metals Article The Effect of Different Annealing Strategies on the Microstructure Development and Mechanical Response of Austempered Steels Eliseo Hernandez-Duran 1,2,3,* , Luca Corallo 1 , Tanya Ros-Yanez 4, Felipe Castro-Cerda 2,3 and Roumen H. Petrov 1,2 1 Research Group Materials Science and Technology, Department of Electromechanical, Systems & Metal Engineering, Ghent University, Tech Lane Science Park Campus A 46, 9052 Ghent, Belgium;
[email protected] (L.C.);
[email protected] (R.H.P.) 2 Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands;
[email protected] 3 Department of Metallurgy, University of Santiago de Chile, Alameda 3363, Estación Central, 9170022 Santiago, Chile 4 CLEVELAND-CLIFFS INC, Research & Innovation Center, 6180 Research Way, Middletown, OH 45005, USA;
[email protected] * Correspondence:
[email protected] or
[email protected] Abstract: This study focuses on the effect of non-conventional annealing strategies on the microstruc- ture and related mechanical properties of austempered steels. Multistep thermo-cycling (TC) and ultrafast heating (UFH) annealing were carried out and compared with the outcome obtained from a Citation: Hernandez-Duran, E.; conventionally annealed (CA) 0.3C-2Mn-1.5Si steel. After the annealing path, steel samples were Corallo, L.; Ros-Yanez, T.; fast cooled and isothermally treated at 400 ◦C employing the same parameters. It was found that Castro-Cerda, F.; Petrov, R.H. The TC and UFH strategies produce an equivalent level of microstructural refinement. Nevertheless, Effect of Different Annealing the obtained microstructure via TC has not led to an improvement in the mechanical properties Strategies on the Microstructure Development and Mechanical in comparison with the CA steel.