The Mechanisms Used by the Invasive Shrub Rhododendron Ponticum to Inhibit the Growth of Surrounding Vegetation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Taxonomic Revision of Rhododendron L. Section Pentanthera G
A TAXONOMIC REVISION OF RHODODENDRON L. SECTION PENTANTHERA G. DON (ERICACEAE) BY KATHLEEN ANNE KRON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1987 , ACKNOWLEDGMENTS I gratefully acknowledge the supervision and encouragement given to me by Dr. Walter S. Judd. I thoroughly enjoyed my work under his direction. I would also like to thank the members of my advisory committee, Dr. Bijan Dehgan, Dr. Dana G. Griffin, III, Dr. James W. Kimbrough, Dr. Jonathon Reiskind, Dr. William Louis Stern, and Dr. Norris H. Williams for their critical comments and suggestions. The National Science Foundation generously supported this project in the form of a Doctoral Dissertation Improvement Grant;* field work in 1985 was supported by a grant from the Highlands Biological Station, Highlands, North Carolina. I thank the curators of the following herbaria for the loan of their material: A, AUA, BHA, DUKE, E, FSU, GA, GH, ISTE, JEPS , KW, KY, LAF, LE NCSC, NCU, NLU NO, OSC, PE, PH, LSU , M, MAK, MOAR, NA, , RSA/POM, SMU, SZ, TENN, TEX, TI, UARK, UC, UNA, USF, VDB, VPI, W, WA, WVA. My appreciation also is offered to the illustrators, Gerald Masters, Elizabeth Hall, Rosa Lee, Lisa Modola, and Virginia Tomat. I thank Dr. R. Howard * BSR-8601236 ii Berg for the scanning electron micrographs. Mr. Bart Schutzman graciously made available his computer program to plot the results of the principal components analyses. The herbarium staff, especially Mr. Kent D. Perkins, was always helpful and their service is greatly appreciated. -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
Beekeeping in Turkey: Past to Present
IRFAN KANDEMIR 85 BEEKEEPING IN TURKEY: PAST TO PRESENT Irfan Kandemir Department of Biology, Faculty of Science, Ankara University, Turkey [email protected] Abstract Turkey is on the intersection of three continents and also located on two important trade routes of the past, namely the Spice and Silk Roads. Thus it played a very important role bridging Asia, Europe and Africa. Indeed Turkey was also the place where very important civilizations such as the Roman, Hittite, Byzantine, Ottoman and finally the modern Turkish Republic became established. Covering all of these civilizations beekeeping can be divided into three main periods, supported by archeological findings, the written laws of Ottomans and the present period of the new Republic. Although the findings in archeology and in the Ottoman period are scarce, the present period has Fig. 1 Two tablets found in Boğazköy (Hattuşaş) related to lots of information regarding beekeeping in Turkey. beekeeping laws (Sarıöz, 2006; Akkaya and Alkan, 2007). Archeological evidence of the Hittite Period main part, called Anatolian, is in Asia and the much comes from excavations in two sites in Turkey. Comb, smaller part is Thrace, the European part of Turkey. figures on the walls and the buzzing bees on the The whole country covers a total of approximately carpets are the signs of beekeeping in that area. 800,000 km2. In this vast geographical area different topographical and climatological features, shaped by In the Ottoman period, although there is not evolution, make for a wide variety of flora and fauna. much direct evidence of beekeeping, there are Over 10,000 plant species create huge biodiversity several laws attributable to beekeeping. -
Managing and Controlling Invasive Rhododendron
Practice Guide Managing and controlling invasive rhododendron Colin Edwards Forestry Commission: Edinburgh © Crown Copyright 2006 Applications for reproduction of any part of this publication should be addressed to: HMSO, Licensing Division, St Clements House, 2–16 Colegate, Norwich NR3 1BQ. First published in 2006 by the Forestry Commission 231 Corstorphine Road, Edinburgh EH12 7AT. ISBN 0 85538 704 1 EDWARDS, C. (2006). Managing and controlling invasive rhododendron. Forestry Commission Practice Guide. Forestry Commission, Edinburgh. i–iv + 1–36 pp. Keywords: herbicides, invasive rhododendron, rhododendron control, Rhododendron ponticum. Printed in the United Kingdom on Robert Horne Hello Matt FCPG017/FC-GB(ECD)/IA-2K/SEP06 Enquiries relating to this publication should be addressed to: Forestry Commission 231 Corstorphine Road Edinburgh EH12 7AT T: 0131 334 0303 F: 0131 316 4344 E: [email protected] The author may be contacted at: Forest Research Northern Research Station Roslin Midlothian EH25 9SY T: 0131 445 2176 F: 0131 445 5124 E: [email protected] Acknowledgements The field experiments using herbicides were managed by the Technical Support Unit of Forest Research, especially D. Tracy. Bush growth and dispersal experiments were organised by D. Kohn, J. Travis, C. Stephenson and R. Atkinson. Disclaimer The list of products referred to in the tables of this Practice Guide is not comprehensive; other manufacturers may be able to provide products with equivalent characteristics. Reference to a particular -
And East Siberian Rhododendron (Rh. Adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry
molecules Article Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry Mayya Razgonova 1,2,* , Alexander Zakharenko 1,2 , Sezai Ercisli 3 , Vasily Grudev 4 and Kirill Golokhvast 1,2,5 1 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia; [email protected] (A.Z.); [email protected] (K.G.) 2 SEC Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia 3 Agricultural Faculty, Department of Horticulture, Ataturk University, 25240 Erzurum, Turkey; [email protected] 4 Far Eastern Investment and Export Agency, 123112 Moscow, Russia; [email protected] 5 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia * Correspondence: [email protected] Academic Editors: Seung Hwan Yang and Satyajit Sarker Received: 29 June 2020; Accepted: 12 August 2020; Published: 19 August 2020 Abstract: Rhododendron sichotense Pojark. and Rhododendron adamsii Rheder have been actively used in ethnomedicine in Mongolia, China and Buryatia (Russia) for centuries, as an antioxidant, immunomodulating, anti-inflammatory, vitality-restoring agent. These plants contain various phenolic compounds and fatty acids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) extraction has been shown to be the method of choice for the recovery of these naturally occurring compounds. Operative parameters and working conditions have been optimized by experimenting with different pressures (300–400 bar), temperatures (50–60 ◦C) and CO2 flow rates (50 mL/min) with 1% ethanol as co-solvent. The extraction time varied from 60 to 70 min. -
A Dunedin Garden
VIREYA VINE ISSUE #82, OCTOBER 2007 PUBLISHED BY THE EDUCATION COMMITTEE OF THE RHODODENDRON SPECIES FOUNDATION R.S.F. PO BOX 3798, FEDERAL WAY, WA. 98063 E. White Smith, Editor From Daphne and Gavin Clark Dunedin, New Zealand Published with permission from the Dunedin Bulletin Feb. 2007 RHODODENDRON lowii (Subsection Vireya) More information about R. lowii relting to the piece in VV81 Addendum – February 2007 Following on from the previous article the long cane produced four shoots. Two were given to a very keen propagator to strike and we tried to strike two, but they all failed. However a good quantity of seed was collected at the end of January, 2005 and again this was shared. Our seed was kept in cool storage and eventually sown in September 2005. A small transparent plastic container with a clear lid was used with the seed sprinkled on to damp, sterilized sphagnum moss. The seeds germinated very well and some of the seedlings were transferred into compost but despite tender care died. The remaining seedlings stayed in the plastic container for some considerable time until recently when they were very carefully removed to individual peat pots into a specially mixed compost. Nine pots are housed in a clear, plastic lidded container 340mm x 300mm which stands on a wide kitchen windowsill with excellent light but no direct sunlight and hopefully some of these will survive. In the meantime the parent plant is flourishing, the two basal shoots are now 800mm high with the original cane cut down to 750mm. It is still in its container and now occupies a choice place among other vireya species in a wooded area beneath 50 year old camellias and rhododendrons which have been pruned to provide an excellent canopy, with morning sun, filtered afternoon sunlight, together with a degree of humidity. -
12. RHODODENDRON Linnaeus, Sp. Pl. 1: 392. 1753
Flora of China 14: 260–455. 2005. 12. RHODODENDRON Linnaeus, Sp. Pl. 1: 392. 1753. 杜鹃属 du juan shu Fang Mingyuan (方明渊), Fang Ruizheng (方瑞征 Fang Rhui-cheng), He Mingyou (何明友), Hu Linzhen (胡琳贞 Hu Ling-cheng), Yang Hanbi (杨汉碧 Yang Han-pi); David F. Chamberlain Shrubs or trees, terrestrial or epiphytic, with various hairs, and/or with peltate scales or glabrous, indumentum sometimes detersile (the hairs tangled and coming away as a layer). Leaves evergreen, deciduous or semideciduous, alternate, sometimes clustered at stem apex; margin entire, very rarely crenulate, abaxial indumentum sometimes with a pellicle (a thin skinlike layer on the surface). Inflorescence a raceme or corymb, mostly terminal, sometimes lateral, few- to many-flowered, sometimes reduced to a single flower. Calyx persistent, 5–8-lobed, sometimes reduced to a rim, lobes minute and triangular to large and conspicuous. Corolla funnelform, campanulate, tubular, rotate or hypocrateriform, regular or slightly zygomorphic, 5(–8)-lobed, lobes imbricate in bud. Stamens 5–10(–27), inserted at base of corolla, usually declinate; filaments linear to filiform, glabrous or pilose towards base; anthers without appendages, opening by terminal or oblique pores. Disk usually thick, 5–10(–14)-lobed. Ovary 5(–18)-locular, with hairs and/or scales, rarely glabrous. Style straight or declinate to deflexed, persistent; stigma capitate-discoid, crenate to lobed. Capsule cylindrical, coniform, or ovoid, sometimes curved, dehiscent from top, septicidal; valves thick or thin, straight or twisted. Seeds very numerous, minute, fusiform, always winged, or both ends with appendages or thread-like tails. About 1000 species: Asia, Europe, North America, two species in Australia; 571 species (409 endemic) in China. -
Rhododendron Ponticum (Rhododendron) Management and Control
Rhododendron ponticum (rhododendron) Management and Control September 2010 Contents 1.0 Introduction.............................................................................................Page 1 2.0 Preventative Measures..................................................................................Page 1 3.0 Prioritisation............................................................................................Page 2 4.0 Physical Control..............................................................................................Page 3 5.0 Chemical Control ............................................................................................Page 4 5.1 Applications……………………....…………………………………..........Page 4 5.2 Herbicides…………………………………………………...……………..Page 5 6.0 Follow Up Work...........................................................................................Page 6 7.0 Biological Control.............................................................................................Page 6 8.0 References…………………………………………………………………..…..Page 7 1.0 Introduction Rhododendron ponticum is a large evergreen shrub which grows up to 8 m tall and is tolerant of a wide range of conditions and soil types (Maguire et al., 2008). It has been widely distributed as an ornamental species due to its attractive flowers, and can subsequently become naturalised through the large number of seeds produced as well as its ability to propagate through vegetative means (Maguire et al., 2008). The toxicity of R. ponticum gives it a competitive advantage -
The Red List of Rhododendrons
The Red List of Rhododendrons Douglas Gibbs, David Chamberlain and George Argent BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) is a membership organization linking botanic gardens in over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. Published by Botanic Gardens Conservation FAUNA & FLORA INTERNATIONAL (FFI) , founded in 1903 and the International, Richmond, UK world’s oldest international conservation organization, acts to conserve © 2011 Botanic Gardens Conservation International threatened species and ecosystems worldwide, choosing solutions that are sustainable, are based on sound science and take account of ISBN: 978-1-905164-35-6 human needs. Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. THE GLOBAL TREES CAMPAIGN is undertaken through a partnership between FFI and BGCI, working with a wide range of other The designation of geographical entities in this document and the presentation of the material do not organizations around the world, to save the world’s most threatened trees imply any expression on the part of the authors and the habitats in which they grow through the provision of information, or Botanic Gardens Conservation International delivery of conservation action and support for sustainable use. -
Rhododendron Garden * X = Hybrid; Var
Rhododendron Garden * x = hybrid; var. = variety; ssp. = subspecies; Bloom Bloom # Botanical Name * Cultivar Zone Growth Habit/Notes Color Time 1 Rhododendron x 'Amiblue' almost blue mid 7 dense tall, fragrant Chinese 2 Rhododendron auriculatum white late 5 native 3 Rhododendron x 'Sapphire' violet early 5 low, small leaves white-tinged small to medium Tibetan 4 Rhododendron bathyphyllum mid 6 pink native white, yellow large-leaf, hardy Great 5 Rhododendron x 'Capistrano' mid 5 throat Plant Pick fragrant Asian native, tall 6 Rhododendron decorum ssp. decorum white mid 7 shrub/small tree 7 Rhododendron dauricum x racemosum 'Ernie Dee' violet early 7 dwarf 8 Rhododendron x 'Golfer pale pink mid 6 mounding; hairy foliage 9 Rhododendron x 'Holden' rose red mid 5 medium Synonym ‘Kirin’; small 10 Rhododendron x 'Coral Bells' coral pink mid 6 evergreen azalea high altitude Asian native; 11 Rhododendron impeditum violet early 6 low low growth, high altitude 12 Rhododendron calostrotum ssp. keleticum violet early 5 Asian native shrub 13 Rhododendron x 'Lemon Dream' yellow mid 6 medium 14 Rhododendron x 'Lem's Monarch' pink mid 7 tall 15 Rhododendron x 'Mission Bells' pink mid 6 medium mounding 16 Rhododendron 'Patty Bee' yellow mid 6 small 17 Rhododendron x 'Peter Faulk' red early 7 tall, tree-like variegated, med-tall 18 Rhododendron ponticum var. cheiranthifolia 'Variegatum' violet mid 5 species selection 19 Rhododendron x 'President Roosevelt' red mid 7 variegated, medium 20 Rhododendron x 'Ramapo' violet early 5 dwarf, compact evergreen Rhododendron -
1928-2--Arnoldia.Pdf
ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR INFORMATION SERIES 3 VOLUME 11 1928 ILLUSTRATIONS Azalea Vaseyi, 35 Cornus florida, 27 Forsythia intermedia spectabilis, 3 Lilac Vestale, 31 Malus baccata, 23 Malus ioensis plena, Bechtel’s Crab, 39 Malus toringoides, 67 Philadelphus Albatre, 51 Pieris floribunda, 11 Pinus strobus fastigiata, 71 Prunus triloba, 15 Pyrus Calleryana, 19 Rhododendron dauricum mucronulatum, 7 Rhododendron Caucasicum Hybrid, Glennyanum, 43 Schizophragma hydrangeoides, 59 Sciadopitys verticillata, 63 Spiraea Veitchii, 55 Viburnum cassinoides, 47 ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR INFORMATION SERIES 3. VOL. II APRIL 14, 1928 NO.1 Forsythias or Goldenbells make the season’s first brave display of yellow blossoms and without these handsome shrubs spring gardens would lose much of their beauty. The genus is an Old World one and its distribution is quite interesting. For many years two species only were known, both native of eastern China and cultivated in Japan. In 1897 a species was discovered on the mountains of Albania in southeastern Europe. Since then another species has been dis- covered in China, one in west Japan and one on the Diamond Moun- tains of Korea. It is really an Oriental genus with one outlying species in the Balkan Peninsula and geographically far removed. Among shrubs we know of no other identical case but a close parallel is found in the related Lilacs and Privets, which, in addition to Oriental and European species, have representatives on the Hi- malayas. In very severe winters the flower buds are apt to suffer more or less severely, but on the whole all Forsythias may be classed as hardy so far north as Boston. -
FCE 37 Ebook
Folia Cryptog. Estonica, Fasc. 37: 1–20 (2000) Lichenized, lichenicolous and other fungi from North and North- East Greenland Vagn Alstrup1, Eric Steen Hansen1 & Fred J. A. Daniels2 1Botanical Museum, University of Copenhagen, 130 Gothersgade, DK-1123 Copenhagen K, Denmark 2Institute of Plant Ecology, Westfälische Wilhems-Universität, 55 Hindenburgplatz, D-48143 Münster, Germany Abstract: A total of 410 taxa of lichens, lichenicolous fungi and other fungi are reported from fourteen localities in Kronprins Christian Land in North Greenland and Lambert Land in North East Greenland. Four new combinations are made, viz. Aspicilia bennettii, A. expansa, Caloplaca elaeophora and Neuropogon sphacelatus. 60 species of lichens and other fungi are reported as new to Greenland, viz. Acarospora impressula, A. picea, Amphisphaerella erikssonii, Buellia elegans, Carbonea aggregantula, C. atronivea, Catillaria contristans, C. subnegans, Collema coccophorum, Dacampia engeliana, Dactylospora rimulicola, Dermatocarpon luridum, D. meiophyllizum, Didymella praestabilis, Gibbera uliginosa, Ionaspis ventosa, Lecanora cavicola, L. flotowiana, L. perpruinosa, L. umbrina, Lecidella carpathica, Leptogium corniculatum, Leptosphaeria hendersoniae, Leptosphaerulina peltigerae, Lichenostigma semiimmersa, Melanomma sanguinarium, Merismatium heterophractum, M. nigritellum, Peltigera britannica, Pertusaria chiodectonoides, Phomopsis salicina, Physarum oblatum, Placynthium subradiatum, Pleospora graminearum, P. pyrenaica, Polyblastia fuscoargillacea, P. peminosa, P. schisticola,