Functional Graphical User Interfaces — an Implementation Based on GTK

Total Page:16

File Type:pdf, Size:1020Kb

Functional Graphical User Interfaces — an Implementation Based on GTK Functional Graphical User Interfaces — An Implementation based on GTK Micha lPa lka June 22, 2007 1 Introduction Graphical user interfaces (GUIs) as we know them today were created over 20 years ago, yet they are still notoriously difficult to implement. Evan a moder- ately complex interface requires a large amount of code to implement it. A study at Adobe [8] has shown that the amount of GUI event handling code reaches 1/3 in many projects and is a source of one-halve of bugs. This indicates that the popular techniques used in implementing GUIs are rather low-level because they require writing much more code that seems to be necessary. Despite numerous attempts at changing it, the usual imperative style of programming based on callbacks is still ubiquitous and all mainstream GUI toolkits are based on it. In that scheme, GUI functionality is implemented using callback routines which are triggered by external events, such as button click, and which manually update the program state along with performing required actions. This causes the GUI code responsible for updates to be split into small pieces scattered over multiple callbacks which operate on the same shared state. What emerges is code that that is very unstructured and is often metaphorically described by the term ‘spaghetti code’. Another problem that contributes to the difficulty of implementing GUIs is the lack of compositionality of code written in the callback style. There is no easy way of connecting two components together as events originating in one of them might require changing the state of the other which can be done by defining the components specifically a priori, or equipping them with complicated callback interfaces. To conquer these problems, we will present a programming model based on explicit modeling of dataflow diagrams. We assert that this representation is more natural and preserves locality of code much better that the callback style. Dataflow computation was found to be cleanly expressible in Haskell where combinator libraries provide means of creating domain-specific languages em- bedded in Haskell. Early efforts to employ dataflow representation of GUIs in Haskell include Fudgets [1] developed by Thomas Hallgren and Magnus Carls- son. Dataflow programming has been chosen as a base for Fudgets because it provided a ‘functional feel’ of programming GUIs. Later, the theme was picked up by the FRP group from Yale University who developed Fran [4], a framework for Functional Reactive Programming which was built around the concept of providing manageable denotational semantics to aid reasoning about 1 the code. Subsequently the framework was refined to be based on Arrows, a framework for encoding dataflow diagrams, and called YAMPA [7]. In order to model reactive systems that dynamically change their structure, a reactive programming framework must provide means of specifying changes to dataflow diagrams that occur over time. To implement this, the FRP frame- works based on Haskell use a concept called switching which means replacing a fragment of the diagram with a new one when a specific event happens. Imple- mentation of switching combinators impose significant constraints on the un- derlying structure of FRP libraries and complicates interaction with imperative GUI libraries. Fran and YAMPA are both general reactive programming libraries and do not contain GUI toolkits, however they serve as a base of several GUI toolkits, the most notable being Fruit [3, 2]. Fruit is an advanced functional GUI toolkit which is developed on top of YAMPA and uses a functional graphics library for drawing widgets. For experts, it supports, among other things, continuous and discrete signals, animation, switching and dynamic collections. Fruit has been adapted to run on top of an imperative GUI toolkit, wxWid- gets, by Bart Robinson in wxFruit [10] project. Running on top of a mainstream GUI toolkit is beneficial because all the widgets do not have to be implemented from scratch. However, interfacing the imperative style of wxWidgets with the functional style of Fruit raised issues that made it difficult to implement switch- ing combinators properly for widgets and reduced the possibility to use wxFruit for creating dynamic GUIs. In this report we present a functional GUI toolkit for Haskell similar to wxFruit, however developed from scratch to be based on GTK+ (called GTK later in the report), another mainstream GUI toolkit. The presented toolkit uses GTK for drawing widgets on the screen as well as for laying them out. Central idea to the toolkit is that its implementation performs actions only in response to external events and remains idle otherwise. Our main contributions are as follows: • Our implementation uses GTK for drawing widgets without giving up switching combinators; we provide a simple switching combinator. It is implemented using a novel technique based on restricted discrete signal types and double-step evaluation which allows for switching GTK widgets. • We provide an efficient way of supporting external data models, or Model- View-Controller separation, for complex data models. It is possible, for instance, to have two text views showing the same buffer and populating changes entered into any of them in an effective manner. Earlier func- tional toolkits did support MVC, however no emphasis was placed on this functionality and efficient propagation of changes was impossible. Our implementation has several limits: • It does not support animated widgets, since the implementation can wake up only in response to user actions. • We do not provide advanced switching combinators. • Layout treatment is limited to hierarchical layout using simple layout com- binators. 2 () String String () simpleTextEntry simpleTextOutput Figure 1: Diagrams of components representing text entries The remainder of the report is structured as follows. Section 2 provides a high-level overview of the toolkit and underlying computation model. Sec- tion 3 presents a more technical description along with a short introduction to Haskell and the Arrows framework useful for understanding the section. Sec- tion 4 presents the selected details from the internals of the toolkit. Section 5 discusses the limitations. Our contributions are located mainly in sections 3.5 and 4. 2 Overview of the toolkit In this section we will informally introduce the computation model that is the foundation of our toolkit by presenting example GUIs built using it. The model closely resembles synchronous dataflow programming. We will be building our GUIs out of components, called signal transformers, which we will connect together to form a diagram which will also be represented by a signal transformer. Each signal transformer represents a widget or a larger fragment of a GUI and contains input and output ports for exchanging data with other parts of the program. We can interact with a signal transformer only by (1) influencing it by feeding it appropriate input and (2) getting information from it by reading its output. This ensures that the functionality of components is well encapsulated with input and output ports being the only interface to them. 2.1 Primitive elements First diagram in Figure 1 illustrates an example primitive component of a GUI, a text field whose purpose is to hold text entered by user. We indicate that simpleTextEntry outputs a string of characters by drawing an outgoing arrow labeled with String. Even though simpleTextEntry doesn’t take any data on input we still add an input port to it for consistency with other components. In this case input has type () which is a type that has only one value and thus yields no information. Programmers with C background may call it ‘void’ while functional programmers will probably pronounce it ‘unit’. As expected, simpleTextEntry outputs the text that the widget holds at the moment. We call input and output of simpleTextEntry continuous signals because they yield values at any given moment of execution. However, all continuous signals are in fact step signals since their values change only on event occurrences and remain constant otherwise. We will need another simple component to display text computed by an ap- plication. The component simpleTextOutput shown in Figure 1 has a signature dual to that of simpleTextEntry that is it takes a String and outputs nothing (()). Note that simpleTextOutput is suitable for output only and that the user is prevented from editing it directly. 3 () String () simpleTextEntry simpleTextOutput Figure 2: Diagram of a simple GUI which accepts a string in the first text field and prints it in the second Figure 3: Actual GUI from Figure 2 2.2 Composite GUIs We can imagine a very simple GUI that we can build using these two compo- nents. Figure 2 shows diagram of a GUI where output of a text entry is fed to another text field. Anything that is entered in the first text field ends up also in the second. The actual window realizing the diagram is shown in Figure 3. This example is a GUI that does no explicit computations on the data; we merely move data around from one widget to another. To process data we introduce a special kind of a signal transformer. For any Haskell function f of type a -> b, which takes a value of type a and returns a value of type b, our toolkit allows the programmer to build a new component, written arr f, that performs the computations of f on its input and delivers the result to its output. Of course arr f has an input port of type a and an output port of type b and it does not exhibit itself as a visible widget. Once we can express arbitrary computations we are ready to present a more complex example. Here we are going to ask the user to provide her first and last name and show a greeting message to her. The function that will create the message has type (String, String) -> String which means that it takes a pair of Strings and returns a String.
Recommended publications
  • The Implementation of Metagraph Agents Based on Functional Reactive Programming
    ______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION The Implementation of Metagraph Agents Based on Functional Reactive Programming Valeriy Chernenkiy, Yuriy Gapanyuk, Anatoly Nardid, Nikita Todosiev Bauman Moscow State Technical University, Moscow, Russia [email protected], [email protected], [email protected], [email protected] Abstract—The main ideas of the metagraph data model and there is no doubt that it is the functional approach in the metagraph agent model are discussed. The metagraph programming that makes it possible to make such approach for semantic complex event processing is presented. implementation effectively. Therefore, the work is devoted to The metagraph agent implementation based on Functional the implementation of a multi-agent paradigm using functional Reactive Programming is proposed. reactive programming. The advantage of this implementation is that agents can work in parallel, supporting a functional I. INTRODUCTION reactive paradigm. Currently, models based on complex networks are The article is organized as follows. The section II discusses increasingly used in various fields of science, from the main ideas of the metagraph model. The section III mathematics and computer science to biology and sociology. discusses the metagraph agent model. The section IV discusses According to [1]: “a complex network is a graph (network) the Semantic Complex Event Processing approach and its’ with non-trivial topological features – features that do not occur correspondence to the metagraph model. The section V (which in simple networks such as lattices or random graphs but often is the novel result presented in the article) discusses the occur in graphs modeling of real systems.” The terms “complex metagraph agent implementation based on Functional Reactive network” and “complex graph” are often used synonymously.
    [Show full text]
  • Functional Reactive Programming, Refactored
    Functional Reactive Programming, Refactored Ivan Perez Manuel Barenz¨ Henrik Nilsson University of Nottingham University of Bamberg University of Nottingham [email protected] [email protected] [email protected] Abstract 18] and Reactive Values [21]. Through composition of standard Functional Reactive Programming (FRP) has come to mean many monads like reader, exception, and state, any desirable combination things. Yet, scratch the surface of the multitude of realisations, and of time domain, dynamic system structure,flexible handling of I/O there is great commonality between them. This paper investigates and more can be obtained in an open-ended manner. this commonality, turning it into a mathematically coherent and Specifically, the contributions of this paper are: practical FRP realisation that allows us to express the functionality We define a minimal Domain-Specific Language of causal • of many existing FRP systems and beyond by providing a minimal Monadic Stream Functions (MSFs), give them precise mean- FRP core parametrised on a monad. We give proofs for our theoreti- ing and analyse the properties they fulfill. cal claims and we have verified the practical side by benchmarking We explore the use of different monads in MSFs, how they nat- a set of existing, non-trivial Yampa applications running on top of • our new system with very good results. urally give rise to known reactive constructs, like termination, switching, higher-order, parallelism and sinks, and how to com- Categories and Subject Descriptors D.3.3 [Programming Lan- pose effects at a stream level using monad transformers [15]. guages]: Language Constructs and Features – Control Structures We implement three different FRP variants on top of our frame- • Keywords functional reactive programming, reactive program- work: 1) Arrowized FRP, 2) Classic FRP and 3) Signal/Sink- ming, stream programming, monadic streams, Haskell based reactivity.
    [Show full text]
  • Flapjax: Functional Reactive Web Programming
    Flapjax: Functional Reactive Web Programming Leo Meyerovich Department of Computer Science Brown University [email protected] 1 People whose names should be before mine. Thank you to Shriram Krishnamurthi and Gregory Cooper for ensuring this project’s success. I’m not sure what would have happened if not for the late nights with Michael Greenberg, Aleks Bromfield, and Arjun Guha. Peter Hopkins, Jay McCarthy, Josh Gan, An- drey Skylar, Jacob Baskin, Kimberly Burchett, Noel Welsh, and Lee Butterman provided invaluable input. While not directly involved with this particular project, Kathi Fisler and Michael Tschantz have pushed me along. 1 Contents 4.6. Objects and Collections . 32 4.6.1 Delta Propagation . 32 1. Introduction 3 4.6.2 Shallow vs Deep Binding . 33 1.1 Document Approach . 3 4.6.3 DOM Binding . 33 2. Background 4 4.6.4 Server Binding . 33 2.1. Web Programming . 4 4.6.5 Disconnected Nodes and 2.2. Functional Reactive Programming . 5 Garbage Collection . 33 2.2.1 Events . 6 2.2.2 Behaviours . 7 4.7. Evaluations . 34 2.2.3 Automatic Lifting: Transparent 4.7.1 Demos . 34 Reactivity . 8 4.7.2 Applications . 34 2.2.4 Records and Transparent Reac- 4.8 Errors . 34 tivity . 10 2.2.5 Behaviours and Events: Conver- 4.9 Library vs Language . 34 sions and Event-Based Derivation 10 4.9.1 Dynamic Typing . 34 4.9.2 Optimization . 35 3. Implementation 11 3.1. Topological Evaluation and Glitches . 13 4.9.3 Components . 35 3.1.1 Time Steps . 15 4.9.4 Compilation .
    [Show full text]
  • Computer Science 1
    Computer Science 1 Computer Science Department Website: https://www.cs.uchicago.edu Program of Study The computer science program offers BA and BS degrees, as well as combined BA/MS and BS/MS degrees. Students who earn the BA are prepared either for graduate study in computer science or a career in industry. Students who earn the BS degree build strength in an additional field by following an approved course of study in a related area. The department also offers a minor. Where to Start The Department of Computer Science offers several different introductory pathways into the program. In consultation with their College adviser and the Computer Science Department advisers, students should choose their introductory courses carefully. Some guidelines follow. For students intending to pursue further study in computer science, we recommend CMSC 15100 Introduction to Computer Science I or CMSC 16100 Honors Introduction to Computer Science I as the first course. CMSC 15100 does not assume prior experience or unusually strong preparation in mathematics. Students with programming experience and strong preparation in mathematics should consider CMSC 16100 Honors Introduction to Computer Science I. First-year students considering a computer science major are strongly advised to register for an introductory sequence in the Winter or Spring Quarter of their first year, and it is all but essential that they start the introductory sequence no later than the second quarter of their second year. Students who are not intending to major in computer science, but are interested in getting a rigorous introduction to computational thinking with a focus on applications are encouraged to start with CMSC 12100 Computer Science with Applications I.
    [Show full text]
  • Compiling Real Time Functional Reactive Programming
    Compiling Real Time Functional Reactive Programming Dana N. Xu and Siau-Cheng Khoo Department of Computer Science School of Computing National University of Singapore {xun,khoosc}@comp.nus.edu.sg ABSTRACT 1. INTRODUCTION Most of the past languages for reactive systems are based Reactive systems are required to react in a timely man- on synchronous dataflow. Recently, a new reactive lan- ner to external events. Their use can be found in a broad guage, called Real-Time Functional Reactive Programming range of applications, ranging from high-end consumer prod- (RT-FRP) [18] , has been proposed based on the functional ucts (digital radio, intelligent cookers) to systems used in paradigm. The unique feature of this language is the high- mission-critical applications (such as air-craft and nuclear- level abstraction provided in the form of behaviors for conti- power stations). nuous-time signals, and events for discrete-time signals. RT- Programming these systems poses a great challenge, and FRP also features some performance guarantees in the form a number of programming languages have been proposed of bounded runtime and space usage for each reactive com- over the last two decades. Two main concerns are typically putation step. addressed in these languages. Firstly, some features must In this paper, we propose a new compilation scheme for be available to express signals and events, and how they are RT-FRP. Our compilation scheme is based on two key stages. transformed by the intended reactive systems. Secondly, we In the first stage, we translate RT-FRP program to an in- must be able to show that each reaction could be carried termediate functional code.
    [Show full text]
  • Haskell-Like S-Expression-Based Language Designed for an IDE
    Department of Computing Imperial College London MEng Individual Project Haskell-Like S-Expression-Based Language Designed for an IDE Author: Supervisor: Michal Srb Prof. Susan Eisenbach June 2015 Abstract The state of the programmers’ toolbox is abysmal. Although substantial effort is put into the development of powerful integrated development environments (IDEs), their features often lack capabilities desired by programmers and target primarily classical object oriented languages. This report documents the results of designing a modern programming language with its IDE in mind. We introduce a new statically typed functional language with strong metaprogramming capabilities, targeting JavaScript, the most popular runtime of today; and its accompanying browser-based IDE. We demonstrate the advantages resulting from designing both the language and its IDE at the same time and evaluate the resulting environment by employing it to solve a variety of nontrivial programming tasks. Our results demonstrate that programmers can greatly benefit from the combined application of modern approaches to programming tools. I would like to express my sincere gratitude to Susan, Sophia and Tristan for their invaluable feedback on this project, my family, my parents Michal and Jana and my grandmothers Hana and Jaroslava for supporting me throughout my studies, and to all my friends, especially to Harry whom I met at the interview day and seem to not be able to get rid of ever since. ii Contents Abstract i Contents iii 1 Introduction 1 1.1 Objectives ........................................ 2 1.2 Challenges ........................................ 3 1.3 Contributions ...................................... 4 2 State of the Art 6 2.1 Languages ........................................ 6 2.1.1 Haskell ....................................
    [Show full text]
  • A Deterministic Model of Concurrent Computation for Reactive Systems by Hendrik Marten Frank Lohstroh a Dissertation S
    Reactors: A Deterministic Model of Concurrent Computation for Reactive Systems by Hendrik Marten Frank Lohstroh A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Edward A. Lee, Chair Professor Gul A. Agha Professor Alberto L. Sangiovanni-Vincentelli Professor Sanjit A. Seshia Fall 2020 Reactors: A Deterministic Model of Concurrent Computation for Reactive Systems Copyright 2020 by Hendrik Marten Frank Lohstroh i Abstract Reactors: A Deterministic Model of Concurrent Computation for Reactive Systems by Hendrik Marten Frank Lohstroh Doctor of Philosophy in Computer Science University of California, Berkeley Professor Edward A. Lee, Chair Actors have become widespread in programming languages and programming frameworks focused on parallel and distributed computing. While actors provide a more disciplined model for concurrency than threads, their interactions, if not constrained, admit nondeter- minism. As a consequence, actor programs may exhibit unintended behaviors and are less amenable to rigorous testing. The same problem exists in other dominant concurrency mod- els, such as threads, shared-memory models, publish-subscribe systems, and service-oriented architectures. We propose \reactors," a new model of concurrent computation that combines synchronous- reactive principles with a sophisticated model of time to enable determinism while preserving much of the style and performance of actors. Reactors promote modularity and allow for dis- tributed execution. The relationship that reactors establish between events across timelines allows for: 1. the construction of programs that react predictably to unpredictable external events; 2. the formulation of deadlines that grant control over timing; and 3.
    [Show full text]
  • How I Teach Functional Programming
    How I Teach Functional Programming Johannes Waldmann Fakult¨atIMN, HTWK Leipzig, D-04275 Leipzig Abstract. I teach a course Advanced Programming for 4th semester bachelor students of computer science. In this note, I will explain my reasons for choosing the topics to teach, as well as their order, and pre- sentation. In particular, I will show how I include automated exercises, using the Leipzig autotool system. 1 Motivation In my course Advanced Programming, I aim to show mathematical models (say, the lambda calculus) as well as their concrete realization first in its \pure" form in a functional programming language (Haskell [Mar10]), then also in some of today's multi-paradigm languages (imperative and object-oriented, actually mostly class-based) that students already known from their programming courses in their first and second semester. My course is named \advanced" because it introduces functional programming (but it's not advanced functional program- ming). I will explain this in some detail now. Motivation (this section) and discussion will be somewhat opinionated, starting with the following paragraph. I still think it will be clear on what facts my opinion is based, and I hope that at least the facts (examples and exercises) are re-usable by other academic teachers of func- tional programming. The slides for the most recent instance of this lecture are at https://www.imn.htwk-leipzig.de/~waldmann/edu/ss17/fop/folien/, and online exercises can be tried here: https://autotool.imn.htwk-leipzig.de/ cgi-bin/Trial.cgi?lecture=238 When teaching programming, the focus should really be on how to solve the task at hand (given an algorithm, produce executable code) using available tools (programming languages, libraries), and to understand the fundamentals that these tools are based on.
    [Show full text]
  • Reactive Probabilistic Programming
    Reactive Probabilistic Programming Pedro Zuidberg Dos Martires Sebastijan Dumančić KU Leuven KU Leuven [email protected] [email protected] Abstract event might be the delay, and the actor has to reason about Reactive programming allows a user to model the flow of a the possibility of conflicting train routes. program for event-driven streams of data without explicitly stating its control flow. However, many domains are inher- 2 Reactive Probabilistic Programming ently uncertain and observations (the data) might ooze with Reactive programming [1], which falls itself under the declar- noise. Probabilistic programming has emerged as the go-to ative programming paradigm, has recently gained traction as technique to handle such uncertain domains. Therefore, we a paradigm for event-driven applications. A common trait of introduce the concept of reactive probabilistic programming, event driven-applications is that external events at discrete which allows to unify the methods of reactive programming points in time, such as a mouse click from a user on a web and probabilistic programming. Herewith, we broaden the page, drive the execution of a program. The increased inter- scope of probabilistic programming to event-driven data. est has resulted in various implementations, for instance, in Haskell [3] and Scala [5]. Recently also the ReactiveX 2 library Keywords probabilistic programming, reactive program- emerged, with bindings to various different languages. The ming, declarative programming, event-driven data two distinguishing features of reactive programming are: 1 Introduction & Motivation • Behaviors change continuously over time and are com- posable first-class citizens in the reactive programming The declarative programming paradigm allows the user to paradigm.
    [Show full text]
  • Reactive Programming and Clean Architecture in Android Development
    Tung Bui Duy Reactive Programming and Clean Architecture in Android Development Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Information Technology Thesis 27 April 2017 Abstract Author(s) Tung Bui Duy Title Reactive programming and clean architecture in Android de- veloment Number of Pages 47 pages Date 12-04-2017 Degree Bachelor of Engineering Degree Programme Information Technology Specialisation option Software Engineering Instructor(s) Peter Hjort, Principal Lecturer Software application becomes more and more complex nowadays. To provide a good software application that is easy to scale, developers need to design a good software ar- chitecture. The purpose of the project was to find a good Android architecture that can be used in later projects of the team C63-Studio. The project was implemented by refactoring a lega- cy Android application of team C63-Studio using clean architecture, dependency injection and reactive programming. From the refactoring experience, the team realized advantages and disadvantages of ap- plying clean architecture and reactive programming. While there are some disadvantages when applying this architecture for small applications, the advantages for applications that require scalability easily overwhelm the disadvantages. Based on the analysis, the C63 studio development team decided to use this architecture for later Android projects. Keywords Android, Reactive Programming, Clean Architecture, MVP, RxJava, Dagger2, Retrofit Contents 1 Introduction 1 2 Sunshine Application 2
    [Show full text]
  • And/Or Hierarchies and Round Abstraction
    And/Or Hierarchies and Round Abstraction Radu Grosu Department of Computer and Information Science University of Pennsylvania Email: [email protected] URL: www.cis.upenn.edu/~grosu Abstract. Sequential and parallel composition are the most fundamen- tal operators for incremental construction of complex concurrent sys- tems. They reflect the temporal and respectively the spatial properties of these systems. Hidingtemporal detail like internal computation steps supports temporal scalability and may turn an asynchronous system to a synchronous one. Hidingspatial detail like internal variables sup- ports spatial scalability and may turn a synchronous system to an asyn- chronous one. In this paper we show on hand of several examples that a language explicitly supporting both sequential and parallel composition operators is a natural settingfor designingheterogeneous synchronous and asynchronous systems. The language we use is Shrm,avisuallan- guage that backs up the popular and/or hierarchies of statecharts with a well defined compositional semantics. 1 Introduction With the advent of very large scale integration technology (VLSI), digital circuits became too complex to be designed and tested on a breadboard.The hardware community introduced therefore languages like Verilog and VHDL [Ver,Vhdl] that allow to describe the architectural and the behavioral structure of a complex circuit in a very abstract and modular way.Architectural modularity means that a system is composed of subsystems using the operations of parallel composition and hiding of variables.Behavioral hierarchy means that a system is composed of subsystems using the operations of sequential composition and hiding of internal computation steps.Verilog allows the arbitrary nesting of the architecture and behavior hierarchies.
    [Show full text]
  • Reactive Relational Database Connectivity for Java and JVM
    R2DBC Revealed Reactive Relational Database Connectivity for Java and JVM Programmers — Robert Hedgpeth R2DBC Revealed Reactive Relational Database Connectivity for Java and JVM Programmers Robert Hedgpeth R2DBC Revealed: Reactive Relational Database Connectivity for Java and JVM Programmers Robert Hedgpeth Chicago, IL, USA ISBN-13 (pbk): 978-1-4842-6988-6 ISBN-13 (electronic): 978-1-4842-6989-3 https://doi.org/10.1007/978-1-4842-6989-3 Copyright © 2021 by Robert Hedgpeth This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
    [Show full text]