Disk-Resolved Photometry of Small Bodies

Total Page:16

File Type:pdf, Size:1020Kb

Disk-Resolved Photometry of Small Bodies Disk-Resolved Photometry of Small Bodies Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Sofie Spjuth aus Ockelbo, Schweden Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Karl-Heinz Glaßmeier 2. Referentin oder Referent: Prof. Dr. Marcello Fulchignoni eingereicht am: 7 May 2009 mündliche Prüfung (Disputation) am: 9 July 2009 ISBN 978-3-936586-98-5 Copernicus Publications 2009 http://publications.copernicus.org c Sofie Spjuth Printed in Germany Contents Summary 5 1 Introduction 9 1.1 Asteroids & Comets: an Overview . .9 1.1.1 History . .9 1.1.2 Origin . 10 1.1.3 Classification . 11 1.1.4 Optical Characteristics . 12 1.2 Motivation . 15 1.2.1 Aims and Overview of the Thesis . 16 1.3 Overview of Chapters . 19 2 Hapke’s Light Scattering Theory 21 2.1 Radiative Transfer . 22 2.2 Photometric Properties and Hapke Parameters . 22 2.2.1 Single Scattering Albedo . 24 2.2.2 Asymmetry Factor(s) . 26 2.2.3 Mean Roughness Slope Angle . 26 2.2.4 Opposition Parameters . 27 2.2.5 Effective Ranges . 33 2.3 Hapke’s Photometric Model . 33 2.3.1 Dark Surface . 33 2.3.2 Bright Surface . 36 2.3.2.1 Isotropic Multiple Scattering . 36 2.3.2.2 Anisotropic Multiple Scattering . 36 2.3.3 Shadow Hiding Opposition Effect . 38 2.3.4 Coherent Backscatter Opposition Effect . 38 2.3.5 Rough Surface . 38 2.3.6 Porosity . 41 2.4 Integrated Quantities . 41 2.4.1 Geometric albedo . 41 2.4.2 Bond albedo . 42 2.5 Other Light Scattering Models . 43 2.5.1 Lambert’s . 43 2.5.2 Minnaert’s . 43 2.5.3 Lommel-Seeliger’s . 43 3 Contents 2.5.4 Lunar-Lambert’s . 44 2.5.5 Lumme and Bowell’s . 44 2.5.6 Shkuratov . 45 2.5.7 Mishchenko . 45 2.5.8 Mie . 45 3 Photometric Properties from Disk-Resolved Images 47 3.1 Overview of the Method . 47 3.2 OASIS simulator . 51 3.2.1 Transformation of Coordinate Systems . 52 3.2.2 Geometry of Facets . 53 3.2.3 Facet Sorting . 54 3.3 Image Matching . 54 3.4 I=F Extraction . 55 3.5 Derivation of Hapke Parameters from Observations . 57 3.5.1 Minimization Method . 57 3.5.2 Error Analysis . 58 3.5.3 Local Variations . 58 3.6 Summary . 59 4 Validation of the Method 61 4.1 BDR Extraction . 61 4.2 Hapke Parameters Extraction . 63 4.2.1 Smooth Surface . 66 4.2.2 Rough Surface . 66 4.2.3 Shape Error . 69 4.3 Moon . 69 4.4 Albedos . 70 4.4.1 Geometric Albedo . 70 4.4.1.1 Spherical Shape . 73 4.4.1.2 Irregular Shape . 73 4.4.2 Bond Albedo . 74 4.4.2.1 Spherical Shape . 75 4.4.2.2 Irregular Shape . 75 4.5 Summary . 79 5 Disk-Resolved Photometry of Comet 9P/Tempel 1 81 5.1 Observations . 81 5.2 Input Parameters . 81 5.3 Results . 83 5.3.1 Spectral Reddening . 83 5.3.2 Global Hapke Parameters . 85 5.3.3 Local Variations . 89 5.3.4 Error Analysis . 95 5.4 Comparison with Previous Works . 97 5.5 Summary . 111 4 Contents 6 Disk-Resolved Photometry of Asteroid (2867) Steins with OSIRIS 113 6.1 Observations . 114 6.1.1 Calibration . 114 6.2 Input Parameters . 115 6.3 I=F Extraction . 117 6.4 Results . 118 6.4.1 Model Independent Quantities . 119 6.4.1.1 Geometric Albedo from Image . 119 6.4.1.2 Spectral Reddening . 120 6.4.2 Model Dependent Quantities . 120 6.4.2.1 Hapke Modeling . 120 6.4.2.2 Geometric and Bond Albedos from Hapke Parameters . 129 6.4.2.3 Comparison with Observation . 130 6.4.3 Local Variation . 132 6.4.4 Error Analysis . 132 6.4.5 Sample Comparison . 135 6.4.6 Hapke Modeling Including Porosity . 138 6.4.7 Other Photometric Models . 138 6.5 Discussion and Conclusion . 138 7 Investigation of Steins Flyby Scenarios 143 7.1 Motivation . 143 7.2 Geometry . 143 7.3 Trajectory Creation . 144 7.4 Science Output . 147 7.4.1 Radiators . 147 7.4.2 Longitude/Latitude Coverage . 147 7.4.3 Area Coverage . 148 7.4.4 Stereo Area Coverage . 149 7.5 Results . 149 7.5.1 Spherical Shape . 149 7.5.2 Irregular Shape . 151 7.6 Adopted Scenario . 152 7.7 Summary . 157 8 Outlook 159 A Coordinate Systems 161 A.1 Coordinate Systems . 161 A.1.1 NUC . 161 A.1.2 EQU . 161 A.1.3 VIS . 161 A.1.4 CCD . 161 A.2 Transformation of Systems . 162 A.2.1 NUC to EQU . 162 A.2.2 EQU to VIS . 162 5 Contents A.2.3 VIS to CCD . 163 B Hapke Parameters of Other Bodies 165 Bibliography 169 Publications 175 Acknowledgements 177 Curriculum Vitae 179 6 Summary The aim of any mission to small bodies is to better comprehend asteroids and cometary nuclei, key bodies for understanding the origin of the Solar System and for constraining the models of formation of the planets. Studying the photometric reflectance of small bodies can give insights into the physical properties of their surfaces and to allow identify different classes of.
Recommended publications
  • Spectrophotometric Properties of the Nucleus of Comet 67P/Churyumov
    Astronomy & Astrophysics manuscript no. 25901_xarv c ESO 2018 August 21, 2018 Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. S. Fornasier1, 2, P. H. Hasselmann1, 3, M.A. Barucci1, C. Feller1, 2, S. Besse4, C. Leyrat1, L. Lara5, P. J. Gutierrez5, N. Oklay6, C. Tubiana6, F. Scholten7, H. Sierks6, C. Barbieri8, P. L. Lamy9, R. Rodrigo10, 11, D. Koschny4, H. Rickman12, 13, H. U. Keller14, J. Agarwal6, M. F. A’Hearn15 J.-L. Bertaux16, I. Bertini8, G. Cremonese17, V. Da Deppo18, B. Davidsson12, S. Debei19, M. De Cecco20, M. Fulle21, O. Groussin9, C. Güttler6, S. F. Hviid7, W. Ip22, L. Jorda9, J. Knollenberg7, G. Kovacs6, R. Kramm6, E. Kührt7, M. Küppers23, F. La Forgia8, M. Lazzarin8, J. J. Lopez Moreno5, F. Marzari8, K.-D. Matz7, H. Michalik24, F. Moreno5, S. Mottola7, G. Naletto25, 26, 18, M. Pajola26, A. Pommerol27, F. Preusker7, X. Shi6, C. Snodgrass6, 28, N. Thomas27, and J.-B. Vincent6 (Affiliations can be found after the references) Received Feb. 2015, .... ABSTRACT Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3◦–54◦).
    [Show full text]
  • Opposition Effect on Comet 67P/Churyumov-Gerasimenko Using Rosetta-OSIRIS Images
    Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images Nafiseh Masoumzadeh, Nilda Oklay, Ludmilla Kolokolova, Holger Sierks, Sonia Fornasier, Maria A. Barucci, Jean-Baptiste Vincent, Cécilia Tubiana, Carsten Güttler, Frank Preusker, et al. To cite this version: Nafiseh Masoumzadeh, Nilda Oklay, Ludmilla Kolokolova, Holger Sierks, Sonia Fornasier, etal..Op- position effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images. Astronomy and Astrophysics - A&A, EDP Sciences, 2017, 599, A11 (8 p.). 10.1051/0004-6361/201629734. insu-01473386 HAL Id: insu-01473386 https://hal-insu.archives-ouvertes.fr/insu-01473386 Submitted on 16 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 599, A11 (2017) Astronomy DOI: 10.1051/0004-6361/201629734 & © ESO 2017 Astrophysics Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images N. Masoumzadeh1;? , N. Oklay1, L. Kolokolova11, H. Sierks1, S. Fornasier13, M. A. Barucci13, J.-B. Vincent1, C. Tubiana1, C. Güttler1, F. Preusker22, F. Scholten22, S. Mottola22, P. H. Hasselmann13, C. Feller13, C. Barbieri4, P. L. Lamy5, R. Rodrigo6; 7, D. Koschny8, H. Rickman9; 10, M. F. A’Hearn11; 12; 1, J.-L. Bertaux14, I.
    [Show full text]
  • Planetary Spectrum Generator Surface Modeling in PSG As Light Arrives to a Surface at a Particular Wavelength, It Can Be
    Planetary Spectrum Generator Surface modeling – NASA/GSFC – May/2021 Surface modeling in PSG As light arrives to a surface at a particular wavelength, it can be either be absorbed or scattered. Processes such as surface fluorescence or Raman will transfer some of this energy to a different wavelength, but for our treatment in PSG, we simply consider this as an absorption process at this wavelength. The direction and intensity of the scattered light requires of complex modeling, and several methods exist (e.g., Lambert, Hapke). The light absorbed will heat the surface, and this together with other internal sources of heat will lead to thermal emission (with an associated directionality and effectiveness/emissivity). How effective the surface scatters light is defined by the single scattering albedo w, where 0 means the light is totally absorbed and to 1 the light is totally scattered back. What is being observed or “reflected” back will depend on how this surface scatters back, and we would then require information about the observing geometry, the emissions direction and the geometry of the incidence fluxes. Three angles are used to define the geometry: i “incidence angle” is the angle between the Sun (or host-star) and the line perpendicular to the surface at the point of incidence, called the normal; e “emission angle” is the angle between the surface normal and the observer; and g “phase angle”, which is the angle between the source and observer (not to be confused with solar azimuth angle, which is the projection of the phase angle). The quantity that captures how much light is being reflected towards the observer is called r(i,e,g) “bidirectional reflectance” (r(i,e,g)=I(i,e,g)/J, where I is the scattered radiance and J is the incidence radiance) which is in units of [sr-1], with steradians [sr] being a unit of solid angle.
    [Show full text]
  • Regional Study of Europa's Photometry
    Regional study of Europa’s photometry I. Belgacem, F. Schmidt, G. Jonniaux To cite this version: I. Belgacem, F. Schmidt, G. Jonniaux. Regional study of Europa’s photometry. Icarus, Elsevier, 2019, 10.1016/j.icarus.2019.113525. hal-02345227 HAL Id: hal-02345227 https://hal.archives-ouvertes.fr/hal-02345227 Submitted on 21 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Regional study of Europa's photometry I. Belgacema,∗, F. Schmidta, G. Jonniauxb aGEOPS, Univ. Paris-Sud, CNRS, Universit´eParis-Saclay, 91405 Orsay, France. bAirbus Defence & Space, Toulouse, France. Abstract The surface of Europa is geologically young and shows signs of current activity. Study- ing it from a photometric point of view gives us insight on its physical state. We used a collection of 57 images from Voyager's Imaging Science System and New Horizons' LOng Range Reconnaissance Imager for which we corrected the geometric metadata and projected every pixel to compute photometric information (reflectance and geom- etry of observation). We studied 20 areas scattered across the surface of Europa and estimated their photometric behavior using the Hapke radiative transfer model and a Bayesian framework in order to estimate their microphysical state.
    [Show full text]
  • Global Albedos of Pluto and Charon from LORRI New Horizons Observations
    Global Albedos of Pluto and Charon from LORRI New Horizons Observations B. J. Buratti1, J. D. Hofgartner1, M. D. Hicks1, H. A. Weaver2, S. A. Stern3, T. Momary1, J. A. Mosher1, R. A. Beyer4, A. J. Verbiscer5, A. M. Zangari3, L. A. Young3, C. M. Lisse2, K. Singer3, A. Cheng2, W. Grundy6, K. Ennico4, C. B. Olkin3 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, [email protected] 2Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 3Southwest Research Institute, Boulder, CO 80302 4National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA 94035 5University of Virginia, Charlottesville, VA 22904 6Lowell Observatory, Flagstaff, AZ Keywords: Pluto; Charon; surfaces; New Horizons, LORRI; Kuiper Belt 32 Pages 3 Tables 8 Figures 1 Abstract The exploration of the Pluto-Charon system by the New Horizons spacecraft represents the first opportunity to understand the distribution of albedo and other photometric properties of the surfaces of objects in the Solar System’s “Third Zone” of distant ice-rich bodies. Images of the entire illuminated surface of Pluto and Charon obtained by the Long Range Reconnaissance Imager (LORRI) camera provide a global map of Pluto that reveals surface albedo variegations larger than any other Solar System world except for Saturn’s moon Iapetus. Normal reflectances on Pluto range from 0.08-1.0, and the low-albedo areas of Pluto are darker than any region of Charon. Charon exhibits a much blander surface with normal reflectances ranging from 0.20- 0.73. Pluto’s albedo features are well-correlated with geologic features, although some exogenous low-albedo dust may be responsible for features seen to the west of the area informally named Tombaugh Regio.
    [Show full text]
  • Asteroid Photometry
    ASTEROID PHOTOMETRY Jian-Yang Li Planetary Science Institute Paul Helfenstein Cornell University Bonnie J. Buratti California Institute of Technology, Jet Propulsion Laboratory Driss Takir Ithaca College Planetary Science Institute Beth Ellen Clark Ithaca College Abstract Asteroid photometry has three major applications: providing clues about asteroid surface physical properties and compositions, facilitating photometric corrections, and helping design and plan ground-based and spacecraft observations. The most significant advances in asteroid photometry in the past decade were driven by spacecraft observations that collected spatially resolved imaging and spectroscopy data. In the mean time, laboratory measurements and theoretical developments are revealing controversies regarding the physical interpretations of models and model parameter values. We will review the new developments in asteroid photometry that have occurred over the past decade in the three complementary areas of observations, laboratory work, and theory. Finally we will summarize and discuss the implications of recent findings. ! 1! 1. INTRODUCTION 1.1 Importance of planetary photometry Planetary photometry concerns how the brightness of a planetary surface depends on the illumination and observing geometry. Fig. 1 shows the scattering geometry and definition of terms that will be important for the rest of this chapter. The angle between the light source and local surface normal is incidence angle, I; the angle between the observer and the local surface normal is emission angle, e; and the angle between light source and observer, as seen from the object, is phase angle, α. The dependence of the brightness of the surface on (i, e, α) is determined by the optical and mechanical properties of the surface.
    [Show full text]