 9 2 The simplest example of an analogue model 10 2.1 Background ............................ 10 2.2 Geometrical acoustics ....................... 11 2.3 Physical acoustics ........................
    [Show full text]
  • Black Holes and Their Thermodynamics in Gravitational Theories Without Lorentz Symmetry
    Black Holes and Their Thermodynamics in Gravitational Theories without Lorentz Symmetry Anzhong Wang Institute for Advanced Physics & Mathematics Zhejiang University of Technology & Physics Department, Baylor University June 22, 2017 June 20, 2017 Table of Contents Introduction Lorentz Symmetry Breaking and Black Holes Thermodynamics of Universal Horizons Concluding Remarks Table of Contents 1 Introduction 2 Lorentz Symmetry Breaking and Black Holes 3 Thermodynamics of Universal Horizons 4 Concluding Remarks 1.1 Thermodynamics of An Ordinary System In an ordinary thermodynamic system, thermal properties reflect the statistical mechanics of underlying microstates. The temperature T of the system is a measure of the average energy of its fundamental “quanta”. Its entropy S is a measure of the number of possible microscopic arrangements of those “quanta”, so normally S / V. 1.1 Thermodynamics of An Ordinary System (Cont.) The Four Laws of Thermodynamics: Zeroth law of thermodynamics: If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other. First law of thermodynamics: The increase in internal energy of a closed system is equal to the difference of the heat supplied to the system and the work done by it, ∆U = Q − W; U: Internal energy; Q: heat; W: work 1.1 Thermodynamics of An Ordinary System (Cont.) The Four Laws Thermodynamics (Cont.): Second law of thermodynamics: Heat cannot spontaneously flow from a colder location to a hotter location, which in terms of entropy is often expressed as, ∆S ≥ 0: Third law of thermodynamics: As a system approaches absolute zero the entropy of the system approaches a minimum value.
    [Show full text]
  • Black Holes in 3D Horava Gravity Revisited
    IBS-KIAS Joint Workshop on Particle Physics and Cosmology (7 Feb. 2017, High1) Rotating Black Holes in 3D Horava Gravity Revisited Mu-In Park Sogang Univ., Korea We heard about LIGO’s detection of gravitational waves. GW150914 announcement paper More Detections They conclude that these are the results of a``merger’’ of two spinning black holes. There remains some open issues, though. • 1. Can we distinguish the black holes with other horizon-less compact objects ? [ Cardoso. et al., PRL 116, 171101 (2016] • 2. Was there EM radiations from the merging black holes ? [V. Connaughton, et.al. APJ. 826 (2016)L6 [ arXiv:1602.03920] Cited by 93 records] But, everyone will agree that this is the strongest gravity event that we have observed ! • Actually, LIGO got two birds in one stone ! GW150914/151226 • 1. One is, of course, about the first, “direct” detection of gravitational waves. • Cf. Indirect evidence was found in Hulse-Taylor’s neutron star binary (1975- 2005): Agrees with GW radiation in GR ! GW150914/151226 • 2. The other is about the first, “direct” detection of (spinning) black holes (if they are). • Cf. Indirect evidences have been known for many years: supermassive black holes at the galaxy centers. Messages of LIGO • 1. We open GW astronomy era, beyond EM Wave astronomy ! Messages of LIGO • 2. We open the strong gravity test era of GR, beyond the weak gravity tests in solar system !! • 2’. In particular, we open the new era of testing the black hole physics. • Before LIGO’s detection, black hole physics has been just an academic subject.
    [Show full text]