Isotope Hydrology Techniques - Practical Tools to Solve Water Problems by B.R

Total Page:16

File Type:pdf, Size:1020Kb

Isotope Hydrology Techniques - Practical Tools to Solve Water Problems by B.R Technical co-operation Isotope hydrology techniques - practical tools to solve water problems by B.R. Payne* At the time of the creation of the International waters. Today the mostcommonly used environmental Atomic Energy Agency, there were relatively few appli- isotopes are the stable isotopes deuterium and oxygen-18, cations of nuclear techniques to hydrological problems. and the radioactive isotopes tritium and carbon-14. The Over the last twenty-five years, the range and character first three isotopes are part of the water molecule and of techniques have broadened considerably. therefore are almost ideal tracers of water. In the early days, isotope hydrology techniques were The potential usefulness of the naturally present used to measure the flow-rates of rivers. Only relatively tritium in meteorology, hydrology, and oceanography recently has it become clear that, when it comes to a was pointed out in 1957 by the late Willard Libby, choice between radioisotope techniques and non-nuclear Nobel Laureate for his work on carbon-14 dating. But methods, the radioisotope techniques are particularly before this usefulness could be realized, it was clear that suited for fast-flowing turbulent rivers. This year the the temporal and geographical variations of tritium in Agency is using tritium as a tool in just such a project rainfall and other precipitation would have to be studied. in Tanzania under the IAEA's Technical Co-operation As a result, the Agency, in co-operation with the World programme. Unlike the gamma emitters which were used Meteorological Organization, set up a global precipita- in the early work, tritium cannot be measured immedi- tion sampling network. Initially, the samples were • ately in the field. The analyses will be made in the measured by some of the relatively few national tritium Agency's Isotope Hydrology Laboratory. laboratories which existed at that time. However, this arrangement could not cope with the analytical load Although non-nuclear methods were available to and furthermore there was an obvious need for an inter- measure flow-rates of rivers in the early 1950s, this was national comparison of measurements to ensure not so for sediment movement. Over the years, nuclear standardization. The Agency thus set up a low-level techniques have been developed to the stage that quanti- tritium laboratory, with considerable financial support tative estimates of transport are possible. The Agency, from the United States Atomic Energy Commission in the Commissariat a l'energie atomique, and Singapore the early days. The samples from the precipitation have been co-operating recently in the study of the survey were not only analysed for tritium, but also for movements of sediments associated with land reclama- deuterium and oxygen-18. Although it had been known tion projects, and the Agency receives requests for for a long time that the concentrations of these isotopes Technical Co-operation on this subject from other in natural waters varied, precise study only really became countries. possible with the advent of the mass-spectrometer, just a few years before the precipitation study got under way. Radioisotope tracers were already being used in the late 1950s for studying seepage through dams, measuring At an early stage the Agency recognized that the the groundwater flow-rate and direction from the dilu- introduction and development of these new techniques tion of a radioisotope injected into a section of a borehole. required close collaboration between isotope specialists These techniques have also been developed and refined and hydrologists. Not only was the staff enlarged to over the years and are employed in a wide variety of include hydrologists, but an agreement was reached with seepage problems from dams to subways. FAO in 1961 to introduce isotope techniques in large- These examples use intentionally injected tracers, scale groundwater projects funded by the United Nations which were being developed for the hydrologist when Development Programme. The agreement, which included the Agency was drawing up its first scientific programme. reimbursement of Agency costs, was one of the first However, there is a group of completely different examples of inter-organization collaboration in the methods, known as environmental isotope techniques, United Nations system. Subsequently this type of which were not an established tool for the hydrologist arrangement has been broadened to include a number of at the time of the creation of the Agency. Environmental other organizations of the UN system, such as UNESCO, isotope techniques depend upon the variations of both WHO, UNICEF, and the United Nations*. the stable isotope and radioisotope content of natural * United Nations Educational, Scientific and Cultural Organization (UNESCO). * Mr Payne is Head, Isotope Hydrology Section, in the World Health Organization (WHO). Agency's Division of Research and Laboratories. United Nations Children's Fund (UNICEF). IAEA BULLETIN, VOL.24, No.3 Technical co-operation- The analytical system in the Agency's Isotope Hydrology Laboratory for measure- ment of the environmental carbon-14 content of groundwater. Such measure- ments are being made for studying groundwater movement in arid regions in several Member States. In the course of time the Agency has become a focal considerable error and it may not even be possible to point for the development of isotope hydrology. Many tell whether the groundwater is actually being recharged. of the world's environmental isotope hydrological labora- In the 1950s and early 1960s large amounts of tritium tories - seventeen of them set up with the help of the were injected into the atmosphere by nuclear bomb tests. IAEA — are modelled on the Agency's own laboratory. As a result, precipitation has been labelled so that if a Indeed many of the staff received their training in Vienna. sample of groundwater contains a significant amount of Microprocessors are now part of everyday life and the tritium that is unequivocal proof that the water has been Agency's laboratory is currently automating analytical recharged during the last two or three decades. procedures by using microprocessors, and expects that An example of this is provided by a collaborative laboratories in the developing countries will be able to study between FAO and the Agency in Qatar. The benefit from these developments in the future. mean annual precipitation is about 80 mm in the northern part of Qatar and about 50 mm in the south. Tracking rainfall The spatial and temporal occurrences of rainfall are In arid regions precipitation is subject to irregularities variable. It was believed that short, intense downpours in terms of amount, intensity and location. For example, recharge the groundwater system. However, such storms there may be no precipitation for many years in some occur quite randomly. Therefore it was important to places. To assess the potential groundwater resources, demonstrate the occurrence of recharge by an independent the rate at which the groundwater is replenished has to method. be estimated. Because of the small amounts of precipita- Isotope analysis revealed that more than 60 per cent tion in arid regions, estimates of the rate of replenishment, of the groundwater samples contained significant amounts using standard hydrological methods are subject to of tritium and thus that these waters had been recharged 10 IAEA BULLETIN, VOL.24, No.3 -Technical co-operation since 1952. There was more tritium in the northern part very useful routine hydrological tool. An IAEA co- of the peninsula where the amount of precipitation is ordinated research programme on a comparison of higher. It was estimated that about 8 per cent of the different dating methods will be completed early next annual precipitation since 1952 has been effective in year. replenishing the groundwater reserves. Infiltration of precipitation may not be the only source of recharge to a groundwater system. Recharge Carbon-14 dating of water may also come from a river. Losses to groundwater may The relatively short half-life of tritium, 12.43 years, be indicated by differences in flow-rates over a certain means that it is only of use in relatively fast-flowing reach of the river and by the gradient of groundwater groundwater systems or, as outlined above, in studies of levels in the vicinity of the river. However, neither recharge. In 1962 carbon-14 dating was first applied in approach provides a proof of actual transfer of water an attempt to measure the age of groundwater in the from the river to the groundwater system. Stable- western desert of Egypt. The carbon-14 technique is isotope data provide a unique tool to answer this more difficult to apply because carbon is not part of the question. Most of the water flowing in a big river will water molecule. It occurs in groundwater in the come from higher elevations and so will contain less of dissolved inorganic carbon species, and chemical changes the heavy isotopes deuterium and oxygen-18 than local generally tend to dilute the carbon-14 and thus give rainfall. Thus each potential source of recharge is erroneously high ages. However, corrections can be characterized by a different isotopic composition, so made using chemical and carbon-13 (a stable isotope of that the contribution of river-water to the groundwater carbon) data, to provide good estimates of the time a can be clearly demonstrated. The Agency has worked water was recharged. Even though a groundwater on this type of problem in Ecuador, Mexico, Republic system may not be recharged under the present climatic of Korea, and Sudan. conditions, it is important in the assessment of a ground- water resource to have information on past recharge The investigation in Sudan was near Khartoum where conditions*. Research is being carried out on the dating the Blue Nile and White Nile rivers merge. The two possibilities of other radioisotopes, such as silicon-32, rivers are distinctly different in isotopic composition argon-39, and chlorine-36; but carbon-14 remains a which enabled the extent of infiltration from both rivers below their confluence to the groundwater to be studied.
Recommended publications
  • 5.15 Water Pollution and Hydrologic Impacts 5.15.1 Chapter Index 5.15
    Transportation Cost and Benefit Analysis II – Water Pollution Victoria Transport Policy Institute (www.vtpi.org) 5.15 Water Pollution and Hydrologic Impacts This chapter describes water pollution and hydrologic impacts caused by transport facilities and vehicle use. 5.15.1 Chapter Index 5.15 Water Pollution and Hydrologic Impacts ........................................................... 1 5.15.2 Definitions .............................................................................................. 1 5.15.3 Discussion ............................................................................................. 1 5.15.4 Estimates: .............................................................................................. 3 Summary Table ..................................................................................... 3 Water Pollution & Combined Estimates ................................................. 4 Storm Water, Hydrology and Wetlands ................................................. 6 5.15.5 Variability ............................................................................................... 7 5.15.6 Equity and Efficiency Issues .................................................................. 7 5.15.7 Conclusion ............................................................................................. 7 5.15.8 Information Resources .......................................................................... 9 5.15.2 Definitions Water pollution refers to harmful substances released into surface or ground water,
    [Show full text]
  • Using Isotopes to Constrain Water Flux and Age Estimates in Snow
    Hydrol. Earth Syst. Sci., 21, 5089–5110, 2017 https://doi.org/10.5194/hess-21-5089-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model Pertti Ala-aho1, Doerthe Tetzlaff1, James P. McNamara2, Hjalmar Laudon3, and Chris Soulsby1 1Northern Rivers Institute, School of Geosciences, University of Aberdeen, AB24 3UF, UK 2Department of Geosciences, Boise State University, Boise, ID 83725, USA 3Department of Forest, Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden Correspondence to: Pertti Ala-aho ([email protected]) Received: 24 February 2017 – Discussion started: 9 March 2017 Revised: 28 June 2017 – Accepted: 18 August 2017 – Published: 9 October 2017 Abstract. Tracer-aided hydrological models are increasingly water age distributions, which was captured by the model. used to reveal fundamentals of runoff generation processes Our study suggested that snow sublimation fractionation pro- and water travel times in catchments. Modelling studies in- cesses can be important to include in tracer-aided modelling tegrating stable water isotopes as tracers are mostly based for catchments with seasonal snowpack, while the influence in temperate and warm climates, leaving catchments with of fractionation during snowmelt could not be unequivocally strong snow influences underrepresented in the literature. shown. Our work showed the utility of isotopes to provide Such catchments are challenging, as the isotopic tracer sig- a proof of concept for our modelling framework in snow- nals in water entering the catchments as snowmelt are typi- influenced catchments.
    [Show full text]
  • Environmental Isotope Hydrology Environmental Isotope Hydrology Is a Relatively New Field of Investigation Based on Isotopic Variations Observed in Natural Waters
    Environmental Isotope Hydrology Environmental isotope hydrology is a relatively new field of investigation based on isotopic variations observed in natural waters. These isotopic characteristics have been established over a broad space and time scale. They cannot be controlled by man, but can be observed and interpreted to gain valuable regional information on the origin, turnover and transit time of water in the system which often cannot be obtained by other techniques. The cost of such investigations is usually relatively small in comparison with the cost of classical hydrological studies. The main environmental isotopes of hydrological interest are the stable isotopes deuterium (hydrogen-2), carbon-13, oxygen-18, and the radioactive isotopes tritium (hydrogen-3) and carbon-14. Isotopes of hydrogen and oxygen are ideal geochemical tracers of water because their concentrations are usually not subject to change by interaction with the aquifer material. On the other hand, carbon compounds in groundwater may interact with the aquifer material, complicating the interpretation of carbon-14 data. A few other environmental isotopes such as 32Si and 2381//234 U have been proposed recently for hydrological purposes but their use has been quite limited until now and they will not be discussed here. Stable Isotopes of Hydrogen and Oxygen in the Hydrological Cycle The variations of the isotopic ratios D/H and 18O/16O in water samples are expressed in terms of per mille deviation (6%o) from the isotope ratios of mean ocean water, which constitutes the reference standard SMOW: 5%o= (^ RSMOW The isotope ratio, R, is measured using a special mass spectrometer.
    [Show full text]
  • NRSM 385 Syllabus for Watershed Hydrology V200114 Spring 2020
    NRSM 385 Syllabus for Watershed Hydrology v200114 Spring 2020 NRSM (385) Watershed Hydrology Instructor: Teaching Assistant: Kevin Hyde Shea Coons CHCB 404 CHCB 404 [email protected] [email protected] Course Time & Location: Office Hours: (or by appointment) Tue/Thu 0800 – 0920h Kevin: Tue & Thu, 1500 – 1600h Natural Science 307 Shea: Wed & Fri, 1200 – 1300h Recommended course text: Physical Hydrology by SL Dingman, 2002 (2nd edition). Other readings as assigned. Additional course information and materials will be posted on Moodle: umonline.umt.edu Science of water resource management in the 21st Century: Sustainability of all life requires fundamental changes in hydrologic science and water resource management. Forty percent of the Earth’s ever-increasing population lives in areas of water scarcity, where the available supply cannot meet basic needs. Water pollution from human activities and increasing water withdrawals for human use impair and threaten entire ecosystems upon which human survival depends. Climate change increases environmental variability, exacerbating drought in some regions while leading to greater hydrologic hazards in others. Higher intensity and more frequent storms generate flooding that is especially destructive in densely developed areas of and where ecosystems are already compromised. Sustainable water resource management starts with scientifically sound management of forested landscapes. Eighty percent of fresh water supplies in the US originate on forested lands, providing over 60% of municipal drinking water. Forests also account for significant portions of biologically complex and vital ecosystems. Multiple land use activities including logging, agriculture, industry, mining, and urban development compromise forest ecosystems and threaten aquatic ecosystems and freshwater supplies.
    [Show full text]
  • From Engineering Hydrology to Earth System Science: Milestones in the Transformation of Hydrologic Science
    Hydrol. Earth Syst. Sci., 22, 1665–1693, 2018 https://doi.org/10.5194/hess-22-1665-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science Murugesu Sivapalan1,* 1Department of Civil and Environmental Engineering, Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA * Invited contribution by Murugesu Sivapalan, recipient of the EGU Alfred Wegener Medal & Honorary Membership 2017. Correspondence: Murugesu Sivapalan ([email protected]) Received: 13 November 2017 – Discussion started: 15 November 2017 Revised: 2 February 2018 – Accepted: 5 February 2018 – Published: 7 March 2018 Abstract. Hydrology has undergone almost transformative hydrology to Earth system science, drawn from the work of changes over the past 50 years. Huge strides have been made several students and colleagues of mine, and discuss their im- in the transition from early empirical approaches to rigorous plication for hydrologic observations, theory development, approaches based on the fluid mechanics of water movement and predictions. on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogene- ity, including subsurface heterogeneity present at all scales. எப்ெபாள் யார்யாரவாய் ் க் ேகட்ம் The inability to measure or map the heterogeneity every- அப்ெபாள் ெமய் ப்ெபாள் காண் ப த where prevented the development of balance equations and In whatever matter and from whomever heard, associated closure relations at the scales of interest, and has Wisdom will witness its true meaning.
    [Show full text]
  • Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology
    Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology By Charles J. Taylor and Earl A. Greene Chapter 3 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction...................................................................................................................................................75 Hydrogeologic Characteristics of Karst ..........................................................................................77 Conduits and Springs .........................................................................................................................77 Karst Recharge....................................................................................................................................80 Karst Drainage Basins .......................................................................................................................81 Hydrogeologic Characterization ...............................................................................................................82 Area of the Karst Drainage Basin ....................................................................................................82 Allogenic Recharge and Conduit Carrying Capacity ....................................................................83 Matrix and Fracture System Hydraulic Conductivity ....................................................................83
    [Show full text]
  • 17O-Excess Traces Atmospheric Nitrate in Paleo Groundwater
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 10, 20079–20111, 2013 Open Access www.biogeosciences-discuss.net/10/20079/2013/ Biogeosciences BGD doi:10.5194/bgd-10-20079-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. 10, 20079–20111, 2013 This discussion paper is/has been under review for the journal Biogeosciences (BG). 17O-excess traces Please refer to the corresponding final paper in BG if available. atmospheric nitrate in paleo groundwater 17 O-excess traces atmospheric nitrate in M. Dietzel et al. paleo groundwater of the Saharan desert Title Page M. Dietzel1, A. Leis2, R. Abdalla1, J. Savarino3,4, S. Morin5, M. E. Böttcher6,*, and S. Köhler1,** Abstract Introduction 1Graz University of Technology, Institute of Applied Geosciences, Rechbauerstrasse 12, 8010 Conclusions References Graz, Austria Tables Figures 2Joanneum Research, Institute of Water Resources Management, Graz, Austria 3CNRS, Institut National des Sciences de l’Univers, France 4Laboratoire de Glaciologie et de Géophysique de l’Environnement, Université Joseph J I Fourier, Grenoble, France 5Météo-France – CNRS, CNRM-GAME URA 1357, CEN, Grenoble, France J I 6 Biogeochemistry Department, Max Planck Institute for Marine Microbiology, 28359 Bremen, Back Close Germany * now at: Leibniz Institute for Baltic Sea Research, Geochemistry & Isotope Geochemistry Full Screen / Esc Group, 18119 Warnemünde, Germany ** now at: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Printer-friendly Version Sciences, Uppsala, Sweden Interactive Discussion 20079 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 3 October 2013 – Accepted: 4 December 2013 – Published: 20 December 2013 Correspondence to: M. Dietzel ([email protected]) BGD Published by Copernicus Publications on behalf of the European Geosciences Union.
    [Show full text]
  • Runoff Hydrology 101
    Runoff Hydrology 101 Hydrology 101 Runoff Hydrology 101 Legislation (c) The agency shall develop performance standards, design standards, or other tools to enable and promote the implementation of low-impact development and other stormwater management techniques. For the purposes of this section, "low-impact development" means an approach to storm water management that mimics a site's natural hydrology as the landscape is developed. Using the low-impact development approach, storm water is managed on-site and the rate and volume of predevelopment storm water reaching receiving waters is unchanged. The calculation of predevelopment hydrology is based on native soil and vegetation. Minnesota Statutes 2009, section 115.03, subdivision 5c Runoff Hydrology 101 The Water Cycle Hanson, 1994 Runoff Hydrology 101 Development Impacts on the Water Cycle Runoff Hydrology 101 Runoff Hydrology 101 Rate Impacts of Development 1 Existing Hydrograph 2 Developed, conventional CN, no controls Vegetation Removal Pre-development Soil Compaction Peak Runoff Volume Rate Q Drainage Alteration 2 Impervious Areas 1 Area under the curve = Volume T Runoff Hydrology 101 Hydrograph Scenarios Rate 1 Existing 2 Developed, conventional CN, no control. 3 Developed, conventional CN and control. MIDS Pre-development 4 Peak Runoff Volume Rate Q 3 2 1 4 T Runoff Hydrology 101 Factors Affecting Q Runoff • Precipitation • Antecedent moisture • Soil permeability • Watershed area • Ground cover • Storage in watershed • Time parameters Runoff Hydrology 101 Runoff Equations Runoff Hydrology 101 Runoff Curve Numbers Commonly used approach to determine runoff Based on land cover and soils Simple regression model that is useful for quickly assessing stormwater management practices and assessing impacts of land use changes Runoff Hydrology 101 Hydrological Soil Group: Soil groups which are classified according to their drainage potential.
    [Show full text]
  • Isotopes in Climatological Studies Environmental Isotopes Are Helping Us Understand the World's Climate by Kazimierz Rozanski and Roberto Gonfiantini
    Features Isotopes in climatological studies Environmental isotopes are helping us understand the world's climate by Kazimierz Rozanski and Roberto Gonfiantini X he fundamental motivation for the recent explosion radiation, which otherwise would escape into space. of interest in climate studies is the growing scientific Carbon dioxide and methane are the most important concern that rapidly expanding human impact on the greenhouse gases, the concentration of which in the air global ecosystem may significantly alter the world's has been increasing since the middle of last century, climate in the near future. The major source for this con- mQiniw K»nr tint nnhf Hii£» tr\ the* nmwrinn /»ftncnrnn_ cern is the observed change in the earth's atmosphere, tion of fossil fuels. (See Table 1.) probably the most vulnerable component of the entire The predictions on the onset and extent of the green- ecosphere. house effect are, however, admittedly imprecise due to Observation data clearly show that the concentration the complexity of environmental interactions, and the in air of some trace constituents such as carbon dioxide, still incomplete knowledge of global meteorological and methane, carbon monoxide, ozone, chlorofluoro-hydro- climatological mechanisms. For instance, we are still far carbons (CFCs), nitrogen and sulphur oxides, is chang- from achieving a thorough understanding of the pro- ing as a result of anthropogenic emissions. These cesses regulating the composition of the atmosphere and changes may have harmful, far-reaching consequences the feedback mechanisms that operate between the major in the near future via direct effects on the biosphere — compartments (atmosphere, hydrosphere, biosphere, including human beings—and, indirectly, via the altera- geosphere) of the global ecosystem, and determine its tion of the life-supporting conditions.
    [Show full text]
  • Hydrology and Water Quality
    City of Malibu Environmental Impact Analysis Hydrology and Water Quality 4.7. Hydrology and Water Quality This section discusses the hydrology and water quality issues associated with construction and operation of the proposed Civic Center Wastewater Treatment Facility Project (“the Project”). It includes a review of existing hydrologic conditions based on available information and an analysis of direct and indirect impacts of the Project. Where feasible, mitigation measures are recommended to reduce the level of impacts. The Project would be constructed in three phases and has four main elements that could result in impacts to hydrologic resources: 1) wastewater treatment facility; 2) pump stations; 3) wastewater collection and recycled water distribution system pipelines; and 4) percolation ponds and groundwater injection wells. For the purposes of this section, “Project area” refers to the area that encompasses the extents of the four main elements described above and the area that would be served by these proposed Project facilities, and “Project site” refers specifically to those areas that would be disturbed by construction activities associated with these four main elements. The Project would include a Local Coastal Program Amendment (including amendments to the Local Implementation Plan (LIP) for wastewater systems and water quality), and modification of zoning for the wastewater treatment facility to include an Institutional District Overlay. 4.7.1. Environmental Setting Regulatory Setting Federal Regulations Clean Water Act The Clean Water Act (CWA) is the primary federal law that protects the quality of the nation’s surface waters, including lakes, rivers, and coastal wetlands. It is based on the principle that all discharges into the nation’s waters are unlawful unless specifically authorized by a permit.
    [Show full text]
  • CPY Document
    12. A REVIEW OF ISOTOPE APPLICATIONS IN CATCHMENT HYDROLOGY T. VITVAR, P.K. AGGARWAL Isotope Hydrology Section Division of Physical And Chemical Sciences, International Atomic Energy Agency, Vienna J. McDONNELL Oregon State University, Corvalls, Oregon, United States of America 1. Introduction Isotope methods were introduced into catchment hydrology research in the 1960s as complementar tools to conventional hydrologic methods for addressing questions of where water goes when it rains, what pathways it takes to the stream and how long water resides in the catchment (McDonnell, 20(3). Despite slow incorporation into routine research applications, the last decade has seen a rapid increase in isotope-based catchment studies. These have been mainly carried out in small well-instrented experimental catchments, on the order of 0.01 to 100 km and located typically in headwater areas (Buttle, 1998). In contrast, little has been done in terms of application and transfer of these concepts and methodologies to large (:;1 DOs to 1000s of ), less instrented basins. Much potential also waits to be realized in terms of how isotope information may be used to calibrate and test distributed rainfall-runoff models and to aid in the quantification of sustainable water resources management. In this chapter, we review the major applications of isotopes to catchment studies, and address a variety of prospective new directions in research and practice. Our discussion is based primarily on catchments in temperate to wet zones. 152 VITV AR, AGGARWAL, McDONNLL 2. Review of research 1. HISTORICAL OVERVIEW OF ISOTOPES EMPLOYED IN CATCHMENT HYDROLOGY Natural l4C was discovered in the late 1940s and natural 3H (tritium) was discovered in the early 1950s (Grosse et aI., 1951).
    [Show full text]
  • Military Use of Geologists and Geology: a Historical Overview and Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Military use of geologists and geology: a historical overview and introduction EDWARD P. F. ROSE1*, JUDY EHLEN2,3 & URSULA L. LAWRENCE4 1Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK 2US Army Engineer Research and Development Center, Alexandria, VA, USA (retired) 3Present address: 3 Haytor Vale, Haytor, Newton Abbot, Devon TQ13 9XP, UK 4Capita Property and Infrastructure, Capita House, Wood Street, East Grinstead, West Sussex RH19 1UU, UK E.P.F.R., 0000-0003-4182-6426; J.E., 0000-0002-1595-7820; U.L.L., 0000-0001-8820-1699 *Correspondence: [email protected] Abstract: Napoleon Bonaparte was, in 1798, the first general to include geologists as such on a military operation. Within the UK, the following century saw geology taught, and national geological mapping initiated, as a military science. Nevertheless, military geologists were not deployed on a battlefield until World War I, first by the German and Austro-Hungarian armies and later and less intensively those of the UK and USA. Geol- ogists were used primarily to guide abstraction of groundwater, construction of ‘mine’ tunnels and dug-outs, development of fortifications and quarrying of natural resources to enhance or repair supply routes. Only the USSR and Germany entered World War II with organized military geological expertise, but the UK and later the USA made significant use of military geologists, albeit far fewer than the c. 400 in total used by German forces. Military geologist roles in World War II included most of those of World War I, but were extended to other aspects of terrain evaluation, notably the rapid construction of temporary airfields and factors affecting cross-country vehicular movement (‘going’).
    [Show full text]