Role of Modifier Gene SLC6A14 in Cystic Fibrosis and the Path to Personalized Medicine

Total Page:16

File Type:pdf, Size:1020Kb

Role of Modifier Gene SLC6A14 in Cystic Fibrosis and the Path to Personalized Medicine Role of modifier gene SLC6A14 in Cystic Fibrosis and the path to personalized medicine by Saumel Bashir Ahmadi A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Physiology University of Toronto © Copyright by Saumel Bashir Ahmadi (2018) Role of modifier gene SLC6A14 in Cystic Fibrosis and the path to personalized medicine Saumel Bashir Ahmadi Doctor of Philosophy Department of Physiology University of Toronto 2018 Abstract Cystic Fibrosis (CF) is the most common fatal genetic disorder in Canada. It is a multi-system disorder caused by mutations in the CFTR gene, expressed in epithelial tissues. Decrease in lung function over time is the most common cause of morbidity and mortality in CF. However, affliction to other organs systems like the gastro-intestinal system, also contributes to significant disease burden. Variation in disease severity among CF patients is well established, attributable to CFTR gene and modifier gene mutations. There are over 2,000 disease causing mutations in the CFTR gene. F508del is the most common CF causing mutation present on at least one allele in 90% of the CF population. However, patients bearing the same F508del mutation on both alleles also exhibit a tremendous variation in disease severity, which has been attributed to modifier gene mutations. Two FDA approved drugs that work directly on CFTR protein – Ivacaftor and Lumacaftor, are shown to have a heterogenous response in CF patients. The heterogeneity in response has also been attributed to modifier genes. With a greater understanding of modifier genes and CFTR genetics, the variation in patient responses to currently available CF therapies could be explained. This has led to efforts for in vitro phenotypic profiling of individual patient derived tissues, in the context of CF. Towards this we developed the apical CFTR conductance assay, to measure CFTR function in vitro using cultured ii airway epithelia from individual patients. Later we applied this technology to murine intestinal tissue to understand the mechanism of a genetic modifier of Cystic Fibrosis – SLC6A14, which was a top hit in a recent genome wide association study. Using a murine CF model and a SLC6A14 knockout mouse, we discovered that SLC6A14 modifies the intestinal phenotype of CF by regulating the fluid secretory capacity of the CF affected epithelium, via the nitric-oxide pathway. Thus, we explored the biologic basis of SLC6A14 as a modifier of CF. Taken together, the studies described in this thesis will facilitate the path towards personalized medicine in CF. iii Acknowledgments Foremost, I would like to thank my supervisors Dr. Christine Bear and Dr. Johanna Rommens for having me in their laboratories and for being excellent mentors and caring individuals. Their hard work and conduciveness to new ideas have always been very inspiring. They have helped me grow as a scientist to tackle the next generation of challenges in Biomedical research. Dr. Bear’s question of “what would be the best experiment?” helped me push the limit of innovation. The collegial and collaborative environment at The Hospital for Sick Children was a cornerstone to the success of everyone involved in the projects of this thesis. I am thankful to my committee members Dr. Scott Heximer and Dr. Reinhart Reithmeier for their helpful discussions, insights and keeping my progress on track. I am very thankful to my dear friend and colleague Dr. Stan Pasyk, who helped me grow professionally as well as socially. I am grateful for his insight, critical arguments and for inspiring me by sharing his passion for science. Over the years I have been fortunate to have many students and collaborators, without whose help this thesis would not be possible. I am thankful to Timothy Chung for discussions in physical chemistry and for maintaining a mutual inspiration for long experiments, and to Rupinder Mangat for her help. I am also thankful to Wilson Wu and Randolph Kissoon for the fun times in the animal facility, productive discussions and for their hard work with the mice. All of you have bright futures ahead of you. The people with whom I worked the most in the lab – my dear friends Sunny Xia and Michelle Di Paola, are really special to me. Their hard work, passion for science and their support was indispensable to this thesis. They are success bound with bright futures. I am grateful to Dr. Mohabir Ramjeesingh for supporting me, believing me and nurturing me as a scientist. I am thankful to my friend and colleague Dr. Steven Molinski for helpful discussions, help with molecular biology, and for a mutually productive life-long collaboration. I am also very thankful to Dr. Canhui (Danny) Li, who normalized my crazy ideas and helped them become a reality. His vision and passion for science has always been motivational. I have had helpful discussions with my colleagues and friends Stephanie Chin and Maurita Hung and I see bright futures for them. I am thankful to Ling Jun Huan, for her help in the lab all along the way, and maintaining a collegial environment. I am grateful to all past and present members of the Bear Lab including Elyse Watkins, Ida Szarics, Dr. Paul Eckford, Dr. Leigh Wellhauser, Dr. Kai Du, Wilson Yu, Janet Jiang, Onofrio Laselva, Donghe Yang, Angela Skoutakis, Anick Auger and Roman Pekhletski for their help at various stages of my project, and for sharing interesting conversations. iv I would like to give my sincere gratitude to Catherine Luk, whose help was critical in maintaining the mouse facility for this project. Her care, devotion and tireless efforts kept the project smooth and fun for everyone. I am thankful to all members of Dr. Johanna Rommens’ laboratory including Dr. Stéphane Gagnon, Rikesh Gandhi, Dr. Marina Tourlakis, Dr. Holly Liu, Rashmi Parekh and Fan Lin, who helped me all along especially in the area of molecular genetics. I am grateful for collaborating with Dr. Julie Forman-Kay’s laboratory. I made a life-long friend Dr. Zoltan Bozoky, whose insight into computational biology and big data handling was unmatched. I had a very productive professional and social relationship with him. I am also very grateful to collaborate with Dr. Theo Moraes’ and Dr. Tanja Gonska’s laboratories, and all the present and past members of their labs including Andrew Lloyd-Kuzik, Wan Ip, Claire Bartlett, Hong Ouyang and Wenming Duan. I was also fortunate to have a productive collaboration with Dr. Amy Wong in Dr. Janet Rossant’s lab, and with Dr. Felix Ratjen, Julie Avolio and Dr. Jeremy Hirota. I am also thankful to all my medical school mentors, and also my medical school friends Dr. Parth Vaishnav, Dr. Vidhi Patel and Dr. Mihir Chauhan for their support in my endeavors. Finally, I would also like to thank my parents Dr. Bashir Ahmadi and Nafisa Ahmadi for their constant support and trust. I am also very grateful to my grandparents Dr. Abdulmuttalib Ahmadi and Zubeda Ahmadi for constantly inspiring me to work hard, and to my sister Swela Bashir for her support. This study would not have been possible without the help and support of the Cystic Fibrosis patients and their families, and the inspiration they provided to find a cure. I hope this thesis will be a small step towards reaching a cure for everyone. v Table of Contents Contents Acknowledgments .......................................................................................................................... iv Table of Contents ........................................................................................................................... vi List of Tables ................................................................................................................................. xi Abbreviations ................................................................................................................................ xii List of Figures .............................................................................................................................. xvi List of Appendices ....................................................................................................................... xix Chapter 1 Introduction .................................................................................................................... 1 1.1 Cystic Fibrosis (CF) .................................................................................................................. 1 1.2 Cystic Fibrosis Transmembrane conductance Regulator (CFTR) ............................................ 2 1.2.1 Introduction ................................................................................................................... 2 1.2.2 CFTR Genetics and regulation of gene expression ....................................................... 4 1.2.3 CFTR protein and regulation ........................................................................................ 6 1.2.4 CFTR anion conductance and epithelial pH regulation .............................................. 11 1.2.5 Cystic Fibrosis causing mutation F508del CFTR ....................................................... 11 1.3 Mechanisms underlying CF pathogenesis ............................................................................. 11 1.4 CF animal models .................................................................................................................. 14 1.4.1 Murine CF intestinal phenotype ............................................................................... 14
Recommended publications
  • The Promise of a Cure: 20 Years and Counting
    NEWSFOCUS All grown up. Danny Bessette, a 24-year-old with CF, was 4 years old when he appeared on the cover of Science announcing the discovery of the CF gene. after signing up with Collins, in the spring of 1989. In collaboration with a large research group in Toronto, Canada, that had started an aggressive chase for the CF gene years earlier, the team cloned the CF gene— called the cystic fibrosis transmembrane conductance regulator (CFTR)—and nailed a crucial, disease-causing mutation (Science, 8 September 1989, pp. 1059, 1066, 1073). Everyone in the CF community recalls the electric moment when they heard the news. “I remember seeing it roll off the fax machine, gathering people in the lab, and thinking, ‘What did we need to know’ ” now? says Michael Welsh, a pulmonary physician at the University of Iowa, Iowa City. Most believed that the disease had grown vastly less complex overnight and would soon be eliminated, probably by gene therapy. The Promise of a Cure: on June 19, 2009 On the 20th anniversary of the identifica- tion of the CF gene, as new gene discoveries 20 Years and Counting pile up weekly and hype over the power of genes to transform medicine flows fast, CF The discovery of the cystic fibrosis gene brought big hopes for offers an object lesson in how difficult it is, and how long it takes, to convert genetic gene-based medicine; although a lot has been achieved over 2 decades, knowledge into treatments. Every CF expert the payoff remains just around the corner agrees that the gene discovery transformed their understanding of the disease’s pathol- www.sciencemag.org The gene hunt began quietly, with few the- which sticky mucus accumulates in the ogy.
    [Show full text]
  • Trafficking to the Cell Surface of Amino Acid Transporter SLC6A14
    cells Article Trafficking to the Cell Surface of Amino Acid Transporter SLC6A14 Upregulated in Cancer Is Controlled by Phosphorylation of SEC24C Protein by AKT Kinase Vasylyna Kovalchuk and Katarzyna A. Nał˛ecz* Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, PL-02-093 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-225892303 Abstract: Cancer cells need a constant supply of nutrients. SLC6A14, an amino acid transporter B0,+ (ATB0,+) that is upregulated in many cancers, transports all but acidic amino acids. In its exit from the endoplasmic reticulum (ER), it is recognized by the SEC24C subunit of coatomer II (COPII) for further vesicular trafficking to the plasma membrane. SEC24C has previously been shown to be phosphorylated by protein kinase B/AKT, which is hyper-activated in cancer; therefore, we analyzed the influence of AKT on SLC6A14 trafficking to the cell surface. Studies on overexpressed and en- dogenous transporters in the breast cancer cell line MCF-7 showed that AKT inhibition with MK-2206 correlated with a transient increase of the transporter in the plasma membrane, not resulting from the inhibition of ER-associated protein degradation. Two-dimensional electrophoresis demonstrated the decreased phosphorylation of SLC6A14 and SEC24C upon AKT inhibition. A proximity ligation assay confirmed this conclusion: AKT inhibition is correlated with decreased SLC6A14 phosphothreonine Citation: Kovalchuk, V.; Nał˛ecz,K.A. Trafficking to the Cell Surface of and SEC24C phosphoserine. Augmented levels of SLC6A14 in plasma membrane led to increased Amino Acid Transporter SLC6A14 leucine transport. These results show that the inactivation of AKT can rescue amino acid delivery Upregulated in Cancer Is Controlled through SLC6A14 trafficking to the cell surface, supporting cancer cell survival.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Curriculum Vitae Lei Sun (Last Updated May 24, 2018)
    Curriculum Vitae Lei Sun (Last updated May 24, 2018) Department of Statistical Sciences 100 St. George Street Faculty of Arts and Science Toronto, ON M5S 3G3, Canada Division of Biostatistics P: (416) 978-4327, F: (416) 978-5133 Dalla Lana School of Public Health [email protected] University of Toronto http://www.utstat.toronto.edu/sun Degrees 08/2001 Ph.D. Statistics, University of Chicago, USA Two statistical problems in human genetics: I. Detection of pedigree errors; II. Identification of polymorphisms that explain a linkage result Supervisor: Mary Sara McPeek 07/1995 B.S. Mathematics, Fudan University, Shanghai, China Academic Positions 07/2014-present Full Professor Department of Statistical Sciences Faculty of Arts and Science Division of Biostatistics Dalla Lana School of Public Health University of Toronto (75% FTE in Statistics and 25% in Biostatistics) 07/2007-06/2014 Associate Professor Division of Biostatistics Dalla Lana School of Public Health University of Toronto 07/2005-06/2014 Adjunct Professor Department of Statistical Sciences Faculty of Arts and Science University of Toronto 09/2001-06/2007 Assistant Professor Division of Biostatistics Dalla Lana School of Public Health University of Toronto Interruptions/Delays 01/2007-08/2007 Maternity Leave (30 weeks) 04/2004-11/2004 Maternity Leave (30 weeks) 1 Awards 2018 NSERC Discovery Accelerator Supplements (DAS) Program Award, provides substantial and timely additional resources to accelerate progress and maximize the impact of superior research programs 2017 CRM-SSC
    [Show full text]
  • Analysis of Dynamic Molecular Networks for Pancreatic Ductal
    Pan et al. Cancer Cell Int (2018) 18:214 https://doi.org/10.1186/s12935-018-0718-5 Cancer Cell International PRIMARY RESEARCH Open Access Analysis of dynamic molecular networks for pancreatic ductal adenocarcinoma progression Zongfu Pan1†, Lu Li2†, Qilu Fang1, Yiwen Zhang1, Xiaoping Hu1, Yangyang Qian3 and Ping Huang1* Abstract Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors. The rapid progression of PDAC results in an advanced stage of patients when diagnosed. However, the dynamic molecular mechanism underlying PDAC progression remains far from clear. Methods: The microarray GSE62165 containing PDAC staging samples was obtained from Gene Expression Omnibus and the diferentially expressed genes (DEGs) between normal tissue and PDAC of diferent stages were profled using R software, respectively. The software program Short Time-series Expression Miner was applied to cluster, compare, and visualize gene expression diferences between PDAC stages. Then, function annotation and pathway enrichment of DEGs were conducted by Database for Annotation Visualization and Integrated Discovery. Further, the Cytoscape plugin DyNetViewer was applied to construct the dynamic protein–protein interaction networks and to analyze dif- ferent topological variation of nodes and clusters over time. The phosphosite markers of stage-specifc protein kinases were predicted by PhosphoSitePlus database. Moreover, survival analysis of candidate genes and pathways was per- formed by Kaplan–Meier plotter. Finally, candidate genes were validated by immunohistochemistry in PDAC tissues. Results: Compared with normal tissues, the total DEGs number for each PDAC stage were 994 (stage I), 967 (stage IIa), 965 (stage IIb), 1027 (stage III), 925 (stage IV), respectively. The stage-course gene expression analysis showed that 30 distinct expressional models were clustered.
    [Show full text]
  • Microarray Analysis Reveals the Inhibition of Intestinal Expression Of
    www.nature.com/scientificreports OPEN Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus Junmei Zhang1,3, Di Zhao1,3, Dan Yi1,3, Mengjun Wu1, Hongbo Chen1, Tao Wu1, Jia Zhou1, Peng Li1, Yongqing Hou1* & Guoyao Wu2 Porcine epidemic diarrhea virus (PEDV) infection can induce intestinal dysfunction, resulting in severe diarrhea and even death, but the mode of action underlying these viral efects remains unclear. This study determined the efects of PEDV infection on intestinal absorption and the expression of genes for nutrient transporters via biochemical tests and microarray analysis. Sixteen 7-day-old healthy piglets fed a milk replacer were randomly allocated to one of two groups. After 5-day adaption, piglets (n = 8/ group) were orally administrated with either sterile saline or PEDV (the strain from Yunnan province) 4.5 at 10 TCID50 (50% tissue culture infectious dose) per pig. All pigs were orally infused D-xylose (0.1 g/ kg BW) on day 5 post PEDV or saline administration. One hour later, jugular vein blood samples as well as intestinal samples were collected for further analysis. In comparison with the control group, PEDV infection increased diarrhea incidence, blood diamine oxidase activity, and iFABP level, while reducing growth and plasma D-xylose concentration in piglets. Moreover, PEDV infection altered plasma and jejunal amino acid profles, and decreased the expression of aquaporins and amino acid transporters (L-type amino acid
    [Show full text]
  • Comparative Transcriptome Profiling of Selected Osmotic Regulatory Proteins in the Gill During Seawater Acclimation of Chum Salm
    www.nature.com/scientificreports OPEN Comparative transcriptome profling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry Sang Yoon Lee 1, Hwa Jin Lee2 & Yi Kyung Kim1,2* Salmonid fshes, chum salmon (Oncorhynchus keta) have the developed adaptive strategy to withstand wide salinity changes from the early life stage. This study investigated gene expression patterns of cell membrane proteins in the gill of chum salmon fry on the transcriptome level by tracking the salinity acclimation of the fsh in changing environments ranging from freshwater (0 ppt) to brackish water (17.5 ppt) to seawater (35 ppt). Using GO analysis of DEGs, the known osmoregulatory genes and their functional groups such as ion transport, transmembrane transporter activity and metal ion binding were identifed. The expression patterns of membrane protein genes, including pump-mediated protein (NKA, CFTR), carrier-mediated protein (NKCC, NHE3) and channel-mediated protein (AQP) were similar to those of other salmonid fshes in the smolt or adult stages. Based on the protein-protein interaction analysis between transmembrane proteins and other related genes, we identifed osmotic-related genes expressed with salinity changes and analyzed their expression patterns. The fndings of this study may facilitate the disentangling of the genetic basis of chum salmon and better able an understanding of the osmophysiology of the species. Salinity is one of the critical factors limiting the distribution patterns of all aquatic organisms1–4. Salmonid fshes display diverse life-history traits; anadromous individuals that mature in the river from hatching through to juveniles acquire the capacity to tolerate salinity associated with parr–smolt transformation and undergo ocean migrations before returning to rivers for spawning, whereas landlocked types spend their entire life within fresh- water5,6.
    [Show full text]
  • Investigating the Role of Amino Acid Transporter SLC6A14 As a Modifier of Pseudomonas Aeruginosa Lung Infection in Cystic Fibrosis
    Investigating the Role of Amino Acid Transporter SLC6A14 as a Modifier of Pseudomonas aeruginosa Lung Infection in Cystic Fibrosis by Michelle Di Paola A thesis submitted in conformity with the requirements for the degree of Master of Science Biochemistry University of Toronto © Copyright by Michelle Di Paola (2016) Investigating the Role of Amino Acid Transporter SLC6A14 as a Modifier of Pseudomonas aeruginosa Lung Infection in Cystic Fibrosis Michelle Di Paola Master of Science Biochemistry University of Toronto 2016 Abstract The most common disease causing mutation in CF is F508del, however there is considerable variability in the clinical phenotype of patients homozygous for this mutation. To address this variation, genetic modifiers are studied. Li et al found that SNPs in the putative promoter region of SLC6A14 were significantly associated with severity and age of first Pseudomonas aeruginosa lung infection in CF. Experiments were aimed at studying if SLC6A14-mediated amino acid uptake is regulated by bacterial pathogens and in turn regulates bacterial growth. Arginine uptake from the ASL of non-CF and CF primary bronchial cultures was measured, after treatment with purified flagellin from Pseudomonas. This treatment resulted in a 26.4% (n=5; p<0.01) and 16.6% (n=6; p<0.0204) increase in arginine uptake, in non-CF and CF cultures respectively. Currently, the impact of SLC6A14 function on Pseudomonas growth in co-culture is being investigated, to better understand the role which SLC6A14 plays in modulating infection. ii Acknowledgments I first need to extend my deepest gratitude to my supervisor, Dr. Christine Bear, for providing me with endless support and guidance.
    [Show full text]
  • Solute Carrier Transporters (Slcs) As Possible Drug Targets for Cystic Fibrosis
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA Solute Carrier Transporters (SLCs) as Possible Drug Targets for Cystic Fibrosis Íris Lameiro Petinga Mestrado em Bioquímica Especialização em Bioquímica Médica Dissertação orientada por: Professora Doutora Margarida D. Amaral 2017 Acknowledgments/Agradecimentos Ao concluir este trabalho não posso deixar de agradecer a todas as pessoas que contribuíram de alguma maneira para a sua realização. Em primeiro lugar gostaria de agradecer à professora Margarida Amaral não só por me ter recebido no seu laboratório e grupo de investigação, mas também por toda a orientação e acompanhamento e acima de tudo confiança depositada. Não podia deixar também de agradecer ao professor Carlos Farinha por se ter mostrado sempre disponível para me ajudar, por toda a atenção, paciência e por me ter cativado para a área do estudo da Fibrose Quística desde muito cedo. Agradeço a todos os meus colegas de laboratório que sempre se mostraram disponíveis para me ajudar, todos eles à sua maneira. Primeiramente gostaria de agradecer à Verónica que tornou todos os infindáveis “Colony PCR” mais divertidos e me ajudou a seguir em frente quando tudo corria mal. À Sara cuja paciente infinitiva em me ensinar a trabalhar na cultura e grande parte das outras técnicas que utilizei neste trabalho, para além de responder sempre com boa disposição a todas as minhas dúvidas e questões que foram enumeras e muitas delas sem nexo, por vezes. À Madalena e aos seus maravilhosos cadernos de laboratório, sem dúvida a minha fonte de inspiração, mesmo longe esteve sempre disponível para responder às minhas dúvidas por mais chatas e aborrecidas que fossem e me fez crer desde o primeiro dia que seria possível.
    [Show full text]
  • Approach Alone for Prenatal Diagnosis (Adding Microvil
    Letters to the Editor 395 pregnancies would result in the identification, each year, is known about the mutant protein, the range of muta- of about 300,000 couples in which one or both part- tions possible, and the new mutation rate before popu- ners is a likely CF carrier. Who will be responsible for lation screening to identify CF carriers is attempted. counseling couples in advance of the testing, and who It is also necessary that the questions raised by the pos- will interpret the results and discuss further testing op- sibility of general population screening for any genetic tions for such couples? Does one limit counseling post- disorder- including plans for the delivery of counsel- testing to couples in which both partners are identified ing, guidelines for counseling, quality control for test- as carriers of the defined mutation, or should all cou- ing, levels of reimbursement for testing, and medical ples in which one partner is identified as a likely carrier liability- be discussed in the genetics community be- be offered amniocentesis for microvillar enzyme analy- fore that possibility becomes a reality. sis (an approach to CF prenatal diagnosis with its own FRED GILBERT false-positive and false-negative rates [Mulivor et al. Genetics 1987]). Is it sufficient to screen couples for the pres- Cornell University Medical College ence/absence of the defined mutation, or should the New York study be extended to include probes for closely linked markers? Given that only some 70% of CF chromo- somes are identifiable by assaying for the defined mu- References tation (Kerem et al.
    [Show full text]
  • CURRICULUM VITAE February 2019 NAME TSUI, Lap-Chee POSTAL
    CURRICULUM VITAE February 2019 NAME TSUI, Lap-Chee POSTAL ADDRESS Victor and William Fung Foundation 33/F Alexandra House 18 Chater Road Central Hong Kong SAR China E-MAIL ADDRESS [email protected] PERSONAL DATA Date of Birth: 21 December 1950 Place of Birth: Shanghai, China Sex: Male Marital Status: Married (2 children) Citizenship: Canadian EDUCATION BSc (Biology, 1972) The Chinese University of Hong Kong MPhil (Biology, 1974) The Chinese University of Hong Kong PhD (Biological Sciences, 1979) University of Pittsburgh POSTGRADUATE TRAINING 1972-1974 Graduate Student, Department of Biology, New Asia College, The Chinese University of Hong Kong (Supervisor: Dr KK Mark) 1974-1979 Graduate Student, Department of Biological Sciences, University of Pittsburgh (Supervisor: Dr Roger W Hendrix) 1979-1980 Postdoctoral Investigator, Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee (Supervisor: Dr Wen K Yang) 1981-1983 Postdoctoral Fellow, Department of Genetics, The Hospital for Sick Children, Toronto, Ontario (Supervisor: Dr Manuel Buchwald) CURRENT POSITIONS President, Victor and William Fung Foundation, Hong Kong (from August 2014) Director, Qiushi Academy of Advanced Studies, Zhejiang University, Hangzhou (from August 2014) Master, Residential College, Haining International Campus, Zhejiang University (from September 2016) President, The Academy of Sciences of Hong Kong (from November 2015) Emeritus University Professor, University of Toronto (from 2006) Adjunct Scientist, Research Institute, The Hospital for Sick Children,
    [Show full text]