Glial Neurobiology a Textbook

Total Page:16

File Type:pdf, Size:1020Kb

Glial Neurobiology a Textbook Glial Neurobiology A Textbook Alexei Verkhratsky University of Manchester Arthur Butt University of Portsmouth Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone +44 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Anniversary Logo Design: Richard J. Pacifico Library of Congress Cataloging in Publication Data Verkhratskii, A. N. (Aleksei Nestorovich) Glial neurobiology : a textbook / Alexei Verkhratsky, Arthur Butt. p. ; cm. Includes bibliographical references and index. ISBN 978-0-470-01564-3 (cloth : alk. paper) 1. Neuroglia. I. Butt, Arthur. II. Title. [DNLM: 1. Neuroglia. WL 102 V519g 2007] QP363.2.V47 2007 611.0188—dc22 2007015819 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 978-0-470-01564-3 (HB) ISBN 978-0-470-51740-6 (PB) Typeset in 10.5/12.5pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. Contents Preface xi List of abbreviations xiii PART I Physiology of Glia 1 1 Introduction to Glia 3 1.1 Founders of glial research: from Gabriel Valentin to Karl-Ludwig Schleich 3 1.2 Beginning of the modern era 11 1.3 Changing concepts: Glia express molecules of excitation 11 1.4 Glia and neurones in dialogue 12 2 General Overview of Signalling in the Nervous System 13 2.1 Intercellular signalling: Wiring and volume modes of transmission 13 2.2 Intracellular signalling 17 3 Morphology of Glial Cells 21 3.1 Astrocytes 21 3.2 Oligodendrocytes 24 3.3 NG2 expressing glia 26 3.4 Schwann cells 27 3.5 Microglia 28 4 Glial Development 29 4.1 Phylogeny of glia and evolutionary specificity of glial cells in human brain 29 4.2 Macroglial cells 32 4.3 Astroglial cells are brain stem cells 35 4.4 Schwann cell lineage 36 4.5 Microglial cell lineage 37 5 General Physiology of Glial Cells 39 5.1 Membrane potential and ion distribution 39 5.2 Ion channels 39 5.3 Receptors to neurotransmitters and neuromodulators 42 5.4 Glial syncytium – gap junctions 58 viii CONTENTS 5.5 Glial calcium signalling 61 5.6 Neurotransmitter release from astroglial cells 71 5.7 Glial neurotransmitter transporters 76 5.8 Glial cells produce and release neuropeptides 79 5.9 Glial cell derived growth factors 80 6 Neuronal–Glial Interactions 83 6.1 Close apposition of neurones and astroglia: the tripartite synapse 83 6.2 Neuronal–glial synapses 85 6.3 Signalling from neurones to astrocytes 86 6.4 Signalling from astrocytes to neurones 89 6.5 Signalling between oligodendrocytes and neurones 90 6.6 Signalling between Schwann cells and peripheral nerves and nerve endings 90 PART II Glial Cells and Nervous System Function 93 7 Astrocytes 95 7.1 Developmental function – producing new neural cells 96 7.2 Developmental function – neuronal guidance 97 7.3 Regulation of synaptogenesis and control of synaptic maintenance and elimination 99 7.4 Structural function – creation of the functional microarchitecture of the brain 101 7.5 Vascular function – creation of glial–vascular interface (blood–brain barrier) and glia–neurone–vascular units 102 7.6 Regulation of brain microcirculation 105 7.7 Ion homeostasis in the extracellular space 106 7.8 Regulation of extracellular glutamate concentration 112 7.9 Water homeostasis and regulation of the extracellular space volume 114 7.10 Neuronal metabolic support 116 7.11 Astroglia regulate synaptic transmission 119 7.12 Integration in neuronal–glial networks 121 7.13 Astrocytes as cellular substrate of memory and consciousness? 121 8 Oligodendrocytes, Schwann Cells and Myelination 125 8.1 The myelin sheath 127 8.2 Myelination 141 8.3 Myelin and propagation of the action potential 148 PART III Glia and Nervous System Pathology 153 9 General Pathophysiology of Glia 155 9.1 Reactive astrogliosis 155 9.2 Wallerian degeneration 157 9.3 Activation of microglia 160 CONTENTS ix 10 Glia and Diseases of the Nervous System 167 10.1 Alexander’s disease 167 10.2 Spreading depression 167 10.3 Stroke and ischaemia 168 10.4 Cytotoxic brain oedema 178 10.5 Neurodegenerative diseases 180 10.6 Neuropathic pain 185 10.7 Demyelinating diseases 186 10.8 Infectious diseases 187 10.9 Peripheral neuropathies 190 10.10 Psychiatric diseases 192 10.11 Gliomas 194 Conclusions 197 Recommended literature 199 Author Index 207 Subject Index 209 Preface Contemporary understanding of brain organization and function follows the neuronal doctrine, which places the nerve cell and neuronal synaptic contacts at the very centre of the nervous system. This doctrine considers glia as passive supportive cells, which are not involved in the informational exchange, and there- fore secondary elements of the nervous system. In the last few decades, however, our perception of the functional organiza- tion of the brain has been revolutionized. New data forces us to reconsider the main postulate of the neuronal doctrine – that neurones and synapses are the only substrate of integration in the central nervous system. We now learn that astroglial cells, which are the most numerous cells in the brain, literally control the naissance, development, functional activity and death of neuronal circuits. Astroglial cells are in fact the stem elements from which neurones are born. They also create the compartmentalization of the CNS and integrate neurones, synapses, and brain capillaries into inter-dependent functional units. Furthermore, astroglial cells form a functional syncytium, connected through gap junction bridges, which provides an elaborate intercellular communication route. This allows direct translo- cation of ions, metabolic factors and second messengers throughout the CNS, thereby providing a sophisticated means for information exchange. In a way the binary coded electrical communication within neuronal networks may be consid- ered as highly specialized for rapid conveyance of information, whereas astroglial cells may represent the true substance for information processing, integration and storage. Will this truly heretical theory which subordinates neurones to glia be victorious at the end? Forthcoming years hold the answer. When writing this book we have attempted to create a concise yet comprehensive account of glial cells and their role in physiology and pathology of the nervous system. We hope very much that this account may help the reader to discover a fascinating world of brain ‘secondary’ cells, which in fact are essential elements of the nervous system, whose functions and importance are yet to be fully appreciated. Alexei Verkhratsky Arthur Butt List of abbreviations AC adenylate cyclase ACh acetylcholine AIDS acquired immunodeficiency syndrome AMPA -amino-3-hydroxy-5-methyl--isoxazolepropionate AQP aquaporins (water channels) ATP adenosine triphosphate BDNF brain-derived neurotrophic factor BK bradykinin cAMP cyclic adenosine monophosphate cGMP cyclic guanosine monophosphate CaV voltage-gated calcium channels CNP 2,3-cyclic nucleotide-3-phosphodiesterase CNS central nervous system COX cyclooxygenase CSF cerebrospinal fluid DAG diacylglycerol + + 2+ − EK,ENa,ECa,ECl equilibrium potential for K ,Na,Ca and Cl respectively EAAT excitatory amino acid transporter EM electron microscopy ET endothelin GABA -aminobutiric acid GC guanilate cyclase GFAP glial
Recommended publications
  • Professor Of
    CURRICULUM VITAE Name: ALEXEI VERKHRATSKY Date of birth: July 30, 1961 Citizenship: British Title: MD, PhD, Dr. Sci. Department: Professor of Neurophysiology Faculty of Life Sciences, The University of Manchester Michael Smith Building, Oxford Road, Manchester M13 9PT, UK e-mail: [email protected] Current appointments: Professor of Neurophysiology Higher Education and academic degrees: 1993: Doctor of Medical Sciences, Bogomoletz Institute of Physiology, Physiology, "Mechanisms of calcium signal generation in neurones and glial cells". 1983-1986: PhD, Bogomoletz Institute of Physiology: Physiology, "Tetrodotoxin sensitive ionic currents in the membrane of isolated cardiomyocytes" 1977 - 1983: MD, Kiev Medical Institute. Honours: 2003: Elected Member of Academia Europaea 2006 - 2013: Chairman of the Physiology and Medicine Section of the Academia Europaea; Member of the Council 2012: Elected member of Real Academia Nacional de Farmacia, Spain 2012: Research Award of German Purine Club 2012: Elected member of European Dana Alliance for the Brain Initiatives (since 2015 Dana Alliance for Brain Initiatives). 2013: Recipient of Dozor Visiting Scholar award, Ben Gurion University, Beer Sheva, Israel. 2013: Fellow of Japan Society for the Promotion of Science (JSPS). 2013: Elected member of Nationale Akademie der Wissenschaften Leopoldina (The German National Academy of Sciences Leopoldina). 2016 - present: Vice-Presidnet and Chairmen of the Class C (Life Science and Medicine) of the Academia Europaea. 2016: Copernicus Gold
    [Show full text]
  • Astrocytes in Alzheimer's Disease: Pathological Significance
    cells Review Astrocytes in Alzheimer’s Disease: Pathological Significance and Molecular Pathways Pranav Preman 1,2,† , Maria Alfonso-Triguero 3,4,†, Elena Alberdi 3,4,5, Alexei Verkhratsky 3,6,7,* and Amaia M. Arranz 3,7,* 1 VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; [email protected] 2 Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), 3000 Leuven, Belgium 3 Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; [email protected] (M.A.-T.); [email protected] (E.A.) 4 Department of Neurosciences, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain 5 Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain 6 Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK 7 Ikerbasque Basque Foundation for Science, 48009 Bilbao, Spain * Correspondence: [email protected] (A.V.); [email protected] (A.M.A.) † These authors contributed equally to this paper. Abstract: Astrocytes perform a wide variety of essential functions defining normal operation of the nervous system and are active contributors to the pathogenesis of neurodegenerative disorders such as Alzheimer’s among others. Recent data provide compelling evidence that distinct astrocyte states are associated with specific stages of Alzheimer´s disease. The advent of transcriptomics technologies enables rapid progress in the characterisation of such pathological astrocyte states. In this review, Citation: Preman, P.; Alfonso-Triguero, M.; Alberdi, E.; we provide an overview of the origin, main functions, molecular and morphological features of Verkhratsky, A.; Arranz, A.M.
    [Show full text]
  • Physiology of Neuronalâ
    Neurochemistry International 57 (2010) 332–343 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/neuint Physiology of neuronal–glial networking Alexei Verkhratsky a,b,* a Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, UK b Institute of Experimental Medicine, ASCR, Prague, Czech Republic ARTICLE INFO ABSTRACT Article history: Neuronal–glial networks are the substrate for the brain function. Evolution of the nervous system Received 5 November 2009 resulted in the appearance of highly specialized neuronal web optimized for rapid information transfer. Received in revised form 5 January 2010 This neuronal web is embedded into glial syncytium, thereby creating sophisticated neuronal–glial Accepted 1 February 2010 circuitry were both types of neural cells are working in concert, ensuring amplification of brain Available online 6 February 2010 computational power. In addition neuroglial cells are fundamental for control of brain homeostasis and they represent the intrinsic brain defence system, being thus intimately involved in pathogenesis of Keywords: neurological diseases. Glia ß 2010 Elsevier Ltd. All rights reserved. Astrocytes Glutamate receptors Purinoceptors Neuronal–glial signalling How does the brain work? How did the intellect evolved? Why 1. Neuronal–glial circuits form the nervous system human being is so different from the beast? How do we think? These questions represent the most formidable challenge the 1.1. Neuroglia: the beginning natural sciences ever faced. The evolution of the nervous functions went from single neurones loosely connected into the diffuse The cell, as the basic unit of the life, was initially discovered by nervous system through the first conglomerates of neural cells Robert Hooke (who also contemplated the name) in 1665 (Hooke, assembled into ganglia to the centralized nervous system.
    [Show full text]
  • Chapter 1. History of Astrocytes
    CHAPTER 1 History of Astrocytes OUTLINE Overview 2 Camillo Golgi 16 Naming of the “Astrocyte” 18 Neuron Doctrine 2 Santiago Ramón y Cajal and Glial Purkinje and Valentin’s Kugeln 2 Functions 18 Scheiden, Schwann, and Cell Theory 3 Glial Alterations in Neurological Remak’s Remarkable Observation 4 Disease: Early Concepts 21 The Neurohistology of Robert Bentley Todd 5 Wilder Penfield, Pío Del Río-Hortega, Wilhelm His’ Seminal Contributions 7 and Delineation of the Fridtjof Nansen: The Renaissance Man 8 “Third Element” 22 Auguste Forel: Neurohistology, Penfield’s Idea to Go to Spain 24 Myrmecology, and Sexology 8 Types of Neuroglia 26 Rudolph Albert Von Kölliker: Penfield’s Description of Oligodendroglia 27 Neurohistologist and Cajal Champion 10 Coming Together: The Fruit of Penfield’s Waldeyer and the Neuronlehre Spanish Expedition 30 (Neuron Doctrine) 11 Beginning of the Modern Era 33 Conclusion 12 References 34 Development of the Concept of Neuroglia 12 Rudolf Virchow 12 Other Investigators Develop More Detailed Images of Neuroglial Cells 15 Astrocytes and Epilepsy DOI: http://dx.doi.org/10.1016/B978-0-12-802401-0.00001-6 1 © 2016 Elsevier Inc. All rights reserved. 2 1. HIStorY OF AStrocYTES OVERVIEW In this introduction to the history of astrocytes, we wish to accomplish the following goals: (1) contextualize the evolution of the concept of neuroglia within the development of cell theory and the “neuron doctrine”; (2) explain how the concept of neuroglia arose and evolved; (3) provide an interesting overview of some of the investigators involved in defin- ing the cell types in the central nervous system (CNS); (4) select the interaction of Wilder Penfield and Pío del Río-Hortega for a more in-depth historical vignette portraying a critical period during which glial cell types were being identified, described, and separated; and (5) briefly summarize further developments that presaged the modern era of neurogliosci- ence.
    [Show full text]
  • Neurotropic Viruses, Astrocytes, and COVID-19
    fncel-15-662578 April 3, 2021 Time: 12:32 # 1 REVIEW published: 09 April 2021 doi: 10.3389/fncel.2021.662578 Neurotropic Viruses, Astrocytes, and COVID-19 Petra Tavcarˇ 1, Maja Potokar1,2, Marko Kolenc3, Miša Korva3, Tatjana Avšic-Župancˇ 3, Robert Zorec1,2* and Jernej Jorgacevskiˇ 1,2 1 Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, 2 Celica Biomedical, Ljubljana, Slovenia, 3 Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may Edited by: also target the respiratory center in the brainstem and cause silent hypoxemia. However, Alexei Verkhratsky, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. The University of Manchester, United Kingdom In this paper, we first address the involvement of astrocytes in COVID-19 and then Reviewed by: elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as Arthur Morgan Butt, several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, University of Portsmouth, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms United Kingdom Alexey Semyanov, that target astroglial cells in the CNS.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Name: ALEXEI VERKHRATSKY Date of birth: July 30, 1961 Nationality: UK/Ukraine Title: MD, PhD, Dr. Sci. Department: Professor of Neurophysiology Faculty of Life Sciences, The University of Manchester Michael Smith Building, Oxford Road, Manchester M13 9PT, UK e-mail: [email protected] Current appointments: Professor of Neurophysiology Higher Education and academic degrees: 1993: Doctor of Medical Sciences, Bogomoletz Institute of Physiology, Physiology, "Mechanisms of calcium signal generation in neurones and glial cells". 1983-1986: PhD, Bogomoletz Institute of Physiology: Physiology, "Tetrodotoxin sensitive ionic currents in the membrane of isolated cardiomyocytes" 1977 - 1983: MD, Kiev Medical Institute. Honours: 2003: Elected Member of Academia Europaea 2006 - 2013: Chairman of the Physiology and Medicine Section of the Academia Europaea; Member of the Council 2015 - : Co-Chairmen of the Class IV (Life science and Medicine) of the Academia Europaea 2012: Elected member of Real Academia Nacional de Farmacia, Spain 2012: Research Award of German Purine Club 2012: Elected member of European Dana Alliance for the Brain Inititives (since 2015 Dana Alliance for Brain Initiatives). 2013: Recipient of Dozor Visiting Scholar award, Ben Gurion University, Beer Sheva, Israel. 2013: Fellow of Japan Society for the Promotion of Science (JSPS). 2013: Elected member of Nationale Akademie der Wissenschaften Leopoldina (The German National Academy of Sciences Leopoldina). Membership of academic societies: The Physiological
    [Show full text]
  • Alexei Verkhratsky
    Curriculum vitae (date of preparation – 01.04.2014) Alexei Verkhratsky PERSONAL DATA Alexei Verkhratsky Nizhny Novgorod Neuroscience Center University of Nizhny Novgorod 23 b., 7 h., Gagarina ave, Nizhny Novgorod, 603950, Russia +7 (831) 462 37 64 +7 (920) 111 91 44 [email protected] http://neuro.nnov.ru/ Skype alexei.verkhratsky1 Sex M | Date of birth 30/07/1961 | Citizenship UK | Ukraine EMPLOYMENT From April 2014 Head Laboratory of ―Neuronal-glial interactions in health and disease‖ University of Nizhny Novgorod Nizhny Novgorod, Russia From September 2012 Adjunct director Achucarro Basque Centre for Neuroscience Bilbao, Spain January 2011 – December 2013 Visitor Honorary Professor Kyushu University Fukuoka, Japan From May 2010 Visitor Professor/Consultant Basque Research Council (Ikerbasque) March 2007 – June 2010 Visitor Professor; Head Department of Molecular Neurophysiology Institute of Experimental Medicine, ACSR Prague, Czech Republic From March 2002 Professor of Neurophysiology Faculty of Life Sciences The University of Manchester Manchester, UK June 2002 – August 2004 Chairman Division of Neuroscience at the School of Biological Sciences The University of Manchester Manchester, UK July 2001 – February 2002 Reader in Neurophysiology School of Biological Sciences The University of Manchester Manchester, UK September 1999 – June 2001 Senior Lecturer School of Biological Sciences The University of Manchester Manchester, UK August 1995 – August 1999 Senior Research Scientist Department of Cellular Neuroscience Max-Delbrück
    [Show full text]
  • Neuroglia at the Crossroads of Homoeostasis, Metabolism and Signalling: Evolution of the Concept
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central ASN NEURO 4(4):art:e00087.doi:10.1042/AN20120019 OVERVIEW Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept I Vladimir Parpura*,{,{,11 and Alexei Verkhratsky{,{, 1 *Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy and Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294, U.S.A. {IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain {Department of Neurosciences, University of the Basque Country UPV/EHU, 48940, Leioa, Spain 1School of Medicine, University of Split, 21000 Split, Croatia I Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, U.K. Cite this article as: Parpura V and Verkhratsky A (2012) Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept. ASN NEURO 4(4):art:e00087.doi:10.1042/AN20120019 ABSTRACT would study the nervous system in its real relations in the body, it is extremely important to have a knowledge of that substance also which lies between the proper nervous parts, Ever since Rudolf Virchow in 1858 publicly announced his holds them together and gives the whole its form in a greater apprehension of neuroglia being a true connective or less degree’; translated from German) – Rudolf Virchow, substance, this concept has been evolving to encompass Die Cellularpathologie, p. 246 (Virchow, 1858). a heterogeneous population of cells with various forms and With these words, Rudolf Virchow publicly announced the functions.
    [Show full text]
  • Disruption of Oligodendrocyte Progenitor Cells Is an Early Sign of Pathology in the Triple Transgenic Mouse Model of Alzheimer's Disease
    Neurobiology of Aging 94 (2020) 130e139 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Disruption of oligodendrocyte progenitor cells is an early sign of pathology in the triple transgenic mouse model of Alzheimer's disease Ilaria Vanzullia, Maria Papanikolaoua, Irene Chacon De-La-Rochaa, Francesca Pieropana, Andrea D. Rivera a, Diego Gomez-Nicola g, Alexei Verkhratskye,f, José Julio Rodríguezb,c,d, Arthur M. Butta,* a Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK b BioCruces Health Research Institute, Barakaldo, Spain c Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain d IKERBASQUE, Basque Foundation for Science, Medical School, Bilbao, Spain e Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK f Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain g School of Biological Sciences, University of Southampton, Southampton, UK article info abstract Article history: There is increasing evidence that myelin disruption is related to cognitive decline in Alzheimer's disease Received 15 April 2020 (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by adult Received in revised form 29 May 2020 oligodendrocyte progenitor cells (OPCs), also known as NG2-glia. To address whether alterations in Accepted 31 May 2020 myelination are related to age-dependent changes in OPCs, we analyzed NG2 and myelin basic protein Available online 7 June 2020 (MBP) immunolabelling in the hippocampus of 3ÂTg-AD mice at 6 and 24 months of age, compared with non-Tg age-matched controls.
    [Show full text]
  • Remembering Ben Barres
    neuroglia Editorial RememberingEditorial Ben Barres Remembering Ben Barres Arthur Butt 1,*, Maiken Nedergaard 2,3,* and Alexei Verkhratsky 4,5,* Arthur Butt 1, Maiken Nedergaard 2,3 and Alexei Verkhratsky 4,5 1 Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of1 Portsmouth,Institute of Biomedical Portsmouth, and PO1Biomolecular 2DT, UK Sciences, School of Pharmacy and Biomedical Science, University 2 Centerof Portsmouth, for Basic and Portsmouth, Translational PO1 2DT, Neuroscience, UK Faculty of Health and Medical Sciences, University of 2 Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark Copenhagen, Copenhagen 2200, Denmark 3 Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA 3 Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, 4 FacultyUSA of Life Sciences, University of Manchester, Manchester M13 9PT, UK 5 Ach4 Facultyúcarro Basqueof Life Sciences, Center for University Neuroscience, of Manchester, IKERBASQUE, Manchester Basque M13 Foundation9PT, UK for Science, Bilbao 48011, Spain * Correspondence:5 Achúcarro Basque [email protected] Center for Neuroscience, (A.B.); IKERBA [email protected], Basque Foundation for Science, Bilbao 48011, (M.N.); [email protected] (A.V.) * Correspondence: [email protected] (A.B.); [email protected] (M.N.); Received:[email protected] 6 January 2018; Accepted: 10 January (A.V.) 2018; Published: 11 January 2018 Received: 6 January 2018; Accepted: 10 January 2018; Published: date Ben Barres (1954–2017). Ben Barres, who was at the heart of glial cell physiology for over 30 years, died aged 63 on Ben Barres, who was at the heart of glial cell physiology for over 30 years, died aged 63 on December 27, 2017.
    [Show full text]
  • Physiology of Astroglia
    Physiology of astroglia Verkhratsky, Alexei; Nedergaard, Maiken Published in: Physiological Reviews DOI: 10.1152/physrev.00042.2016 Publication date: 2018 Document version Peer reviewed version Citation for published version (APA): Verkhratsky, A., & Nedergaard, M. (2018). Physiology of astroglia. Physiological Reviews, 98(1), 239-389. https://doi.org/10.1152/physrev.00042.2016 Download date: 23. sep.. 2021 HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Adv Exp Manuscript Author Med Biol. Author Manuscript Author manuscript; available in PMC 2020 June 02. Published in final edited form as: Adv Exp Med Biol. 2019 ; 1175: 45–91. doi:10.1007/978-981-13-9913-8_3. Physiology of Astroglia Alexei Verkhratsky, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Vladimir Parpura Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA Nina Vardjan, Robert Zorec Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia Celica Biomedical, Ljubljana, Slovenia Abstract Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters.
    [Show full text]
  • Glial Calcium Signaling in Physiology and Pathophysiology1
    Acta Pharmacologica Sinica 2006 Jul; 27 (7): 773–780 Invited review Glial calcium signaling in physiology and pathophysiology1 Alexei VERKHRATSKY2 Faculty of Life Sciences, the University of Manchester, Manchester, UK Key words Abstract calcium signaling; neuronal-glial interactions; Neuronal-glial circuits underlie integrative processes in the nervous system. Func- brain ischemia; Alzheimer’s disease; epilepsy; tion of glial syncytium is, to a very large extent, regulated by the intracellular spreading depression calcium signaling system. Glial calcium signals are triggered by activation of multiple receptors, expressed in glial membrane, which regulate both Ca2+ entry 1 Project supported by the Wellcome Trust, and Ca2+ release from the endoplasmic reticulum. The endoplasmic reticulum also the Alzheimer Research Trust, NIH, Royal Society and INTAS. endows glial cells with intracellular excitable media, which is able to produce and 2 Correspondence to maintain long-ranging signaling in a form of propagating Ca2+ waves. In patho- Prof Alexei VERKHRATSKY. logical conditions, calcium signals regulate glial response to injury, which might Phn 44-161-275-5414. Fax 44-161-275-5948. have both protective and detrimental effects on the nervous tissue. E-mail [email protected] Received 2006-05-20 Accepted 2006-05-29 doi: 10.1111/j.1745-7254.2006.00396.x cells in humans, perform a wide variety of vital functions[8]: Introduction radial glial cells and “stem” astrocytes control neurogenesis, Recent advances in experimental investigations of glial neural cell development and migration; astroglia divide gray networks challenged the neuronal doctrine that, since 1894[1], matter into neuronal-glial-vascular units and are actively in- dominated our perception of brain function.
    [Show full text]