"New Trends in Astrophysics, Cosmology and Hep After
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
XIII Publications, Presentations
XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys. -
Unit 2 Basic Concepts of Positional Astronomy
Basic Concepts of UNIT 2 BASIC CONCEPTS OF POSITIONAL Positional Astronomy ASTRONOMY Structure 2.1 Introduction Objectives 2.2 Celestial Sphere Geometry of a Sphere Spherical Triangle 2.3 Astronomical Coordinate Systems Geographical Coordinates Horizon System Equatorial System Diurnal Motion of the Stars Conversion of Coordinates 2.4 Measurement of Time Sidereal Time Apparent Solar Time Mean Solar Time Equation of Time Calendar 2.5 Summary 2.6 Terminal Questions 2.7 Solutions and Answers 2.1 INTRODUCTION In Unit 1, you have studied about the physical parameters and measurements that are relevant in astronomy and astrophysics. You have learnt that astronomical scales are very different from the ones that we encounter in our day-to-day lives. In astronomy, we are also interested in the motion and structure of planets, stars, galaxies and other celestial objects. For this purpose, it is essential that the position of these objects is precisely defined. In this unit, we describe some coordinate systems (horizon , local equatorial and universal equatorial ) used to define the positions of these objects. We also discuss the effect of Earth’s daily and annual motion on the positions of these objects. Finally, we explain how time is measured in astronomy. In the next unit, you will learn about various techniques and instruments used to make astronomical measurements. Study Guide In this unit, you will encounter the coordinate systems used in astronomy for the first time. In order to understand them, it would do you good to draw each diagram yourself. Try to visualise the fundamental circles, reference points and coordinates as you make each drawing. -
Journal Issue 26 | October 2019
journal Issue 26 | October 2019 Communicating Astronomy with the Public Spotlighting a Black Hole What did it take to create the largest outreach campaign for an astronomical result? Tactile Subaru A project to make telescope technology accessible Naming ExoWorlds Update on the IAU100 NameExoWorlds campaign www.capjournal.org As part of the 100th anniversary commemorations, the International Astronomical Union (IAU) is organising the IAU100 NameExoWorlds global competition to allow any country in the world to give a popular name to a selected exoplanet and its News News host star. The final results of the competion will be announced in Decmeber 2019. Credit: IAU/L. Calçada. Editorial Welcome to the 26th edition of the CAPjournal! To start off, the first part of 2019 brought in a radical new era in astronomy with the first ever image showing a shadow of a black hole. For CAPjournal #26, part of the team who collaborated on the promotion of this image hs written a piece to show what it took to produce one of the largest astronomy outreach campaigns to date. We also highlight two other large outreach campaigns in this edition. The first is a peer-reviewed article about the 2016 solar eclipse in Indonesia from the founder of the astronomy website lagiselatan, Avivah Yamani. Next, an update on NameExoWorlds, the largest IAU100 campaign, as we wait for the announcement of new names for the ExoWorlds in December. Additionally, this issue touches on opportunities for more inclusive astronomy. We bring you a peer-reviewed article about outreach for inclusion by Dr. Kumiko Usuda-Sato and the speech “Diversity Across Astronomy Can Further Our Research” delivered by award-winning astronomy communicator Dr. -
Curriculum Vitae - 24 March 2020
Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution -
The Lore of the Stars, for Amateur Campfire Sages
obscure. Various claims have been made about Babylonian innovations and the similarity between the Greek zodiac and the stories, dating from the third millennium BCE, of Gilgamesh, a legendary Sumerian hero who encountered animals and characters similar to those of the zodiac. Some of the Babylonian constellations may have been popularized in the Greek world through the conquest of The Lore of the Stars, Alexander in the fourth century BCE. Alexander himself sent captured Babylonian texts back For Amateur Campfire Sages to Greece for his tutor Aristotle to interpret. Even earlier than this, Babylonian astronomy by Anders Hove would have been familiar to the Persians, who July 2002 occupied Greece several centuries before Alexander’s day. Although we may properly credit the Greeks with completing the Babylonian work, it is clear that the Babylonians did develop some of the symbols and constellations later adopted by the Greeks for their zodiac. Contrary to the story of the star-counter in Le Petit Prince, there aren’t unnumerable stars Cuneiform tablets using symbols similar to in the night sky, at least so far as we can see those used later for constellations may have with our own eyes. Only about a thousand are some relationship to astronomy, or they may visible. Almost all have names or Greek letter not. Far more tantalizing are the various designations as part of constellations that any- cuneiform tablets outlining astronomical one can learn to recognize. observations used by the Babylonians for Modern astronomers have divided the sky tracking the moon and developing a calendar. into 88 constellations, many of them fictitious— One of these is the MUL.APIN, which describes that is, they cover sky area, but contain no vis- the stars along the paths of the moon and ible stars. -
Review for Astronomy 5 Midterm and Final Midterm Covers First 70 Questions, Final Covers All 105
Review for Astronomy 5 Midterm and Final Midterm covers first 70 questions, Final covers all 105. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 1 is covered by Q1-4; Ch. 2 Q5-13; Ch. 3 Q14-21; Ch. 4 Q22-28; Ch. 5 Q29-38; Ch. 6 Q39-43; Ch. 14 Q44-49; Ch. 15 Q50-60; Ch. 16 Q61-65; Ch. 17 Q66-73; Ch. 18 Q74-82; Ch. 19 Q83-87; Ch. 20 Q88-94; Ch. 21 Q95-96; Ch. 22 Q97-100; Ch. 23 Q101-105 1) Which of the following has your "address" in the correct order? A) you, Earth, solar system, Milky Way, Local Group, Local Supercluster B) you, Earth, solar system, Local Group, Milky Way, Local Supercluster C) you, Earth, solar system, Local Group, Local Supercluster, Milky Way D) you, Earth, Local Group, Local Supercluster, solar system, Milky Way E) you, Earth, solar system, Milky Way, Local Supercluster, Local Group 2) Roughly how many stars are in the Milky Way Galaxy? A) 10 billion B) 1 billion C) 100 million D) 100 trillion E) 100 billion 3) Which scientists played a major role in overturning the ancient idea of an Earth-centered universe, and about when? A) Aristotle and Copernicus; about 400 years ago B) Huygens and Newton; about 300 years ago C) Copernicus, Kepler, and Galileo; about 400 years ago D) Newton and Einstein; about 100 years ago E) Aristotle and Plato; about 2,000 years ago 4) What is an astronomical unit? A) the average distance from Earth to the Sun B) any basic unit used in astronomy C) the length of time it takes Earth to revolve around the Sun D) the average speed of Earth around the Sun E) the diameter of Earth's orbit around the Sun 5) Which of the following statements about the celestial sphere is not true? A) The celestial sphere does not exist physically. -
The 1994 Arctic Ocean Section the First Major Scientific Crossing of the Arctic Ocean 1994 Arctic Ocean Section
The 1994 Arctic Ocean Section The First Major Scientific Crossing of the Arctic Ocean 1994 Arctic Ocean Section — Historic Firsts — • First U.S. and Canadian surface ships to reach the North Pole • First surface ship crossing of the Arctic Ocean via the North Pole • First circumnavigation of North America and Greenland by surface ships • Northernmost rendezvous of three surface ships from the largest Arctic nations—Russia, the U.S. and Canada—at 89°41′N, 011°24′E on August 23, 1994 — Significant Scientific Findings — • Uncharted seamount discovered near 85°50′N, 166°00′E • Atlantic layer of the Arctic Ocean found to be 0.5–1°C warmer than prior to 1993 • Large eddy of cold fresh shelf water found centered at 1000 m on the periphery of the Makarov Basin • Sediment observed on the ice from the Chukchi Sea to the North Pole • Biological productivity estimated to be ten times greater than previous estimates • Active microbial community found, indicating that bacteria and protists are significant con- sumers of plant production • Mesozooplankton biomass found to increase with latitude • Benthic macrofauna found to be abundant, with populations higher in the Amerasia Basin than in the Eurasian Basin • Furthest north polar bear on record captured and tagged (84°15′N) • Demonstrated the presence of polar bears and ringed seals across the Arctic Basin • Sources of ice-rafted detritus in seafloor cores traced, suggesting that ocean–ice circulation in the western Canada Basin was toward Fram Strait during glacial intervals, contrary to the present -
2015 October
TTSIQ #13 page 1 OCTOBER 2015 www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars Flash! Sept. 28, 2015: www.space.com/30674-flowing-water-on-mars-discovery-pictures.html www.space.com/30673-water-flows-on-mars-discovery.html - “boosting odds for life!” These dark, narrow, 100 meter~yards long streaks called “recurring slope lineae” flowing downhill on Mars are inferred to have been formed by contemporary flowing water www.space.com/30683-mars-liquid-water-astronaut-exploration.html INDEX 2 Co-sponsoring Organizations NEWS SECTION pp. 3-56 3-13 Earth Orbit and Mission to Planet Earth 13-14 Space Tourism 15-20 Cislunar Space and the Moon 20-28 Mars 29-33 Asteroids & Comets 34-47 Other Planets & their moons 48-56 Starbound ARTICLES & ESSAY SECTION pp 56-84 56 Replace "Pluto the Dwarf Planet" with "Pluto-Charon Binary Planet" 61 Kepler Shipyards: an Innovative force that could reshape the future 64 Moon Fans + Mars Fans => Collaboration on Joint Project Areas 65 Editor’s List of Needed Science Missions 66 Skyfields 68 Alan Bean: from “Moonwalker” to Artist 69 Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public-Private-Partnerships 71 An Evolved Commercialized International Space Station 74 Remembrance of Dr. APJ Abdul Kalam 75 The Problem of Rational Investment of Capital in Sustainable Futures on Earth and in Space 75 Recommendations to Overcome Non-Technical Challenges to Cleaning Up Orbital Debris STUDENTS & TEACHERS pp 85-96 Past TTSIQ issues are online at: www.moonsociety.org/international/ttsiq/ and at: www.nss.org/tothestarsOO TTSIQ #13 page 2 OCTOBER 2015 TTSIQ Sponsor Organizations 1. -
Cervantes.Es
NameExoWorlds contest organized by the International Astronomical Union (IAU) to name recently discovered exoplanets and their host stars (http://www.nameexoworlds.iau.org) www.estrellacervantes.es Proposal presented by the Planetario de Pamplona (Spain) and supported by the Spanish Astronomical Society (SEA) and the Instituto Cervantes to name the star mu Arae and its four exoplanets with the name of Cervantes and those of the main characters of the novel “The Ingenious Gentleman Don Quixote de la Mancha” RATIONALE: Somewhere in the Ara constellation, around a star without a proper name, only known by the letter µ, four planets trace their paths. Around an author of universal fame, also his four main characters revolve. We propose to elevate Cervantes to the status of a galactic Apolo, lending his name to the system's central star, while Don Quijote (Quixote), Rocinante, Sancho and Dulcinea are justly transfigured into his planetary escort. Quijote (mu Arae b), the leading character, in a somewhat eccentric orbit, befitting to his character, and beside his faithful companion Rocinante (mu Arae d) in the middle of the scene. Good Sancho (mu Arae e), the ingenious squire, moving slowly through the outer insulae of the system. The enchanted Dulcinea (mu Arae c), so difficult for Don Quijote to contemplate in her real shape, close to the heart of the writer. The importance of Miguel de Cervantes in the universal culture can hardly be overestimated. His major work, Don Quijote, considered the first modern novel of world literature and one of the most influential book in the entire literary canon, has many times been regarded as the best work of fiction ever written. -
IAU Division C Working Group on Star Names 2019 Annual Report
IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ WGSN Email: [email protected] The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials. -
The Distant Early Warning (DEW) Line: a Bibliography and Documentary Resource List
The Distant Early Warning (DEW) Line: A Bibliography and Documentary Resource List Prepared for the Arctic Institute of North America By: P. Whitney Lackenbauer, Ph.D. Matthew J. Farish, Ph.D. Jennifer Arthur-Lackenbauer, M.Sc. October 2005 © 2005 The Arctic Institute of North America ISBN 1-894788-01-X The DEW Line: Bibliography and Documentary Resource List 1 TABLE OF CONTENTS 1.0 PREFACE 2 2.0 BACKGROUND DOCUMENTS 3 2.1 Exchange of Notes (May 5, 1955) Between Canada and the United States Of America Governing the Establishment of a Distant Early Warning System in Canadian Territory.......................................................................................................... 3 2.2 The DEW Line Story in Brief (Western Electric Corporation, c.1960) ……………… 9 2.3 List of DEW Line Sites ……………………………………….…………………….... 16 3.0 ARCHIVAL COLLECTIONS 23 3.1 Rt. Hon. John George Diefenbaker Centre ……………………………………….…... 23 3.2 Library and Archives Canada …………………………………….…………………... 26 3.3 Department of National Defence, Directorate of History and Heritage ………………. 46 3.4 NWT Archives Council, Prince of Wales Northern Heritage Centre ……………….... 63 3.5 Yukon Territorial Archives, Whitehorse, YT ………………………………………… 79 3.6 Hudson Bay Company Archives ……………………………………………………... 88 3.7 Archives in the United States ……………………………………………………….… 89 4.0 PUBLISHED SOURCES 90 4.1 The Globe and Mail …………………………………………………………………………… 90 4.2 The Financial Post ………………………………………………………………………….…. 99 4.3 Other Print Media …………………………………………………………………..… 99 4.4 Contemporary Journal Articles ……………………………………………………..… 100 4.5 Government Publications …………………………………………………………….. 101 4.6 Corporate Histories ………………………………………………………………...... 103 4.7 Professional Journal Articles ………………………………………………………..… 104 4.8 Books ………………………………………………………………………………..… 106 4.9 Scholarly and Popular Articles ………………………………………………….……. 113 4.10 Environmental Issues and Cleanup: Technical Reports and Articles …………….…. 117 5.0 OTHER SOURCES 120 5.1 Theses and Dissertations ……………………………………………………………... -
Field Astronomy Circumpolar Star at Elongation ➢ at Elongation a Circumpolar Star Is at the Farthest Position from the Pole Either in the East Or West
Field Astronomy Circumpolar Star at Elongation ➢ At elongation a circumpolar star is at the farthest position from the pole either in the east or west. ➢ When the star is at elongation (East or West), which is perpendicular to the N-S line. ➢ Thus the ZMP is 90° as shown in the figure below. Distances between two points on the Earth’s surface ➢ Direct distance From the fig. above, in the spherical triangle APB P = Difference between longitudes of A and B BP = a = co-latitude of B = 90 – latitude of B AP = b = co-latitude of A = 90 – latitude of A Apply the cosine rule: cosp− cos a cos b CosP = sinab sin Find the value of p = AB Then the distance AB = arc length AB = ‘p’ in radians × radius of the earth ➢ Distance between two points on a parallel of latitude Let A and B be the two points on the parallel latitude θ. Let A’ and B’ be the corresponding points on the equator having the same longitudes (ФB, ФA). Thus from the ∆ O’AB AB = O’B(ФB - ФA) From the ∆ O’BO o O’B = OB’ sin (90- θ) Since =BOO ' 90 = R cos θ where R=Radius of the Earth. AB= (ФB - ФA) R cos θ where ФB , ФA are longitudes of B and A in radians. Practice Problems 1. Find the shortest distance between two places A and B on the earth for the data given below: Latitude of A = 14° N Longitude of A = 60°30‘E Latitude of B = 12° N Longitude of A = 65° E Find also direction of B from A.