Astronomy.Ohio-State.Edu/˜Jaj/ Nucleo/)

Total Page:16

File Type:pdf, Size:1020Kb

Astronomy.Ohio-State.Edu/˜Jaj/ Nucleo/) Trans-iron Elements in Evolved Stars Dissertation der Mathematisch-Naturwissenschaftlichen Fakult¨at der Eberhard Karls Universit¨atT¨ubingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Lisa Lobling¨ aus Herrenberg T¨ubingen 2020 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at der Eberhard Karls Universit¨atT¨ubingen. Tag der m¨undlichen Qualifikation: 25.05.2020 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Klaus Werner 2. Berichterstatter: Prof. Dr. Dr. Stephan Geier Contents List of Abbreviations iii Zusammenfassung v Summary vii Preface 1 1 Introduction 5 1.1 Final stages in the evolution of stars with low and intermediate mass . .5 1.2 Hydrogen-deficient post-AGB stars . .6 1.3 Mass transfer . .8 1.4 Abell 35-like objects and barium CSPNe . 11 1.5 Stellar atmosphere modeling . 11 1.5.1 Theory of radiation transfer and atmosphere modeling . 12 1.5.2 Numerical implementation in the ATLAS code . 15 1.5.3 Numerical implementation in the TMAP code . 15 1.6 Trans-iron elements . 16 1.6.1 Handling of trans-iron elements in the TMAP code . 17 2 Work in context 19 2.1 Spectral analysis of the barium central star of the planetary nebula Hen 2−39......................... 19 2.2 Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC 7094 . 20 2.3 First discovery of trans-iron elements in a DAO-type white dwarf . 20 3 Publications 23 3.1 Refereed journals . 23 3.2 Unrefereed journals . 24 ii Contents 4 Results 91 4.1 Spectral analysis of the barium central star of the planetary nebula Hen 2−39......................... 91 4.2 Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC 7094 . 92 4.3 First discovery of trans-iron elements in a DAO-type white dwarf . 95 5 Outlook 97 Bibliography 108 List of Abbreviations (V)LTP (very) late thermal pulse, comprises LTP and VLTP AFTP AGB final thermal pulse AGB asymptotic giant branch AGB asymptotischer Riesenast CE common-envelope CS central star CSPN central star of the planetary nebula DA-type WD WD with H-dominated atmosphere DAO-type WD WD with H-dominated atmosphere showing prominent lines of H i and He ii DB-type WD WD with He-dominated atmosphere showing prominent lines of He i DO-type WD WD with He-dominated atmosphere showing prominent lines of He ii EHB extended horizontal branch FTP final thermal pulse HRD Hertzsprung-Russell diagram IGE iron-group element, i.e. calcium to nickel (atomic number 20 ≤ Z ≤ 28) LTE local thermodynamic equilibrium LTP late thermal pulse MLT mixing length theory iv List of Abbreviations NLTE non-local thermodynamic equilibrium ODF opacity-distribution function OS opacity-sampling PhD Doctor of Philosophy PN planetary nebula r-process rapid neutron-capture process RLOF Roche-lobe overflow s-process slow neutron-capture process S/N signal-to-noise ratio sdB subluminous B-type stars sdO subluminous O-type stars TDU third dredge-up TE thermodynamic equilibrium TEE Transeisenelement, see TIE TIE trans-iron element, i.e. copper and beyond (atomic number Z > 28) TMAP T¨ubingenModel-Atmosphere Package (https://uni-tuebingen.de/de/41621) TOSS T¨ubingenOscillator Strength Service (http://dc.g-vo.org/TOSS) TP thermal pulse UV ultraviolet UVES Ultraviolet and Visual Echelle Spectrograph VLT Very Large Telescope VLTP very late thermal pulse WD white dwarf ZSPN Zentralstern des planetarischen Nebels Zusammenfassung In dieser Arbeit werden Spektralanalysen verschiedener Sterntypen vorgestellt, deren Fokus auf den H¨aufigkeiten von Transeisenelementen (TEE) liegt. Das ubergeordnete¨ Ziel ist es, die Nukleosynthese schwerer Elemente durch Neutroneneinfang auf dem asymptotischen Riesenast (AGB) zu untersuchen. Diese Analysen k¨onnen helfen, ein besseres Verst¨andnis von Prozessen wie Konvektion, Diffusion, Sternwind und Massenverlust zu erlangen, die fur¨ die Entstehung des beobachteten H¨aufigkeitsmusters verantwortlich sind. Die erste Arbeit (L¨obling et al. 2019a) pr¨asentiert die Analyse des Barium-Zentralsterns des planetarischen Nebels (ZSPN) Hen 2−39. Im Zentrum des Nebels befindet sich ein Doppelsternsystem, bestehend aus ei- nem Unterriesen vom Spektraltyp K und dem heißen, ionisierenden post-AGB-Stern. Wir best¨atigten die Kohlenstoff- und Barium-Anreicherung des Unterriesen und bestimmten die H¨aufigkeiten beziehungsweise Obergrenzen fur¨ die H¨aufigkeiten von insgesamt 39 Elemen- ten. Aus dem Vergleich des beobachteten H¨aufigkeitsmusters im Begleiter mit theoretischen Berechnungen fur¨ die Nukleosynthese schließen wir, dass Massentransfer mit einem hohen Akkretionsbruchteil von ca. 15 % der vom Prim¨arstern verlorenen Masse erforderlich ist, weshalb Wind-Roche-Lobe-Overflow als wahrscheinlichster Massentransfermechanismus in diesem System anzusehen ist. Die beiden anderen Arbeiten pr¨asentieren Spektralanalysen von heißen post-AGB-Sternen mittels NLTE-Sternenatmosph¨arenmodellen. In L¨obling et al. (2019c) wurden die spektro- skopischen Zwillinge, die ZSPN von Abell 43 und NGC 7094, analysiert. Neben der Effektiv- temperatur und der Oberfl¨achenschwerebeschleunigung wurden genaue H¨aufigkeiten fur¨ eine Vielzahl von Elementen, darunter TEE, bestimmt. Außer fur¨ Sauerstoff, sind die beobachteten H¨aufigkeiten in Ubereinstimmung¨ mit theoretischen Werten aus Sternentwicklungsrechnun- gen fur¨ ein Szenario mit einem finalen thermischen Puls beim Verlassen des AGB, der das Wasserstoffdefizit verursacht hat. Die oberen Grenzwerte fur¨ die TEE-H¨aufigkeiten sind geringer als die extrem hohen Werte, die in Atmosph¨aren von heißen wasserstoffarmen Weißen Zwergen gemessen werden und best¨atigen daher, dass die Diffusion der fur¨ die Anreicherung verantwortliche Prozess ist. Fur¨ die beiden ZSPN wird dies durch einen starken Sternwind verhindert. Um die Hypothese zu uberpr¨ ufen,¨ dass fur¨ die TEE-Anreicherung der Atmosph¨aren von wasserstoffarmen post-AGB-Sternen eine Entwicklung mit einem finalen thermischen Puls und der resultierenden Durchmischung von Hulle¨ und Zwischenschalenmaterial n¨otig ist, analysierten wir den heißen ZSPN Abell 35 (L¨obling et al. 2019b). In diesem Fall waren wir erfolgreich und fanden eine starke Anreicherung, die nicht erwartet wurde. Der Stern ist vi Zusammenfassung wasserstoffreich und von geringer Masse, was eine großfl¨achige Vermischung uber¨ einen finalen thermischen Puls ebenso wie durch einen sogenannten third dredge-up“ ausschließt. Der ” wissenschaftliche Fortschritt, der sich aus diesem Ergebnis ergibt, besteht darin, dass wir in Frage stellen mussen,¨ ob eine Durchmischung von Hulle¨ und Zwischenschalenregion fur¨ die eigentumlichen¨ Elementh¨aufigkeiten und die starke TEE-Anreicherung in wasserstoffarmen Weißen Zwergen notwendig ist oder ob lediglich Diffusion die ursprunglich¨ vorhandenen TEE anreichert. Summary In this work, we performed spectral analyses of different types of stars focusing on the abundances of trans-iron elements (TIEs). The overarching aim is to constrain neutron- capture nucleosynthesis via the slow (s) process on the asymptotic giant branch (AGB) as well as processes like mixing, diffusion, stellar wind, and mass loss that are responsible for the formation of the observed abundance pattern. The first paper (L¨oblinget al. 2019a) presents our analysis of the barium (Ba) central star of the planetary nebula (CSPN) Hen 2−39. The nucleus consists of a binary containing a K-type subgiant and the hot ionizing post-AGB star. We confirmed the carbon (C) and Ba enrichment of the subgiant companion and determined abundances and abundance limits for 39 elements in total. From the comparison of the observed abundance pattern in the secondary with theoretical predictions for nucleosynthesis calculations, we find that mass transfer with a high fraction of accretion of ≈ 15 % of the mass that was ejected by the primary is required. Hence, wind-Roche-lobe overflow (RLOF) is considered the most likely mass transfer mechanism in this system. The other two works present spectral analyses of hot post-AGB stars by means of non-local thermodynamic equilibrium (NLTE) stellar atmosphere models. In L¨oblinget al. (2019c), we aimed to revise the effective temperature and surface gravity as well as to determine abundances for a multitude of elements including TIEs in the spectroscopic twins, the CSPNe Abell 43 and NGC 7094. The observed abundances, besides of oxygen (O), are in agreement with theoretical calculations for an AGB final thermal pulse (AFTP) evolution that causes the hydrogen (H)-deficiency. The upper abundance limits for TIEs lie below the strong enrichment found in hot H-deficient white dwarfs (WDs) and confirms that diffusion is the process responsible for the enrichment. For the two CSPNe, this is prevented by a strong stellar wind. To test the hypothesis of s-process enrichment of the surfaces of H-deficient stars through final-flash mixing, we analyzed the hot H-rich CSPN Abell 35 (L¨oblinget al. 2019b). In this case, we were successful and found a strong enrichment to an amount that was unexpected. The star is H-rich and of extremely low mass which rules out large-scale mixing via a final thermal pulse (FTP) or third dredge-up (TDU). The scientific progress drawn from this result is, that we need to question the explanation that final flash mixing is really necessary for this peculiar surface abundance pattern or whether it is just diffusion starting from initial material. Preface A multitude of chemical elements is of central importance for life in the way we know
Recommended publications
  • Spectral Analysis of the Hybrid PG 1159-Type Central Stars of the Planetary Nebulae Abell 43 and NGC 7094
    MNRAS 489, 1054–1071 (2019) doi:10.1093/mnras/stz1994 Advance Access publication 2019 July 25 Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC 7094 L. Lobling¨ ,1‹ T. Rauch ,1 M. M. Miller Bertolami,2,3 H. Todt,4 F. Friederich,1 M. Ziegler,1 K. Werner 1 andJ.W.Kruk5 Downloaded from https://academic.oup.com/mnras/article-abstract/489/1/1054/5538811 by Macquarie University user on 29 August 2019 1Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tubingen,¨ Germany 2Instituto de Astrof´ısica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (B1900FWA) La Plata, Argentina 3Facultad de Ciencias Astronomicas´ y Geof´ısicas, UNLP, Paseo del Bosque s/n, (B1900FWA) La Plata, Argentina 4Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany 5NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Accepted 2019 July 16. Received 2019 June 18; in original form 2019 April 30 ABSTRACT Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the He- rich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of H ≈ 20 per cent by mass (AFTP), ≈ 1 per cent (LTP), or (almost) no H (VLTP).
    [Show full text]
  • The Everchanging Pulsating White Dwarf GD358
    Astronomy & Astrophysics manuscript no. gd358 January 23, 2003 (DOI: will be inserted by hand later) The Everchanging Pulsating White Dwarf GD358 S.O. Kepler1, R. Edward Nather2, Don E. Winget2, Atsuko Nitta3, S. J. Kleinman3, Travis Metcalfe2;4, Kazuhiro Sekiguchi5, Jiang Xiaojun6, Denis Sullivan7, Tiri Sullivan7, Rimvydas Janulis8, Edmund Meistas8, Romualdas Kalytis8, Jurek Krzesinski9, Waldemar OgÃloza9, Staszek Zola10, Darragh O’Donoghue11, Encarni Romero-Colmenero11, Peter Martinez11, Stefan Dreizler12, Jochen Deetjen12, Thorsten Nagel12, Sonja L. Schuh12, Gerard Vauclair13, Fu Jian Ning13, Michel Chevreton14, Jan-Erik Solheim15, Jose M. Gonzalez Perez15, Frank Johannessen15, Antonio Kanaan16, Jos´eEduardo Costa1, Alex Fabiano Murillo Costa1, Matt A. Wood17, Nicole Silvestri17, T.J. Ahrens17, Aaron Kyle Jones18;¤, Ansley E. Collins19;¤, Martha Boyer20;¤, J. S. Shaw21, Anjum Mukadam2, Eric W. Klumpe22, Jesse Larrison22, Steve Kawaler23, Reed Riddle23, Ana Ulla24, and Paul Bradley25 1 Instituto de F´ısicada UFRGS, Porto Alegre, RS - Brazil e-mail: [email protected] 2 Department of Astronomy & McDonald Observatory, University of Texas, Austin, TX 78712, USA 3 Sloan Digital Sky Survey, Apache Pt. Observatory, P.O. Box 59, Sunspot, NM 88349, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA e-mail: [email protected] 5 Subaru National Astronomical Observatory of Japan e-mail: [email protected] 6 Beijing Astronomical Observatory, Academy of Sciences, Beijing 100080, China e-mail: [email protected] 7 University of Victoria, Wellington, New Zealand 8 Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 2600, Lithuania 9 Mt. Suhora Observatory, Cracow Pedagogical University, Ul. Podchorazych 2, 30-084 Cracow, Poland 10 Jagiellonian University, Krakow, Poland e-mail: [email protected] 11 South African Astronomical Observatory 12 Universitat T¨ubingen,Germany 13 Universit´ePaul Sabatier, Observatoire Midi-Pyr´en´ees,CNRS/UMR5572, 14 av.
    [Show full text]
  • Two Rings but No Fellowship: Lotr 1 and Its Relation to Planetary Nebulae
    Mon. Not. R. Astron. Soc. 000, 1–16 (2013) Printed 17 October 2018 (MN LATEX style file v2.2) Two rings but no fellowship: LoTr 1 and its relation to planetary nebulae possessing barium central stars. A.A. Tyndall1,2⋆, D. Jones2, H.M.J. Boffin2, B. Miszalski3,4, F. Faedi5, M. Lloyd1, J.A. L´opez6, S. Martell7, D. Pollacco5, and M. Santander-Garc´ıa8 1Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL, UK 2European Southern Observatory, Alonso de C´ordova 3107, Casilla 19001, Santiago, Chile 3South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa 4Southern African Large Telescope. PO Box 9, Observatory 7935, South Africa 5Department of Physics, University of Warwick, CV4 7AL, UK 6Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Ensenada, Baja California, C.P. 22800, Mexico 7Australian Astronomical Observatory, North Ryde, 2109 NSW, Australia 8Observatorio Astron´omico National, Madrid, and Centro de Astrobiolog´ıa, CSIC-INTA, Spain Accepted xxxx xxxxxxxx xx. Received xxxx xxxxxxxx xx; in original form xxxx xxxxxxxx xx ABSTRACT LoTr 1 is a planetary nebula thought to contain an intermediate-period binary central star system ( that is, a system with an orbital period, P, between 100 and, say, 1500 days). The system shows the signature of a K-type, rapidly rotating giant, and most likely constitutes an accretion-induced post-mass transfer system similar to other PNe such as LoTr 5, WeBo 1 and A70. Such systems represent rare opportunities to further the investigation into the formation of barium stars and intermediate period post-AGB systems – a formation process still far from being understood.
    [Show full text]
  • Abundance Analysis of Barium and Mild Barium Stars,
    A&A 468, 679–693 (2007) Astronomy DOI: 10.1051/0004-6361:20065867 & c ESO 2007 Astrophysics Abundance analysis of barium and mild barium stars, R. Smiljanic1,, G. F. Porto de Mello1, and L. da Silva2 1 Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio 43, Saúde, Rio de Janeiro-RJ 20080-090, Brazil e-mail: [email protected];[email protected] 2 Observatório Nacional, Rua Gal. José Cristino 77, São Cristovão, Rio de Janeiro-RJ 20921-400, Brazil e-mail: [email protected] Received 20 June 2006 / Accepted 13 March 2007 ABSTRACT Aims. We compare and discuss abundances and trends in normal giants, mild barium, and barium stars, searching for differences and similarities between barium and mild barium stars that could help shed some light on the origin of these similar objects. Also, we search for nucleosynthetic effects possibly related to the s-process that were observed in the literature for elements like Cu in other types of s-process enriched stars. Methods. High signal to noise, high resolution spectra were obtained for a sample of normal, mild barium, and barium giants. Atmospheric parameters were determined from the Fe i and Fe ii lines. Abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, and Gd, were determined from equivalent widths and model atmospheres in a differential analysis, with the red giant Vir as the standard star. Results. The different levels of s-process overabundances of barium and mild barium stars were earlier suggested to be related to the stellar metallicity.
    [Show full text]
  • OLLI: the Birth, Life, and Death Of
    The Birth, Life, and Death of Stars The Osher Lifelong Learning Institute Florida State University Jorge Piekarewicz Department of Physics [email protected] Schedule: September 29 – November 3 Time: 11:30am – 1:30pm Location: Pepper Center, Broad Auditorium J. Piekarewicz (FSU-Physics) The Birth, Life, and Death of Stars Fall 2014 1 / 12 Ten Compelling Questions What is the raw material for making stars and where did it come from? What forces of nature contribute to energy generation in stars? How and where did the chemical elements form? ? How long do stars live? How will our Sun die? How do massive stars explode? ? What are the remnants of such stellar explosions? What prevents all stars from dying as black holes? What is the minimum mass of a black hole? ? What is role of FSU researchers in answering these questions? J. Piekarewicz (FSU-Physics) The Birth, Life, and Death of Stars Fall 2014 2 / 12 The Birth of Carbon: The Triple-Alpha Reaction The A=5 and A=8 Bottle-Neck 5 −22 p + α ! Li ! p + α (t1=2 ≈10 s) 8 −16 α + α ! Be ! α + α (t1=2 ≈10 s) BBN does not generate any heavy elements! He-ashes fuse in the hot( T ≈108 K) and dense( n≈1028 cm−3) core 8 −8 Physics demands a tiny concentration of Be (n8=n4 ≈10 ) Carbon is formed: α + α ! 8Be + α ! 12C + γ (7:367 MeV) Every atom in our body has been formed in stellar cores! J. Piekarewicz (FSU-Physics) The Birth, Life, and Death of Stars Fall 2014 3 / 12 Stellar Nucleosynthesis: From Carbon to Iron Stars are incredibly efficient thermonuclear furnaces Heavier He-ashes fuse to produce: C,N,O,F,Ne,Na,Mg,..
    [Show full text]
  • Star Factories: Nuclear Fusion and the Creation of the Elements
    Star Factories: Nuclear Fusion and the Creation of the Elements Science In the River City workshop 3/22/11 Chris Taylor Department of Physics and Astronomy Sacramento State Introductions! Science Content Standards, Grades 9 - 12 Earth Sciences: Earth's Place in the Universe 1.e ''Students know the Sun is a typical star and is powered by nuclear reactions, primarily the fusion of hydrogen to form helium.'' 2.c '' Students know the evidence indicating that all elements with an atomic number greater than that of lithium have been formed by nuclear fusion in stars.'' Three topics tonight: 1) how do we know all the heavier elements are made in stars? (Big Bang theory) 2) How do stars make elements as heavy as or less heavy than iron? (Stellar nucleosynthesis) 3) How do stars make elements heavier than iron? (Supernovae) Big Bang Nucleosynthesis The Big Bang theory predicts that when the universe first formed, the only matter that existed was hydrogen, helium, and very tiny amounts of lithium. If this is true, then all other elements must have been created in stars. Astronomers use spectroscopy to examine the light emitted by distant stars to determine what kinds of atoms are in them. We've learned that most stars contain nearly every element in the periodic table. The spectrum of the Sun In order to measure measure what kinds of atoms were around in the earliest days of the Universe, we look for stars that were made out of fresh, primordial gas. The closest we can get to this is looking at dwarf galaxies, which show extremely low levels of elements heavier than helium.
    [Show full text]
  • Martin A. Guerrero Roncel Generated From: Editor CVN De FECYT Date of Document: 27/04/2019 V 1.4.0 Efb743b564d783564de108b1a8c5de25
    Martin A. Guerrero Roncel Generated from: Editor CVN de FECYT Date of document: 27/04/2019 v 1.4.0 efb743b564d783564de108b1a8c5de25 This electronic file (PDF) has embedded CVN technology (CVN-XML). The CVN technology of this file allows you to export and import curricular data from and to any compatible data base. List of adapted databases available at: http://cvn.fecyt.es/ efb743b564d783564de108b1a8c5de25 Summary of CV This section describes briefly a summary of your career in science, academic and research; the main scientific and technological achievements and goals in your line of research in the medium -and long- term. It also includes other important aspects or peculiarities. Basic research in Astronomy and Astrophysics on the following topics: a) Formation and evolution of planetary nebulae. b) Interaction of evolved star stellar winds with circumstellar medium. c) Multi-wavelength study of interstellar bubbles. I got my PhD in 1995 on the spatially-resolved study of the chemical abundances of planetary nebulae (Univ. La Laguna, Instituto de Astrofísica de Canarias IAC, Tenerife, Spain). Then I was hired by the IAC as a member of the Support Astronomer group at Observatorio de El Roque de los Muchachos (ORM, La Palma, Spain). In 1999 I moved to the University of Illinois at Urbana-Champaign (USA) where I stayed until 2003, when I moved to the Instituto de Astrofísica de Andalucía (IAA) of the Spanish Consejo Superior de Investigaciones Científicas (CSIC) with a Ramón y Cajal tenure-track position. This tenure-track position moved into a permanent position (Científico Titular) in July 2006, being promoted into the next level (Investigador Científico) in March 2010.
    [Show full text]
  • Blue Stragglers in Open Clusters?
    A&A 366, 490–497 (2001) Astronomy DOI: 10.1051/0004-6361:20000213 & c ESO 2001 Astrophysics Blue stragglers in open clusters? III. NGC 7789 D. Sch¨onberner1, S. M. Andrievsky1,2,3, and J. S. Drilling4 1 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] 2 Department of Astronomy, Odessa State University, Shevchenko Park, 65014, Odessa, Ukraine 3 Isaac Newton Institute of Chile, Odessa Branch, Chile e-mail: [email protected] 4 Louisiana State University, Department of Physics and Astronomy, Baton Rouge, Louisiana 70803, USA e-mail: [email protected] Received 8 September 2000 / Accepted 7 November 2000 Abstract. We performed for the first time a detailed LTE spectroscopic study of a sample of blue straggler stars in the moderately old open cluster NGC 7789. For eight stars the parameters and abundances of several elements were determined. The cluster members show a remarkable surface magnesium deficiency which is quite unusual for late B - early A stars. Iron and titanium abundances are in agreement with other photometric and spectroscopic estimates of the NGC 7789 metallicity. All the confirmed blue stragglers have rather low projected rotational velocities (with one exception for K88, v sin i =80kms−1). Key words. stars: open clusters and associations: individual: NGC 7789 – stars: blue stragglers – stars: abundances 1. Introduction internal mixing processes, but that they rather evolve like normal stars. The moderately old open cluster NGC 7789 is among those In recent years interest in the NGC 7789 blue strag- having very rich blue-straggler populations.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • 2012 Annual Progress Report and 2013 Program Plan of the Gemini Observatory
    2012 Annual Progress Report and 2013 Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, Inc. Table of Contents 0 Executive Summary ....................................................................................... 1 1 Introduction and Overview .............................................................................. 5 2 Science Highlights ........................................................................................... 6 2.1 Highest Resolution Optical Images of Pluto from the Ground ...................... 6 2.2 Dynamical Measurements of Extremely Massive Black Holes ...................... 6 2.3 The Best Standard Candle for Cosmology ...................................................... 7 2.4 Beginning to Solve the Cooling Flow Problem ............................................... 8 2.5 A Disappearing Dusty Disk .............................................................................. 9 2.6 Gas Morphology and Kinematics of Sub-Millimeter Galaxies........................ 9 2.7 No Intermediate-Mass Black Hole at the Center of M71 ............................... 10 3 Operations ...................................................................................................... 11 3.1 Gemini Publications and User Relationships ............................................... 11 3.2 Science Operations ........................................................................................ 12 3.2.1 ITAC Software and Queue Filling Results ..................................................
    [Show full text]
  • BD+43° 3654 – a Blue Straggler?
    A&A 485, L29–L32 (2008) Astronomy DOI: 10.1051/0004-6361:200809860 & c ESO 2008 Astrophysics Letter to the Editor BD+43◦ 3654 – a blue straggler? V. V. Gvaramadze1,2 and D. J. Bomans1 1 Astronomical Institute, Ruhr-University Bochum, Universitätstr. 150, 44780 Bochum, Germany e-mail: [email protected] 2 Sternberg Astronomical Institute, Moscow State University, Universitetskij Pr. 13, Moscow 119992, Russia e-mail: [email protected] Received 27 March 2008 / Accepted 22 May 2008 ABSTRACT The astrometric data on the runaway star BD+43◦ 3654 are consistent with the origin of this O4If star in the center of the Cyg OB2 association, while BD+43◦ 3654 is younger than the association. To reconcile this discrepancy, we suggest that BD+43◦ 3654 is a blue straggler formed via a close encounter between two tight massive binaries in the core of Cyg OB2. A possible implication of this suggestion is that the very massive (and therefore apparently very young) stars in Cyg OB2 could be blue stragglers as well. We also suggest that the binary-binary encounter producing BD+43◦ 3654 might be responsible for ejection of two high-velocity stars (the stripped helium cores of massive stars) – the progenitors of the pulsars B2020+28 and B2021+51. Key words. stars: kinematics – pulsars: individual: PSR B2020+28 – open clusters and associations: individual: Cyg OB2 – stars: individual: BD+43◦ 3654 1. Introduction Interestingly, Cyg OB2 may be associated with the origin of + + ◦ ◦ two high-velocity pulsars, PSR B2020 28 and PSR B2021 51. BD+43 3654 is a massive (O4If) runaway star located ∼2.7 The high-precision proper motion and parallax measurements northeast of the Cyg OB2 association (Comerón & Pasquali ∼ ◦ ◦ for these pulsars (presently separated by 23 ) lead to the sug- 2007).
    [Show full text]
  • Hertzsprung-Russell Diagram and Mass Distribution of Barium Stars ? A
    Astronomy & Astrophysics manuscript no. HRD_Ba c ESO 2019 May 14, 2019 Hertzsprung-Russell diagram and mass distribution of barium stars ? A. Escorza1; 2, H.M.J. Boffin3, A.Jorissen2, S. Van Eck2, L. Siess2, H. Van Winckel1, D. Karinkuzhi2, S. Shetye2; 1, and D. Pourbaix2 1 Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, ULB, Campus Plaine C.P. 226, Boulevard du Triomphe, B-1050 Bruxelles, Belgium 3 ESO, Karl Schwarzschild Straße 2, D-85748 Garching bei München, Germany Received; Accepted ABSTRACT With the availability of parallaxes provided by the Tycho-Gaia Astrometric Solution, it is possible to construct the Hertzsprung-Russell diagram (HRD) of barium and related stars with unprecedented accuracy. A direct result from the derived HRD is that subgiant CH stars occupy the same region as barium dwarfs, contrary to what their designations imply. By comparing the position of barium stars in the HRD with STAREVOL evolutionary tracks, it is possible to evaluate their masses, provided the metallicity is known. We used an average metallicity [Fe/H] = −0.25 and derived the mass distribution of barium giants. The distribution peaks around 2.5 M with a tail at higher masses up to 4.5 M . This peak is also seen in the mass distribution of a sample of normal K and M giants used for comparison and is associated with stars located in the red clump. When we compare these mass distributions, we see a deficit of low-mass (1 – 2 M ) barium giants.
    [Show full text]