KOEDOE - African Protected Area Conservation and Science ISSN: (Online) 2071-0771, (Print) 0075-6458

Page 1 of 8 Short Communication

First report of various Fusarium species from the Stevenson-Hamilton Supersite granite catena system in the Kruger National Park, South

Authors: Keywords: Fusarium; Neocosmospora; Kruger National Park; Topsoil; Rhizosphere; Catena. Marieka Gryzenhout1 Marcele Vermeulen2 Gilmore Pambuka1 Riana Jacobs3 Introduction

Affiliations: The Kruger National Park (KNP) covers the north-eastern part of southern Africa (Carruthers 1Department of Genetics, 2017) and is also linked with the Gonarezhou National Park () and the Limpopo Faculty of Natural and National Park () as the Great Limpopo Transfrontier Park. The KNP is part of the Agricultural Science, Kruger to Canyons Biosphere area designated by the United Nations Educational, Scientific University of the Free State, Bloemfontein, and Cultural Organization (UNESCO) as an International Man and Biosphere Reserve (the ‘Biosphere’) (http://www.unesco.org/new/en/natural-sciences/environment/ecological- 2Department of Microbial sciences/biosphere-reserves/africa/south-africa/kruger-to-canyons/). The Stevenson- Biochemical and Food Hamilton Supersite, where this study was conducted, is part of four research ‘supersites’ in Biotechnology, Faculty of the KNP, with each representing distinct geological, climatic and linked biodiversity patterns Natural and Agricultural Science, University of the (Smit et al. 2013). Free State, Bloemfontein, South Africa The foundational biological information regarding soil biota in South Africa was recently assessed, and it included soil fungi (Janion-Scheepers et al. 2016). These authors reported that despite South 3Department of Mycology Unit, Health and Africa being only 0.8% of the earth’s terrestrial area, it contains nearly 1.8% of the world’s Protection, Agricultural described soil species. Areas such as the Nama-Karoo, Northern Cape and Eastern Cape are Research Council, Pretoria, undersampled for most taxa as well as natural soils in biodiversity hotspots. Similarly, the KNP South Africa with its diverse ecosystems is not well explored. Corresponding author: Marieka Gryzenhout, The fungal genus Fusarium has a cosmopolitan distribution and includes a vast number of species. [email protected] These species are commonly recovered from a variety of substrates including soil, air, water and Dates: decaying plant materials (Leslie & Summerell 2006). They have diverse ecosystem functions in Received: 28 Sept. 2019 soils and are also able to colonise living tissues of and animals, including humans, acting Accepted: 19 Apr. 2020 as endophytes (microbial organisms existing inside plant tissues), secondary invaders or becoming Published: 29 Oct. 2020 devastating plant pathogens (Nelson, Dignani & Anaissie 1994). In addition to their ability to How to cite this article: colonise a multiplicity of habitats, Fusarium species are present in almost any ecosystem in the Gryzenhout, M., Vermeulen, world (Leslie & Summerell 2006). M., Pambuka, G. & Jacobs, R., 2020, ‘First report of various A number of genera representing previously known Fusarium species were established based on Fusarium species from the Stevenson-Hamilton Supersite deoxyribonucleic acid (DNA) sequence data (Lombard et al. 2015). For instance, the Fusarium granite catena system in the solani species complex (FSSC) was proposed to be the genus Neocosmospora (Lombard et al. 2015). Kruger National Park, South However, because of the close association with the name Fusarium and the fact that these names Africa’, Koedoe 62(2), a1599. https://doi.org/10.4102/ serve a large community of end-users, that is, plant pathologists, quarantine officers, veterinarians koedoe.v62i2.1599 and medical practitioners, a different system was proposed where the name Fusarium was kept, for instance, for the FSSC (Geiser et al. 2013). The resulting confusion is evident as a number of new species in the complex kept the name of Fusarium, for example, F. euwallaceae (Freeman et al. 2014), which is the pathogenic fungus associated with the devastating polyphagous Shothole Borer. These taxa are usually included in Fusarium research.

A multidisciplinary study was conducted in the KNP to study the structure and biodiversity, and Read online: the various possible biotic and abiotic interactions of a catena or hill slope ecosystem on the Scan this QR Stevenson-Hamilton Supersite (25°06’28.6S, 31°34’41.9E and 25°06’25.7S, 31°34’33.7E). The aim of code with your smart phone or mobile device Copyright: © 2020. The Authors. Licensee: AOSIS. This work is licensed under the Creative Commons Attribution License. to read online. Note: Special Issue: Connections between abiotic and biotic components of a granite catena ecosystem in Kruger National Park, sub-edited by Beanelri Janecke and Johan van Tol.

http://www.koedoe.co.za Open Access Page 2 of 8 Short Communication this study was to establish a baseline on the species diversity colonies on SNA medium (Leslie & Summerell 2011). of Fusarium occurring at the particular supersite in order to Cultures were deposited in the National Collection of Fungi possibly use species in Fusarium and closely related genera, (PREM), Biosystematics Division, Agricultural Research which include specialised and generalist species, as a possible Council (ARC), Pretoria, South Africa (Table 1). focus group to study interactions with the various biotic and abiotic factors in the catena system. Deoxyribonucleic acid sequence-based characterisation Previous studies have already described five new species Inqaba Biotec (Pretoria, South Africa) extracted DNA from with representative isolates from the KNP. These included the scraped mycelium of 1-week-old cultures grown on PDA, F. nygamai (Burgess & Trimboli 1986) and F. fredkrugeri and the translation elongation factor 1α gene region (TEF1α) (Sandoval-Denis et al. 2018) in the FFSC, F. polyphialidicum was amplified and sequenced using primers EF1 and EF2 (Marasas et al. 1986) in the Fusarium concolor species complex (O’Donnell et al. 2008). Sequences obtained were viewed and (FCOSC), F. convolutans in the Fusarium buharicum species edited with Geneious 7.1.9 (Biomatter, Auckland). complex (FBSC) and F. transvaalense in the Fusarium sambucinum species complex (FSaSC) from soils (Sandoval- Sequences were grouped into Fusarium species complexes Denis et al. 2018). Jacobs-Venter et al. (2018a) separated F. using a skeleton sequence data set representing all species polyphialidicum strains into three species, namely F. concolor, F. complexes in Fusarium and genera previously named as babinda and F. austroafricanum, and confirmed that F. Fusarium, as well as species grouping outside species polyphialidicum is synonymous with F. concolor. F. fredkrugeri, complexes (data not shown). After the appropriate complex F. convolutans and F. transvaalense originated from the or closest related species has been identified, sequences were Stevenson-Hamilton Supersite. included in separate DNA data sets representing all known and vouchered sequences of the particular group or complex. In this study, soil and rhizosphere samples from various All alignments were performed in Mafft 7.0 (http://mafft. plants in the Stevenson-Hamilton Supersite, which has a cbrc.jp/alignment/software/) with the L-INS-I option distinct geology and hydrology, were obtained. Isolations selected (Katoh et al. 2005). The alignments were corrected from these samples revealed a large collection of Fusarium manually where needed. isolates. The aim of this study was to identify these fusaria. As information on microbes, including fungi, is scarce for the Representative sequences with a high identity to the FFSC KNP, and basically non-existent for the supersite, the study were aligned with all currently recognised species and will contribute pioneering and invaluable biodiversity data phylogenetic lineages in the FFSC (Edwards et al. 2016; on these ill-studied organisms that will be informative and Geiser et al. 2013; Herron et al. 2015; Moroti et al. 2016). useful for the management and conservation of the KNP. Similarly representative sequences with a high identity to the Fusarium chlamydosporum species complex (FCSC) (Lombard et al. 2019a; O’Donnell et al. 2009b) and Fusarium oxysporum Materials and methods species complex (FOSC) (Laurence et al. 2014; Lombard et al. Sampling 2019b; O’Donnell et al. 2009a) were aligned in data sets linked The study was conducted in the Southern Granites to the listed references. Sequences of the FSSC (O’Donnell et ‘Supersite’ catena close to the Stevenson-Hamilton al. 2008) that are now known as Neocosmospora (Lombard et Memorial (Smit et al. 2013). Four random soil samples to a al. 2015) were also used. Maximum likelihood analyses were depth of 5 cm were taken for each of the components of the conducted in MEGA v. 7 using the models assigned to each catena system in a transect of more or less 500 m following data set and with a 1000 Bootstrap replicates to determine the Theron, Van Aardt and Du Preez (2020). Furthermore, roots support of the branches. of squarrosa (sickle grass, , ), Sporobolus nitens (curly leaved drop seed grass, Poaceae) Ethical considerations and pinnata (dwarf marigold, , Ethical approval for the multidisciplinary project as a whole ), which included some of the dominant plants in was obtained from the Interfaculty Animal Ethics Committee the catena (Theron et al. 2020), were collected. Topsoil was at the University of the Free State (UFS-AED2019/0121). deliberately included with the assumption that the soils will SANParks permit numbers for collection of soil for lab contain soil-associated fusaria as well as spores that were analyses and vegetation for identification purposes are aerially distributed from plants in the area. The soils were SK069, SK2095 and SK054. transported cold to the laboratory, where soil dilution series were made on Rose Bengal–glycerine–urea medium (Leslie & Summerell 2006) and 20% potato dextrose agar (PDA; Results Biolab, Merck, South Africa). Roots were suspended in Deoxyribonucleic acid sequence-based sterile water and shaken, and the soil solution was then characterisation used in a dilution series. Colonies resembling the cultural Isolates (109) characterised in this study from the catena morphotypes of Fusarium species were purified from the system represented four species complexes, namely FFSC, primary plates by making single spore cultures from FCSC, FSSC and FOSC, and originated from the rhizospheres

http://www.koedoe.co.za Open Access Page 3 of 8 Short Communication

TABLE 1: List of Fusarium isolates identified in this study that originated from the Stevenson-Hamilton catena in Kruger National Park, South Africa. PPRI number† Identification Collectors Isolator Host scientific name Substrate/niche Date of collection DNA Data Bank of Japan number‡ 20296 Fusarium proliferatum E. Theron & J. du Preez M. Gryzenhout Rhizosphere 01 March 2015 LC521472 20281 F. nygamai E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521459 20306 F. nygamai E. Theron & J. du Preez M. Gryzenhout Schkuhria pinnata Rhizosphere 01 March 2015 LC521479 20610 Neocosmospora vasinfecta E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521484 19535 Neocosmospora vasinfecta P.A.L. le Roux M Gryzenhout Soil 9-15 May 2014 LC521384 19537 Neocosmospora vasinfecta P.A.L. le Roux M Gryzenhout Soil 9-15 May 2014 LC521386 19521 F. cf. chlamydosporum P.A.L. le Roux M Gryzenhout Soil 9-15 May 2014 LC521379 20270 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521450 20240 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521424 20245 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521428 20216 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521401 20653 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521487 20644 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521486 20616 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521485 20307 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Schkuhria pinnata Rhizosphere 01 March 2015 LC521480 20295 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521471 20294 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521470 20264 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521445 20258 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521440 20257 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521439 20243 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521426 20231 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521416 20228 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521413 20224 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521409 20219 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521404 20215 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521400 20213 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521398 20272 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521451 20267 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521447 20262 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521444 20237 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521421 20248 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521430 20246 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521429 20244 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521427 20242 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521425 20238 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521422 20221 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521406 20217 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521402 20214 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521399 20212 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521397 20210 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521395 20208 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521393 20206 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521392 20203 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521389 20202 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521388 19522 F. cf. chlamydosporum P.A.L. le Roux M Gryzenhout Soil 9-15 May 2014 LC521380 19523 F. cf. chlamydosporum P.A.L. le Roux M Gryzenhout Soil 9-15 May 2014 LC521381 19530 F. cf. chlamydosporum P.A.L. le Roux M Gryzenhout Soil 9-15 May 2014 LC521383 20249 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521431 20251 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521433 20252 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521434 20253 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521435 20254 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521436 20256 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521438 20259 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521441 20260 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521442 20261 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521443 20269 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521449 20273 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521452 20274 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521453 Table 1 continues on the next page →

http://www.koedoe.co.za Open Access Page 4 of 8 Short Communication

TABLE 1 (Continues...): List of Fusarium isolates identified in this study that originated from the Stevenson-Hamilton catena in Kruger National Park, South Africa. PPRI number† Identification Collectors Isolator Host scientific name Substrate/niche Date of collection DNA Data Bank of Japan number‡ 20275 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521454 20290 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521466 20292 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521468 20657 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521488 20660 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521489 20209 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521394 20233 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521418 20235 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521419 20227 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521412 20250 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521432 20223 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521408 20308 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Schkuhria pinnata Rhizosphere 01 March 2015 LC521481 20225 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521410 20266 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521446 20239 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521423 20201 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521387 20229 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521414 20211 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521396 20305 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Schkuhria pinnata Rhizosphere 01 March 2015 LC521478 20230 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521415 20220 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521405 20222 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521407 20226 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521411 20232 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521417 20276 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521455 20278 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521456 20280 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521458 20282 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521460 20609 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521483 20279 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521457 20255 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521437 20218 F. cf. chlamydosporum E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521403 20293 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521469 20291 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521467 20205 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521391 20284 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521462 20283 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521461 20300 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521475 20298 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521473 20299 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521474 20304 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521477 20285 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521463 20303 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521476 20287 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521464 20289 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Pogonarthria squarrosa Rhizosphere 01 March 2015 LC521465 20204 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Sporobolus nitens Rhizosphere 01 March 2015 LC521390 20309 F. oxysporum sensu lato E. Theron & J. du Preez M. Gryzenhout Schkuhria pinnata Rhizosphere 01 March 2015 LC521482 †, Plant Protection Research Institute, Biosystematics Division, Agricultural Research Council (ARC) Roodeplaat Campus, Pretoria, South Africa. ‡, DNA Data Bank of Japan (DDBJ), Bioinformation and DDBJ Center, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan. of all three plants and the topsoil (Table 1). Each of these isolates that did not group with any of the previously complexes includes a diversity of species. In the FFSC, known lineages or newly described species (Figure 3). isolate PPRI 20296 was identified as F. proliferatum (Bootstrap Between-isolate variation seven haplotypes was seen that support 98%), and isolates PPRI 20281 and PPRI 201306 could be indicative of more possible cryptic species or were identified asF. nygamai (Bootstrap support 97%) significant population structure. Based on the TEF sequence (Figure 1). Isolates PPRI 20610, PPRI 19535 and PPRI 19537 data alone, all of the novel species described (Lombard et al. were grouped in the clade of N. vasinfecta (Figure 2) in the 2019a) in the FOSC could not be resolved but isolates FSSC (Bootstrap support of 97%) and grouped into two (Table 1) formed four haplotypes that grouped together haplotype groups. Isolates from the KNP that were grouped with F. callistephi and F. fabacearum, and isolates from in the FCSC (Table 1) constituted a very large number of Australia (Figure 4).

http://www.koedoe.co.za Open Access Page 5 of 8 Short Communication

NRRL 31727 F. andiyazi N. falciformis FSSC 3+4 (n = 38) Model: K2+Gamma 76 Model: NRRL 13592 F. pseudonygamai K2+Gamma NRRL 66243 F. tjaetaba NRRL 32744 N. falciformis FSSC 3+4vv NRRL 22172 NRRL 32928 N. falciformis FSSC 3+4fff 100 F. vercillioides 85 NRRL 28556 N. falciformis FSSC 3+4n 28556 NRRL 25059 F. musae NRRL 31162 N. falciformis FSSC 3+4s 94 NRRL 13604 F. napiforme NRRL 32828 N. falciformis FSSC 3+4bbb NRRL 25208 F. ramigenum NRRL 32719 N. falciformis FSSC 3+4oo NRRL 28559 N. falciformis FSSC 3+4o CBS 125181 F. ficicrescens NRRL 32346 N. falciformis FSSC 3+4bb NRRL 66233 F. coicis NRRL 32757 N. falciformis FSSC 3+4xx 72 CBS 483 94 F. terricola NRRL 32343 N. falciformis FSSC 3+4aa NRRL 25451 F. sudanense NRRL 32720 N. falciformis FSSC 3+4pp NRRL 25746 N. falciformis FSSC3+4i NRRL 25200 F. lacs NRRL 32339 N. falciformis FSSC 3+4z NRRL 22045 F. thapsinum NRRL 13448 F. nygamai N. keratoplasca FSSC 2 (n = 34) and Neocosmospora sp. 97 PPRI 20281 FSSC 24 (n = 1) 92 83 PPRI 20306 N. falciformis FSSC 3+4 (n = 5) NRRL 22946 F. pseudocircinatum 99 N. falciformis FSSC 3+4 (n = 2) N. tonkinensis FSSC 9 (n = 2) NRRL 25302 F. denculatum 99‘Fusarium’ solani f. sp. batatas. FSSC 23 (n = 2) NRRL 22949 F. udum 99 100 ‘Fusarium’ solani f. sp. xanthoxyli FSSC 22 (n = 2) NRRL 13617 F. phyllophilum N.solani FSSC 5 (n = 6) NRRL 25486 F. xylarioides NRRL 22101 ‘Fusarium striatum’ FSSC 21a NRRL 13308 F. acutatum N. suoniana FSSC 20 (n = 5) NRRL 54464 F. agapanthi NRRL 32798 N. falciformis FSSC 3 4aaa 99 RCFT 0983 F. temperatum 99 Neocosmospora sp. FSSC 14 (n = 4) 96 90 NRRL 25331 F. circinatum N. gamsii FSSC 7 (n = 4) CBS 137242 F. sororula NRRL 28008 Neocosmospora sp. FSSC 29a 90 NRRL 31169 Neocosmospora sp. FSSC 26a NRRL 25300 F. begoniae 97 N. metavorans FSSC 6 (n = 15) CBS 118516 F. ananatum 98 NRRL 22278 ‘Fusarium’ solani f. sp. pisi FSSC 11a NRRL 13613 F. succisae NRRL 22820 ‘Fusarium’ solani f. sp. pisi FSSC 11b NRRL 25214 F. anthophilum 89 NRRL 28009 Neocosmospora sp. FSSC 15a NRRL 13618 F. bulbicola 92 NRRL 32846 Neocosmospora sp. FSSC 15a F. subglunans NRRL 45880 ‘Fusarium’ solani f. sp. pisi FSSC 11c NRRL 22016 NRRL 32792 Neocosmospora sp. FSSC 15b CBS 119849 F. konza NRRL 22162 Neocosmospora sp. FSSC 13c 99 UMAF 1194 F. tupiense NRRL 22230 Neocosmospora sp. FSSC 17b F. fraccaudum NRRL 22157 Neocosmospora sp. FSSC 17a 98CBS 137234 93 CBS 137236 F. parvisorum Neocosmospora sp. FSSC 13 (n = 2) F. sacchari Neocosmospora sp. FSSC 12 (n = 6) NRRL 13999 NRRL 32437 Neocosmospora sp. 28a 100 CBS 144209 F. fredkrugeri NRRL 37625 N. cyanescens FSSC 27a NRRL 13164 F. dlaminii NRRL 28541 Neocosmospora sp. FSSC 26a NRRL 28852 F. fracflexum NRRL 37626 N. cyanescens FSSC 27a NRRL 25226 F. mangiferae Neocosmospora sp. FSSC 18 (n = 4) LEMM 110739 N. onychola NRRL 13566 F. fujikuroi Neocosmospora 86 NRRL 22389 sp. FSSC 25a 98 74 CBS 142422 F. siculi N. petroliphila FSSC 1 (n = 14) and LEMM 111347 F. globosum 92 N. ceperiensis (n = 1) 95 NRRL 26131 PPRI 20610 98 NRRL 22944 F. proliferatum 94 NRRL 22468 N. vasinfecta FSSC 8c PPRI 20296 NRRL 34174 N.vasinfecta FSSC 8d PPRI 19535 0.0100 84 PPRI 19537 97 NRRL 22436 N. vasinfecta FSSC 8b NRRL, National Center for Agricultural Utilization Research; CBS, CBS-KNAW Culture NRRL 43467 N.vasinfecta FSSC 8a Collection, Westerdijk Fungal Biodiversity Institute; PPRI, Plant Protection Research Institute; NRRL 22166 N.vasinfecta FSSC 8e RCFT, Rio Cuarto Fusarium temperatum; UMAF, University of Málaga. 99 N. lichenicola FSSC 16 (n = 3) 99 FIGURE 1: Unrooted maximum likelihood phylogram of all currently sequenced 84 NRRL 22579 Fusarium sp. FSSC 30a Fusarium species in the Fusarium fujikuroi species complex based on translation 99 ‘Fusarium’ euwallaceae FSSC 36 (n = 2) NRRL 22354 N. pseudensiformis FSSC 33a elongation factor 1-a gene sequences. Bootstrap support values higher than 80% 97 Neocosmospora sp. FSSC1 9 (n = 2) are shown on the branches. The evolutionary model applied to the analysis is NRRL 22178 Fusarium sp. FSSC 32a indicated on the figure. Isolates from this study are indicated with PPRI numbers. UFMG-CM F12570 F. riograndense 99 NRRL 22153 Neocosmospora sp. FSSC 10a NRRL 22098 Neocosmospora sp. FSSC 10b NRRL 22570 Fusarium sp. FSSC 32a 97 NRRL 22090 N. illudens Discussion NRRL 22632 N. plagianthi NRRL 22396 F. phaseoli This study represents the first report of F. proliferatum (FFSC), 99 NRRL 22395 F. phaseoli NRRL 22574 F. phaseoli N. vasinfectum that was previously known as F. cosmosporiellum NRRL 22387 F. phaseoli F. oxysporum sensu lato 91 NRRL 22412 F. phaseoli in the FSSC (Geiser et al. 2013) and 86F. virguliforme (n = 2) (FOSC) from soils in the Stevenson-Hamilton Granite 94F. cuneirostrum (n = 2) 99 NRRL 22276 F. phaseoli Supersite in the KNP. Possible new species in the FCSC were NRRL 22743 ‘Fusarium’ brasiliense NRRL 31757 ‘Fusarium’ brasiliense also detected. The presence of F. nygamai (FFSC) was 83 F. tucumaniae (n = 2) NRRL 31156 F. phaseoli confirmed. Together with other species previously described NRRL 31949 F. crassispatum NRRL 36877 F. crassispatum from the KNP (F. fredkrugeri, F. convalutum, F. transvaalense NRRL 22316 Geejayeesia atrofusca and F. concolor as F. polyphialidicum), there are thus at least CBS 830.85 F. ventricosum nine Fusarium species present in the KNP. 0.05 PPRI, Plant Protection Research Institute; FSSC, fusarium solani species complex; NRRL, National Center for Agricultural Utilization Research; LEMM, Laboratory of Molecular Fusarium nygamai, F. proliferatum, F. oxysporum sensu lato, F. Microbial Ecology; UFMG-CM, Centro de Microscopia, Universidade Federal de Minas. chlamydosporum, N. vasinfectum and F. concolor are species that FIGURE 2: Unrooted maximum likelihood phylogram of all currently sequenced have a world-wide occurrence, including South Africa Fusarium species in the Fusarium solani species complex (also referred to as Neocosmospora with some species named as Neocosmospora) based on (Jacobs et al. 2018a; Leslie & Summerell 2006). They are translation elongation factor 1-a gene sequences. Bootstrap support values associated with various plant hosts as well as soils and can higher than 80% are shown on the branches. The evolutionary model applied to the analysis is indicated on the figure. Isolates from this study are indicated with also produce mycotoxins in food commodities or be PPRI numbers.

http://www.koedoe.co.za Open Access Page 6 of 8 Short Communication

PPRI 20809 Model: PPRI 20279 Laurence et al. 2014 (n = 28) K2+Gamma PPRI 20282 PPRI 20293 PPRI 20280 NRRL 45975 MLST 248 Model: K2 PPRI 20278 NRRL 38885 MLST 231 PPRI 20278 NRRL 25598 MLST 35 PPRI 20232 AUST 82 PPRI 20228 NRRL 38312 MLST 192 PPRI 20222 NRRL 38555 MLST 224 PPRI 20220 NRRL 36280 MLST 152 PPRI 20230 Fusarium glycines (11) PPRI 20305 NRRL 36120 MLST 141 PPRI 20217 NRRL 32890 MLST 123 PPRI 20214 NRRL 32882 MLST 119 PPRI 20212 NRRL 32881 MLST 118 PPRI 20210 PPRI 20291 PPRI 20208 Fusarium callistephi CBS115423 PPRI 20208 NRRL 38271 MLST 171 PPRI 20203 NRRL 26414 MLST 68 PPRI 20202 NRRL 26225 MLST 47 PPRI 19522 NRRL 22554 MLST 20 PPRI 19530 NRRL 22543 MLST 11 PPRI 20221 NRRL 32883 MLST 120 PPRI 20238 Fusarium gossypinum CBS116612 PPRI 20238 Fusarium gossypinum CBS116613 PPRI 20242 Fusarium gossypinum CBS116611 PPRI 20244 NRRL 38308 MLST 189 PPRI 20248 NRRL 38305 MLST 188 PPRI 20248 NRRL 26960 MLST 87 PPRI 20249 NRRL 26437 MLST 71 PPRI 20211 NRRL 25424 MLST 29 PPRI 20229 NRRL 26408 MLST 65 PPRI 20201 NRRL 36471 MLST 166 PPRI 20239 NRRL 38326 MLST 196 PPRI 20288 NRRL 38477 MLST 210 PPRI 20225 NRRL 38591 MLST 191 PPRI 20223 NRRL 38270 MLST 170 PPRI 20308 NRRL 36357 MLST 159 PPRI 20251 NRRL 28919 MLST 110 PPRI 20252 NRRL 28365 MLST 101 PPRI 20253 NRRL 26964 MLST 90 PPRI 20254 NRRL 26962 MLST 89 PPRI 20268 NRRL 22519 MLST 4 PPRI 20269 NRRL 36276 MLST 151 PPRI 20280 Fusarium callistephi CBS187.53 PPRI 20281 Fusarium fabacearum CBS144742 PPRI 20288 PPRI 20205 PPRI 20289 PPRI 20284 100 PPRI 20273 PPRI 20283 PPRI 20274 PPRI 20300 PPRI 20275 PPRI 20298 PPRI 20290 PPRI 20299 PPRI 20292 PPRI 20304 PPRI 20257 PPRI 20285 PPRI 20880 PPRI 20303 PPRI 10526 PPRI 20287 PPRI 20209 PPRI 20289 PPRI 20233 NRRL 20433 MLST 2 PPRI 20235 NRRL 22553 MLST 19 PPRI 20237 NRRL 25437 MLST 32 PPRI 20262 NRRL 25609 MLST 37 PPRI 20267 NRRL 26147 MLST 42 PPRI 20282 NRRL 26367 MLST 50 PPRI 20213 NRRL 26961 MLST 88 PPRI 20215 NRRL 28395 MLST 107 PPRI 20219 NRRL 32873 MLST 117 PPRI 20224 NRRL 34079 MLST 133 PPRI 20223 NRRL 37616 MLST 169 PPRI 20231 NRRL 38283 MLST 176 PPRI 20243 NRRL 38309 MLST 190 PPRI 20257 NRRL 38320 MLST 194 PPRI 20258 NRRL 53154 MLST 254 PPRI 20294 NRRL 53156 MLST 255 PPRI 20295 NRRL 25420 MLST 28 PPRI 20286 85 Fusarium fabacearum CBS144743 PPRI 20307 Fusarium fabacearum CBS144744 PPRI 20818 NRRL 26435 MLST 70 PPRI 20844 NRRL 38514 MLST 219 PPRI 20853 NRRL 38354 MLST 204 PPRI 20216 Fusarium carminasens (n = 4) PPRI 20245 Laurence et al. 2014; O'Donnell et al. 2009 (n = 17) PPRI 20240 92 Fusarium carminasens PPRI 20250 (n = 4) PPRI 20270 O'Donnell et al. 2009 (n = 2) PPRI 20227 Fusarium cugenangense (n = 25) PPRI 19538 PPRI 20255 Fusarium duo-septatum (n = 2) PPRI 19523 99 PPRI 20204 PPRI 19521 PPRI 20309 AUST 556 Various species (26) AUST 676 100 AUST 242 PPRI 20218 AUST 590 Fusarium peruvianum CBS 611.75 0.005 97 100 NRRL 38498 coon Peru PPRI, Plant Protection Research Institute; NRRL, National Center for Agricultural Utilization Various species (34) Research; MLST, Multilocus Sequence Type; CBS, CBS-KNAW Culture Collection, Westerdijk Fungal Biodiversity Institute; AUST, Australia, used by Laurence et al. (2014). Fusarium microconidium CBS 119843 Fusarium cp. NRRL 133.38 FIGURE 4: Unrooted maximum likelihood phylogram of all currently sequenced 100 Fusarium nelsonii CBS 119878 Fusarium species in the Fusarium oxysporum species complex based on translation Fusarium nelsonii CBS 119877 elongation factor 1-a gene sequences. Bootstrap support values higher than 80% 0.0000 Fusarium nelsonii NRRL 28506 are shown on the branches. The evolutionary model applied to the analysis is indicated on the figure. Isolates from this study are indicated with PPRI numbers. PPRI, Plant Protection Research Institute; PPRI, Plant Protection Research Institute; NRRL, National Center for Agricultural Utilization Research; MLST, Multilocus Sequence Type; CBS, CBS-KNAW Culture Collection, Westerdijk Fungal Biodiversity Institute; NRRL, National associated with diseases of animals or humans (Leslie & Center for Agricultural Utilization Research. Summerell 2006). The new species F. fredkrugeri, F. convalutum FIGURE 3: Unrooted maximum likelihood phylogram of all currently sequenced Fusarium species in the Fusarium chlamydosporum species complex based on and F. transvaalense have only recently been described and translation elongation factor 1-a gene sequences. Bootstrap support values higher have most likely not yet been discovered elsewhere. Because than 80% are shown on the branches. The evolutionary model applied to the analysis is indicated on the figure. Isolates from this study are indicated with PPRI numbers. these species are generalists that can be isolated from various

http://www.koedoe.co.za Open Access Page 7 of 8 Short Communication substrates and plant hosts, these species most likely are not submission of the fungal cultures to the National Collection suitable to represent a target group to study unique species of Fungi. Mr E. Theron and Profs. Johan du Preez and Piet le associations within a catena system. Roux (UFS) are thanked for the provision of soil and plant samples. The majority of strains (90) obtained from the KNP sample sites belonged to F. chlamydosporum species complex. A four- Competing interests locus typing scheme (O’Donnell et al. 2009b) revealed MLST and species within the species complex, and Lombard et al. The authors declare that they have no financial or personal relationships that may have inappropriately influenced them (2019a) recently published the description of numerous new in writing this article. species in the complex. Isolates obtained from this study appear to represent new species. As before, a number of new species from the KNP are yet to be described. Authors’ contributions The authors directly participated in the study design, What is notable is that several undescribed Fusarium species execution and interpretation of the research. All authors have been discovered in the KNP. Previously, F. nygamai, contributed equally to this research work. F. polyphialidicum, F. fredkrugeri, F. convalutum and F. transvaalense were described from the KNP, while possible new species have also been characterised in this study. Since Funding information their description, F. nygamai and F. concolor (also as the This study was funded by the University of the Free State synonym F. polyphialidicum) have been discovered from across under the ‘Multi-disciplinary Program’. the world (Leslie & Summerell 2006), suggesting a wide substrate, host and geographical range despite being first Data availability described from a national conservation park in South Africa. Data are available from the corresponding author on request. The number of undescribed species of Fusarium in the KNP is not surprising because the biodiversity of Fusarium and closely allied genera that were previously called Fusarium is Disclaimer largely untouched. This is especially so in pristine natural The views and opinions expressed in this article are those of areas (Jacobs et al. 2018b), because most Fusarium research in the authors and do not necessarily reflect the official policy or South Africa is focused on agricultural problems or animal position of any affiliate agency of the authors. and human health issues caused by Fusarium species. References Conclusion Burgess, L.W. & Trimboli, D., 1986, ‘Characterization and distribution of Fusarium nygamai, sp. nov.’, Mycologia 78(2), 223–229. https://doi.org/10.1080/00275514.​ The KNP plays an important role in not only protecting the 1986.12025233 native ecosystems present in that area and the animals and Carruthers, J., 2017, National Park Science: A century of research in South Africa, Cambridge University Press, Cambridge. plants they contain but also protecting Fusarium species Edwards, J., Auer, D., De Alwis, SK., Summerell, B., Aoki, T., Proctor R.H. et al., 2016, that occur in South Africa, of which some are new to ‘Fusarium agapanthi sp. nov, a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy’, science. The ecological roles of these species in numerous Mycologia 15(2), 333. https://doi.org/10.3852/15-333 ecosystems are, however, still unknown, and further Freeman, S., Sharon, M., Maymon, M., Mendel, Z., Protasov, A., Aoki, T. et al., 2014, ‘Fusarium euwallaceae sp. nov. – A symbiotic fungus ofEuwallacea sp., an invasive studies on their impact on ecosystem services and function ambrosia beetle in Israel and California’, Mycologia 105(6), 1595–1606. https:// must be pursued. Such studies are important because doi.org/10.3852/13-066 Geiser, D.M., Aoki, T., Bacon, C.E., Baker, S.E., Bhattacharyya, M.K., Brandt, M.E. et al., Gryzenhout et al. (2020) showed through environmental 2013, ‘One fungus, one name: Defining the genus Fusarium in a scientifically sequencing that Fusarium species are one of the dominant robust way that preserves longstanding use’, Phytopathology 103(5), 400–408. https://doi.org/10.1094/PHYTO-07-12-0150-LE groups found within the soil-plant root zones of plants Gryzenhout, M., Cason, E.D., Vermeulen, M., Kloppers, G.A.E., Bailey, B. & Ghosh, S., occurring in the Stevenson-Hamilton Granite Supersite. 2020, ‘Fungal community structure variability between the root rhizosphere and endosphere in a granite catena system in the Kruger National Park, South Africa’, Further sequencing of additional genes, as what has been Koedoe 62(2), a1597. https://doi.org/10.4102/koedoe.v62i2.1597 done in this study, will provide a better estimation on Herron, D.A., Wingfield, M.J., Wingfield, B.D., Rodas, C.A., Marincowitz, S.& Steenkamp, E.T., 2015, ‘Novel taxa in the Fusarium fujikuroi species complex from species level of the species that could be involved. Pinus spp.’, Studies in Mycology 80, 131–150. https://doi.org/10.1016/j.simyco.​ 2014.12.001 Jacobs, A., Laraba, I., Geiser, D.M., Busman, M., Vaughan, M.M. & Proctor, R.H., 2018a, Acknowledgements ‘Molecular systematics of two sister clades, theFusarium concolor and F. babinda species complexes, and the discovery of a novel microcycle macroconidium– The authors thank the University of the Free State Strategic producing species from South Africa’, Mycologia 110(6), 1189–1204. https://doi. org/10.1080/00275514.2018.1526619 Research Fund for providing funding for this research, Jacobs, A., Mojela, L., Summerell, B. & Venter, E., 2018b, ‘Characterisation of members SANParks Scientific Services for their assistance during field of the Fusarium incarnatum-equiseti species complex from undisturbed soils in South Africa’, Antonie van Leeuwenhoek 111, 1999–2008. https://doi.org/10.1007/​ sampling, Dr Beanelri Janecke for her leadership in the s10482-018-1093-x project and the rest of the research team for their insights. Janion-Scheepers, C., Measey, J., Braschler, B., Chown, S.L., Coetzee, L., Colville, J.F. et The authors are grateful to Mrs Grace Kwanda (ARC, al., 2016, ‘Soil biota in a megadiverse country: Current knowledge and future research directions in South Africa’, Pedobiologia 59(3), 129–174. https://doi. Pretoria) for her patience and assistance during the org/10.1016/j.pedobi.2016.03.004

http://www.koedoe.co.za Open Access Page 8 of 8 Short Communication

Katoh, K., Kuma, K., Toh, H. & Miyata, T., 2005, ‘MAFFT version 5: Improvement in Nelson, P.E., Dignani, M.C. & Anaissie, E.J., 1994, ‘, biology, and clinical accuracy of multiple sequence alignment’,Nucleic Acids Research 33(2), 511–518. aspects of Fusarium species’, Clinical Microbiology Reviews 7(4), 479–504. https:// https://doi.org/10.1093/nar/gki198 doi.org/10.1128/CMR.7.4.479-504.1994 Laurence, M.H., Summerell, B.A., Burgess, L.W. & Liew, E.C.Y, 2014, ‘Genealogical O’Donnell, K., Gueidan, C., Sink, S. & Johnston, P.S., 2009a, ‘A two-locus DNA sequence concordance phylogenetic species recognition in theFusarium oxysporum species database for typing plant and human pathogens within the Fusarium oxysporum complex’, Fungal Biology 118(4), 374–384. https://doi.org/10.1016/j.funbio.​ species complex’, Fungal Genetics and Biology 46(12), 936–948. https://doi. 2014.02.002 org/10.1016/j.fgb.2009.08.006 Leslie, J.F. & Summerell, B.A., 2006, The Fusarium laboratory manual, Blackwell O’Donnell, K., Sutton, D.A., Rinaldi, M.G., Gueidan, C., Crous, P.W. & Geiser, D.M., Publications, Ames. 2009b, ‘Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. Lombard, L., Van der Merwe, N.A. & Groenewald, J.Z., 2015, ‘Generic concepts in equiseti and F. chlamydosporum species complexes within the United States’, Nectriaceae’, Studies in Mycology 80, 189–245. https://doi.org/10.1016/j.simyco.​ Journal of Clinical Microbiology 47(12), 3851–3861. https://doi.org/10.1128/ 2014.12.002 JCM.01616-09 Lombard, L.A., Van Doorn, R. & Crous, P.W., 2019a, ‘Neotypification of Fusarium O’Donnell, K., Sutton, D.A., Fothergill, A., McCarthy, D., Rinaldi, M.G., Brandt, M.E. et al., chlamydosporum – A reappraisal of a clinically important species complex’, Fungal 2008, ‘Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in Systematics and Evolution 4(1), 183–204. https://doi.org/10.3114/fuse.2019.04.10 vitro antifungal resistance within the Fusarium solani species complex’, Journal of Clinical Microbiology Lombard, L., Sandoval-Denis, M., Lamprecht, S.C. & Crous, P.W., 2019b, ‘Epitypification 46(8), 2477–2490. https://doi.org/10.1128/JCM.02371-07 of Fusarium oxysporum – Clearing the taxonomic chaos’, Persoonia 43, 1–47. Sandoval-Denis, M., Swart, W.J. & Crous, P.W., 2018, ‘New Fusarium species from the https://doi.org/10.3767/persoonia.2019.43.01 Kruger National Park, South Africa’,MycoKeys 34, 63–92. https://doi.org/10.3897/ mycokeys.34.25974 Marasas, W.F.O., Nelson, P.E., Tousson T.A. & Van Wyk, P.W., 1986, ‘Fusarium polyphialidicum, a new species from South Africa’, Mycologia 78(4), 678–682. Smit, I.P.J., Riddell, E.S., Cullum, C. & Petersen, R., 2013, ‘Kruger National Park research https://doi.org/10.1080/00275514.1986.12025306 supersites: Establishing long-term research sites for cross-disciplinary, multiscaled learning’, Koedoe 55(1), 1–7. https://doi.org/10.4102/koedoe.v55i1.1107 Moroti, R.V., Gheorghita, V., Al-Hatmi, A.M.S., De Hoog, G.S., Meis, J.F. & Netea, M.G., 2016, ‘Fusarium ramigenum, a novel human opportunist in a patient with Theron, E.J., Van Aardt, A.C. & Du Preez, P.J., 2020, ‘Vegetation distribution along a common variable immunodeficiency and cellular immune defects: Case report’, granite catena, southern Kruger National Park, South Africa’,Koedoe 62(2), a1588. BMC Infectious Diseases 16, 79. https://doi.org/10.1186/s12879-016-1382-9 https://doi.org/10.4102/koedoe.v62i2.1588

http://www.koedoe.co.za Open Access