Zavortink 1972.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Zavortink 1972.Pdf Contributions of the American Entomological Institute teliad Volume 8, Number 3, 1-964 MOSQUITO STUDIES (Diptera, Culicidae) XXVIII. The New World species formerly placed in Aedes (Finlaya). By Thomas J. Zavortink MOSQUITO STUDIES (Diptera, Culicidae) XXVIII. THE NEW WORLD SPECIES FORMERLY PLACED IN AEDES (FINLAYA)1 by Thomas J. Zavortink 2 CONTENTS INTRODUCTION .............................................................................................................. 3 SYSTEMATICS ................................................................................................................... 3 MEDICAL IMPORTANCE ................................................................................................ 4 KEYS TO GENERA AND SUBGENERA ................................................................... 4 TAXONOMIC TREATMENT ........................................................................................... 10 Genus Aedes, Subgenus Protomacleaya ................................................................... 10 Keys to Groups .............................................................................................................. 15 Triseriatus Group .......................................................................................................... 17 Keys to Species .......................................................................................................... 19 I. Aedes (P.) hendersom ................................................................................. 20 2. Aedes (P.) brelandi ...................................................................................... 25 3. Aedes (P.) triseriatus ...................................................................................... 27 Zoosophus Group ..................................................................................................... 34 4. Aedes (P.) zoosophus .................................................................................. 34 Kompi Group .............................................................................................................. 37 Keys to Species .......................................................................................................... 39 5. Aedes (P.) burgeri ........................................................................................... 42 6. Aedes (P.) kompi ........................................................................................... 44 7. Aedes (P.) schicki ........................................................................................... 46 8. Aedes (P.) chionotum .................................................................................. 47 9. Aedes (P.) niveoscutum ............................................................................. 49 10. Aedes (P.) sandrae ........................................................................................... 51 Knabi Group .............................................................................................................. 53 11. Aedes (P.) knabi ........................................................................................... 53 Subgenus Kompia .......................................................................................................... 55 12. Aedes (K.) purpureipes .................................................................................. 55 Subgenus Abraedes .......................................................................................................... 61 13. Aedes (Abr.) papago ...................................................................................... 61 Contribution from project "Mosquitoes of Middle America" supported by U.S. Public Health Service Research Grant AI-04379 and U.S. Army Medical Research and Development Command Research Contract DA-49-193-MD-2478. 2 Department of Zoology, University of California, Los Angeles, California 90024. 2 Contrib. Amer. Ent. Inst., vol. 8, no. 3, 1972 Subgenus Aztecaedes ..................................................................................................... 66 14. Aedes (Azt.) ramirezi ................................................................................. 67 Subgenus Gymnometopa ................................................................................................ 72 15. Aedes (G.) mediovittatus ............................................................................. 72 Subgenus Ochlerotatus .................................................................................................... 81 Pulchritarsis Section, Muelleri Group ........................................................................ 81 16. Aedes (0.) muelleri ...................................................................................... 81 Atropalpus Section ......................................................................................................... 89 Keys to Groups .............................................................................................................. 93 Atropalpus Group .................................................................................................... 94 Keys to Species ......................................................................................................... 96 17. Aedes (0.) epactius ...................................................................................... 97 18. Aedes (0.) atropalpus .................................................................................. 102 Fluviatilis Group ......................................................................................................... 106 19. Aedes (0.) fluviatilis ...................................................................................... 106 Genus Haemagogus, Subgenus Conopostegus .......................................................... 111 Keys to Species ......................................................................................................... 116 20. Haemagogus (C.) leucotaeniatus .............................................................. 119 21. Haemagogus (C.) sp., Large Colombian form ...................................... 121 22. Haemagogus (C.) sp., Peruvian highland form ...................................... 122 23. Haemagogus (C.) leucophoebus .............................................................. 122 24. Haemagogus (C.) leucocelaenus .............................................................. 124 25. Haemagogus (C.) clarki ................................................................................. 127 26. Haemagogus (C.) sp., Small Colombian form ...................................... 130 27. Haemagogus (C.) sp., Peruvian lowland form ...................................... 131 REFERENCES CITED .................................................................................................... 132 FIGURES ............................................................................................................................ 140 SYSTEMATIC INDEX ..................................................................................................... 205 Zavortink: New World Aedes 3 INTRODUCTION The present revision includes the majority of the species of New World Aedes (Finlaya) exclusive of the Terrens Group, as well as Aedes (Abraedes), Aedes (Kompia) and Aedes (Ochlerotatus) muelleri. A total of 23 named species, known in all stages, and 4 unnamed forms, known by 1 or more females, is treated. In all, 22,235 specimens, 4,164 males, 4,967 females, 7,542 larvae, 5,562 pupae and 2,424 individual rearings (1,497 larval, 767 pupal, 160 incomplete) have been examined. The methods of study and presentation, as well as the terminology and ab- breviations, follow, in general, Belkin (1962); a few additional terms for the meso- scutal markings and details of the genitalia follow Berlin (1969) and Schick (1970a), respectively. I am indebted to John N. Belkin for reading the manuscript and suggesting certain improvements; Harold C. Chapman, George B. Craig, Jr., Pedro Galindo, Kenneth L. Knight, Lewis T. Nielsen, George F. O'Meara, L.L. Pechuman, John F. Reinert, Paul L. Rice, Alan Stone, Floyd G. Werner, and Michael J. Zavortink for loans of museum specimens or gifts of live mosquitoes; Willis W. Wirth for information on the type of Finlaya nigra; Abdiel J. Adames, J. Hal Arnell, Lewis T. Nielsen and Robert X. Schick for stimulating discussions; Sandra J. Heinemann and William A. Powder for help in the preparation and rearing of specimens; Sharon Burmeister, L. Margaret Kowalczyk and Nancy L. Martsch for prepara- tion of many of the preliminary drawings and L. Margaret Kowalczyk for prep- aration of all of the final illustrations; Claire M. Price for typing a portion of the preliminary draft; and, finally, Caryle Stallard for typing the remainder of the preliminary draft, providing editorial assistance and preparing the text copy for lithoprinting. SYSTEMATICS I am removing all New World Aedes that have been placed in the subgenus Finlaya from that subgenus and assigning them to other subgenera or genera, as follows: the Triseriatus, Zoosophus, Kompi and Knabi Groups treated in the pres- ent paper and the Terrens Group treated by Schick (1970a,b) are placed into the subgenus Protomacleaya of Aedes; ramirezi and mediovittatus are placed into the monotypic subgenera Aztecaedes and Gymnometopa of Aedes, respectively; the Atropalpus and Fluviatilis Groups are placed into the subgenus Ochlerotatus of Aedes; scutellalbum and upatensis
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Nuevos Registros De Especies De Mosquitos (Diptera: Culicidae) De La Comarca
    doi.org/10.21640/ns.v12i25.2651 Ciencias Naturales e Ingenierías Nuevos registros de especies de mosquitos (Diptera: Culicidae) de la Comarca Lagunera de Durango, México New records of mosquito species (Diptera: Culicidae) in La Comarca Lagunera, Durango, Mexico Rafael Vázquez-Marroquín1,2 Mónica Duarte-Andrade1 Luis M. Hernández-Triana3 Aldo I. Ortega-Morales4 Rahuel J. Chan-Chable1 1 Universidad Autónoma Agraria Antonio Narro, Postgrado en Ciencias en Producción Agropecuaria, Unidad Laguna 2 Instituto de Salud del Estado de Chiapas, Distrito de Salud No. X, Motozintla 3 Animal and Plant Health Agency, Virology Department, Rabies and Viral Zoonoses (VI1), London 4 Universidad Autónoma Agraria Antonio Narro, Departamento de Parasitología, Unidad Laguna Autor para correspondencia: Rafael Vázquez-Marroquín, E-mail: [email protected] Resumen Introducción: Un número notable de mosquitos tienen gran importancia médica y veterinaria debido a que transmiten numerosos patógenos que causan enfermedades en los animales y los seres humanos, por lo que conocer su taxonomía y distribución es fundamental para aplicar estrategias de control correctas. El objetivo de este estudio fue determinar la presencia de especies de mosquitos y su distribución en la Comarca Lagunera del estado de Durango, México. Método: Entre agosto y noviembre de 2018 fueron colectados mosquitos adultos utilizando aspiradores de campo (Insectzookas) en diferentes sitios de reposo en cuatro municipios. También se tomaron muestras de los hábitats acuáticos para la colecta de etapas inmaduras. Los especímenes adultos se mataron utilizando cámaras letales con vapores de trietilamina, mientras que las larvas y las pupas se almacenaron en tubos individuales para obtener los estadios adultos y las exuvias asociadas.
    [Show full text]
  • Table of Contents
    Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner
    [Show full text]
  • Effect of Multiple Immersions on Eggs and Development of Immature Forms of Haemagogus Janthinomys from South-Eastern Brazil (Diptera: Culicidae)
    Effect Of Multiple Immersions On Eggs And Development Of Immature Forms Of Haemagogus janthinomys From South-Eastern Brazil (Diptera: Culicidae) Authors: Jeronimo Alencar, Hosana Moura de Almeida, Carlos Brisola Marcondes, and Anthony Érico Guimarães Source: Entomological News, 119(3) : 239-244 Published By: American Entomological Society URL: https://doi.org/10.3157/0013-872X(2008)119[239:EOMIOE] 2.0.CO;2 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Entomological-News on 11 Apr 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Fundacao Oswaldo Cruz Volume 119, Number 3, May and June 2008 239 EFFECT OF MULTIPLE IMMERSIONS ON EGGS AND DEVELOPMENT OF IMMATURE FORMS OF HAEMAGOGUS JANTHINOMYS FROM SOUTH-EASTERN BRAZIL (DIPTERA: CULICIDAE)1 Jeronimo Alencar,2 Hosana Moura de Almeida,2 Carlos Brisola Marcondes,3 and Anthony Érico Guimarães2 ABSTRACT: The effect of multiple immersions on Haemagogus janthinomys Dyar, 1921 eggs and the development of its immature forms were studied.
    [Show full text]
  • And Haemagogus Mosquitoes in Southern Brazil (Diptera: Culicidae)*
    BITING ACTIVITY OF AEDES SCAPULARIS (RONDANI) AND HAEMAGOGUS MOSQUITOES IN SOUTHERN BRAZIL (DIPTERA: CULICIDAE)* Oswaldo Paulo Forattini** Almério de Castro Gomes** FORATTINI, O. P. & GOMES, A. de C. Biting activity of Aedes scapularis (Rondani) and Haemagogus mosquitoes in Southern Brazil (Diptera: Culicidae). Rev. Saúde públ., S. Paulo, 22:84-93, 1988. ABSTRACT: The biting activity of a population of Aedes scapularis (Rondani), Hae- magogus capricornii Lutz and Hg. leucocelaenus (Dyar and Shannon) in Southern Brazil was studied between March 1980 and April 1983. Data were obtained with 25-hour human bait catches in three areas with patchy residual forests, named "Jacaré-Pepira", "Lupo" Farm, and "Sta. Helena" Farm, in the highland region of S. Paulo State (Brazil). Data obtained on Ae. scapularis were compared with those formerly gathered in the "Ribeira'' Valley lowlands, and were similar, except in the "Lupo" Farm study area, where a pre- crepuscular peak was observed, not recorded at the "Jacaré-Pepira" site or in the "Ribeira" Valley. In all the areas this mosquito showed diurnal and nocturnal activity, but was most active during the evening crepuscular period. These observations support the hypo- thesis about the successful adaptation of Ae. scapularis to man-made environments and have epidemiological implications that arise from it. As for Haemagogus, results obtained on the "Lupo" and "Sta. Helena" regions agree with previous data obtained in several other regions and show its diurnal activity. The proximity of "Lupo" Farm, where Hg. capricornii and Hg. leucocelaenus showed considerable activity, to "Araraquara" city where Aedes aegypti was recently found, raises some epidemiological considerations about the possibility of urban yellow fever resurgence.
    [Show full text]
  • Mosquito and Sand Fly Gregarines of the Genus
    MEEGID 1944 No. of Pages 12, Model 5G 8 May 2014 Infection, Genetics and Evolution xxx (2014) xxx–xxx 1 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid 6 7 3 Mosquito and sand fly gregarines of the genus Ascogregarina and 4 Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina) – Overview 5 of their taxonomy, life cycle, host specificity and pathogenicity a,⇑ b 8 Q1 Lucie Lantova , Petr Volf 9 a Institute of Histology and Embryology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic 10 b Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague 2, Czech Republic 11 12 article info abstract 2714 15 Article history: Mosquitoes and sand flies are important blood-sucking vectors of human diseases such as malaria or 28 16 Received 30 January 2014 leishmaniasis. Nevertheless, these insects also carry their own parasites, such as gregarines; these mon- 29 17 Received in revised form 16 April 2014 oxenous pathogens are found exclusively in invertebrates, and some of them have been considered useful 30 18 Accepted 24 April 2014 in biological control. Mosquito and sand fly gregarines originally belonging to a single genus Ascogrega- 31 19 Available online xxxx rina were recently divided into two genera, Ascogregarina comprising parasites of mosquitoes, bat flies, 32 hump-backed flies and fleas and Psychodiella parasitizing sand flies. Currently, nine mosquito Ascogrega- 33 20 Keywords: rina and five Psychodiella species are described. These gregarines go through an extraordinarily interest- 34 21 Ascogregarina ing life cycle; the mosquito and sand fly larvae become infected by oocysts, the development continues 35 22 Psychodiella 23 Coevolution transtadially through the larval and pupal stages to adults and is followed by transmission to the off- 36 24 Host specificity spring by genus specific mechanisms.
    [Show full text]
  • Epidemics Investigated
    EPIDEMICS INVESTIGATED During the lifetime of CAREC staff members were called existence of “jungle yellow fever” was proven some 30 upon to investigate a variety of disease outbreaks, such years later in Brazil. Dr T H G Aitken, entomologist at as the periodic occurrence of yellow fever in Trinidad the TRVL, suggested the possibility of the existence of and pan Caribbean epidemics of dengue fever. Dengue a 10-15 year cycle in the upsurge of yellow fever activity indeed is endemic in CAREC Member Countries (CMCs) in Trinidad (Aitken 1991), if not in humans, certainly in even though at one time the Cayman Islands was free monkeys. of Aedes aegypti. Malaria is still present in some CMCs such as Belize, Guyana and Suriname. It is also present The report of dead Howler monkeys (Fig. 6.1.1) in the in Haiti. Food-borne illnesses were common due to the Guayaguayare forests of south-eastern Trinidad in lack of proper hygienic standards and there were periodic November 1978 set alarm bells ringing. A team of staff outbreaks in the countries. Some of the outbreaks members of the Veterinary Public Health Unit, Insect investigated are highlighted below. Fig. 6.1.1. A dead Howler monkey, Alouatta seniculus found on Vector Control Division, Forestry Division and CAREC the forest floor at Fishing Pond, north-eastern Trinidad. visited the area to determine the veracity of the reports. Photo: Elisha Tikasingh Yellow Fever A dead Howler monkey was found, as well as other evidence to suggest more than one monkey had died. Yellow fever was once a scourge in the West Indies and has been documented since the 1600s.
    [Show full text]
  • Risk Assessment on Yellow Fever Virus Circulation in Endemic Countries
    Risk assessment on yellow fever virus circulation in endemic countries Working document from an informal consultation of experts A Protocol for risk assessment at the field level WHO/HSE/PED/CED/2014.2 Risk assessment on yellow fever virus circulation in endemic countries Working document from an informal consultation of experts A Protocol for risk assessment at the field level © World Health Organization, 2014 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. This publication contains the collective views of an international group of experts, and does not necessarily represent the decisions or the policies of the World Health Organization.
    [Show full text]
  • Modelo De Nicho Ecológico En Haemagogus Williston (Diptera: Culicidae), Vectores Del Virus De La Fiebre Amarilla
    149 Rev Biomed 2010; 21:149-161 Artículo Original Modelo de nicho ecológico en Haemagogus Williston (Diptera: Culicidae), vectores del virus de la fiebre amarilla Jonathan Liria1, Juan-Carlos Navarro2 1 Departamento de Biología, Facyt. Universidad de Carabobo, Valencia-Carabobo, Venezuela. 2 Laboratorio de Biología de Vectores, Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela RESUMEN Introducción. Las hembras del género Haemago- distribución potencial resultaron las especies Hg. gus son los vectores de los arbovirus causantes de spegazzinii, Hg. capricornii y Hg. janthinomys. la Fiebre Amarilla (FA) selvática y Mayaro. Sin Conclusiones. De las 20 variables ambientales embargo, hasta el momento son pocos los estudios y topográficas, las tres señaladas predicen el de los patrones de distribución y origen de la biota, modelo de distribución potencial de los vectores. y su relación con la transmisión de FA. La superposición de la distribución potencial con Objetivo. Estimar la distribución potencial de la distribución de los genotipos de FA, sugiere catorce especies del género con base en modelo de que la transmisión del genotipo I de FA podría nicho y establecer su relación con la transmisión asociarse con Hg. celeste y Hg. equinus en el norte de arbovirus. de América del sur, Hg. capricornii en el sur y Materiales y Métodos. Se construyó una base de Hg. leucocelaenus en sur de Brasil, incluyendo datos de 354 registros geo-referenciados a partir parte de Bolivia donde no existen registros de de datos de museos e información bibliográfica. esta especie. Luego, el genotipo II se asocia en el Fue modelada la distribución potencial en modelo con Hg.
    [Show full text]
  • Revisão De Mosquitos Haemagoguswilliston (Diptera
    221 Rev Biomed 2010; 21:221-238 Revisión Revisão de mosquitos Haemagogus Williston (Diptera: Culicidae) do Brasil Carlos Brisola Marcondes1, Jeronimo Alencar2 1 Professor Associado III do Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina, Brasil. 2 Laboratório de Diptera, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil RESUMO O gênero Haemagogus (Diptera: Culicidae) importancia médica debido a estar involucradas contém 28 espécies e mais quatro formas não en la transmisión del virus que causa la fiebre descritas e nominadas formalmente, com ampla amarilla y de otros virus. La distribución, biología distribuição no continente americano, e várias de los adultos y formas inmaduras e importancia das espécies têm importância na transmissão de médica de nueve especies registradas para Brasil vírus de febre amarela e outros. As nove espécies son revisadas, con énfasis en su participación en la já encontradas no Brasil são revisadas quanto a transmisión de fiebre amarilla y otras arbovirosis, distribuição geográfica, biologia de adultos e de así como la posible participación de Haemagogus formas imaturas e importância médica, ressaltando en la transmisión del virus del Dengue. Una clave seu envolvimento com febre amarela e outras arbo- de identificación de las especies presentes en Brasil viroses e o possível papel das espécies do gênero es suministrada y se hace énfasis en la necesidad na transmissão de vírus de dengue. Foi preparada de estudios sobre este género en este extenso país, chave para identificação das espécies do Brasil e lo cual probablemente incrementará el número de é ressaltada a necessidade de pesquisas no gênero especies, así como el conocimiento de su biología neste vasto país, que devem ampliar o número de e importancia en salud pública.
    [Show full text]
  • Program Book Full Final.Pdf
    Continuously Wet Conditions. Continuously Controlled. Altosid® P35, the easy-to-use, 35-day residual mosquito larvicide. Our founders discovered the molecule (S)-methoprene – the original insect growth regulator (IGR) for environmentally compatible mosquito control. Altosid® P35 granules – our latest innovation – provide easy equipment calibration and accurate application thanks to their uniform spherical design, in addition to 35 days of control during continuous flooding. To learn more about Altosid® P35 granules, come see us at Booth #301, or visit www.CentralMosquitoControl.com. Altosid is a registered trademark of Wellmark International. Central Life Sciences with design is a registered trademark of Central Garden & Pet Company. ©2019 Wellmark International AMCA 85TH ANNUAL MEETING AT-A-GLANCE Mon 9:00 am – 3:00 pm Pre-Conference Workshop: Learn the CDC Bottle Bioassay (Hibiscus) – Pre-registration required February 10:00 am - 6:30 pm Registration and Internet Hub (Grand Sierra Foyer) 25 1:00 pm - 5:30 pm Speaker Ready Room (Bonaire 5) 1:00 pm - 5:00 pm Committee Meetings (Bonaire 1, 2, 3, 4) 2:00 pm - 4:00 pm Poster Set-Up (Grand Sierra D-I) 5:00 pm - 8:00 pm Grand Opening of the Exhibit Hall and Welcome Reception– Badge Required for Entry (Grand Sierra D-I) Tues 7:00 am - 5:30 pm Registration and Internet Hub (Grand Sierra Foyer) Speaker Ready Room (Bonaire 5) February 8:00 am - 12:00 pm Plenary Session (Grand Sierra A-C) 26 10:00 am - 10:30 am Refreshment Break (Grand Sierra Foyer) 12:00 pm - 1:45 pm President’s Luncheon and Exhibits
    [Show full text]
  • Natural Infection and Vertical Transmission of Zika Virus in Sylvatic Mosquitoes Aedes Albopictus and Haemagogus Leucocelaenus from Rio De Janeiro, Brazil
    Tropical Medicine and Infectious Disease Article Natural Infection and Vertical Transmission of Zika Virus in Sylvatic Mosquitoes Aedes albopictus and Haemagogus leucocelaenus from Rio de Janeiro, Brazil Jeronimo Alencar 1,* , Cecilia Ferreira de Mello 1,2 , Carlos Brisola Marcondes 3, Anthony Érico Guimarães 1 , Helena Keiko Toma 4, Amanda Queiroz Bastos 1,2, Shayenne Olsson Freitas Silva 1,5 and Sergio Lisboa Machado 4,* 1 Laboratório Diptera, Instituto Oswaldo Cruz (FIOCRUZ), Manguinhos 21040-360, Brazil; cecilia.mello@ioc.fiocruz.br (C.F.d.M.); anthony@ioc.fiocruz.br (A.É.G.); [email protected] (A.Q.B.); [email protected] (S.O.F.S.) 2 Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil 3 Departamento de Imunologia e Parasitologia de Microbiologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil; [email protected] 4 Laboratório de Diagnóstico Molecular e Hematologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; [email protected] 5 Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz (FIOCRUZ), Manguinhos 21040-360, Brazil * Correspondence: jalencar@ioc.fiocruz.br (J.A.); [email protected] (S.L.M.) Citation: Alencar, J.; Ferreira de Mello, C.; Brisola Marcondes, C.; Abstract: Zika virus (ZIKV) was recently introduced into the Western Hemisphere, where it is Érico Guimarães, A.; Toma, H.K.; suspected to be transmitted mainly by Aedes aegypti in urban environments. ZIKV represents a public Queiroz Bastos, A.; Olsson Freitas health problem as it has been implicated in congenital microcephaly in South America since 2015.
    [Show full text]