Just-In-Time Compilation Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Just-In-Time Compilation Techniques Just-in-time Compilation Techniques Timo Lilja [email protected] May 13, 2010 1 Introduction Just-in-time compilation or JIT compilation is a technique that compiles byte code into native code during run-time. The technique is not strictly needed: the goal is improve the run-time performance of the code but the system would be perfectly usable without JIT compilation. There are several benefits that can be obtained from JIT compilation. They include better compilation for specific architecture: normally code is optimized for common subset of the instruction set architecture and CPU specific instruc- tions are ignored. In JIT you can, however, produce, i.e. SSE2 optimized code if the actual CPU supports that instruction set. In normal compilation, the code can be only analyzed statically thus every execution path of the code must be compiled and there is now run-time informa- tion on how often a path is taken. In JIT compilation the compiler can obtain run-time information and perform optimizations based on it, thus providing more efficient code. In C and certain other languages there is little opportunity for global program- wide optimizations. In JIT compiled code, the entire execution of the program code can be considered as a whole when performing the optimizations. JIT systems come in many forms: Usually there is the source code which is compiled to a byte code that is interpreted and executed in a virtual machine interpreter. The JIT compilation replaces the execution of the byte code with a compilation step to native code. Once the compilation has been done, the native code gets executed. Naturally the code is cached for subsequent runs and possibly re-compiled if new information is obtained during the execution to provide better optimized code. Naturally, there are some variations: JIT systems which do not contain the byte code interpreter thus forcing all code to be JIT compiled before execution. Also, some systems do run-time compilation but store the code into persistent storage. In some broader sense of the term, these systems could be considered as JIT compilers, too. These systems are commonly referenced as mixed code. 1 First JIT compilation system according to Aycock [4] were McCarthy's Lisp systems in the 1960s. Thompson devised a way to compile regular expressions during run-time in 1968. In JIT compilation, the term hot spot refers to a technique where only the code that is most frequently executed \hot" gets compiled. Fortran was one of the first systems to include this technique in 1974. The system maintained a frequency counter for each block of code. The more often the code got executed the more time consuming optimizations were used but this didn't always yield faster code than the code obtained by statically compiling. Smalltalk virtual machine system was considered slow and optimized by providing a system that lazily compiled methods to native code. When the memory run out the native code was thrown away and regenerated as needed. Self programming language presented some notable steps in JIT develop- ment. Self is a prototype based dynamic language which allows changing objects during run-time making dynamic compilation mandatory. To gain some speed the designers decided to use JIT techniques in implementing the Self runtime. In the first generation the compilation was done in specialized contexts; instead of generating generic code for execution of a method the code was JIT compiled during the runtime when the exact type information was available The second generation introduced the concept of deferring the compilation of uncommonly executed code. In the third generation the code that was executed more fre- quently was recompiled with better optimizations which was labeled as adaptive compilation. In 1994 Franz presented slim binaries which provided a machine independent high-level representation of a code. The code is compiled to machine executable form during runtime taking the hardware specific instruction sets into account. Later, in 1997, Kistler extended the system by providing continuous optimiza- tions which basically optimized the code ad infinitum. The code generation was run on a separate low-priority thread which was run only if the program was idle. The concept of simulation means a technique needed to run one architec- ture's code in another architecture. At first, the simulators executed each in- struction in an interpretive manner. Subsequent generations improved this by caching the translated instructions and moved to operate on larger blocks of code instead of a single instruction translation. Usually newer simulation envi- ronments translate only hot code. Another aspect is the translation of legacy code into VLIW code. In these systems the source architecture is usually a subset of the VLIW enabled target architecture. JIT compilation can boost the performance by obtaining more instruction level parallelism (ILP). Modern JIT development has focused on two programming languages and their execution environments: Java/JRE and Javascript/browsers. Aycock's survey [4] is somewhat outdated in this respect: it mentions only the early Java development from the late 90s and doesn't say anything about Javascript. Aycock provides a classification of JIT systems. According to him JITs can be categorized 2 • Invocation: whether the JIT compiler needs to be explicitly invoked or whether the execution is implicit or transparent to the user • Executability: A system is monoexecutable if the source and destination languages are same. Otherwise the system is polyexecutable • Concurrency: if the execution of the JIT compiler can execute while the program is being run, it is concurrent. • Real-time: if the JIT compiler provides real time guarantees Since the survey is somewhat dated it doesn't consider trace and non-trace based JIT compilers as their own category. 2 Tools There are various tools available which allow one to use JIT compiler in their programming language execution environment. Probably the most known is the LLVM compiler project [3]. It provides virtual machine and a JIT compiler. By writing a front-end for one's own language, it is easy to obtain JIT support for the programming language environment. LLVM is mainly focused on C-like languages. They provide front-ends for C and C++ though there are some other non-official front-ends available. Gnu Lightning [2] is rather lightweight library which provides its own RISC like instruction set and a JIT compiler. It supports SPARC, x86 and Pow- erPC architectures and is used by various programming language projects like MzScheme, Gnu Smalltalk and CLISP. Another lightweight alternative is Gnu libJIT [1] which has its own static single assignment intermediate language and type system. It is currently used in DotGNU system. The question that programming language run-time environment designer has to face is to whether to use existing JIT implementation or to devise your own. No easy answer can be given: implementing a JIT is rather error prone task with hard to debug problems. Existing systems, on the other hand, can be too limiting if one needs complex control of the programming language execution. E.g., if one needs continuations in one's language, it usually requires some sup- port in the underlaying IR language. If the JIT environment lacks this, adding it afterwards can prove to be a daunting task. References [1] GNU libJIT. http://freshmeat.net/projects/libjit/. [2] GNU lightning. http://www.gnu.org/software/lightning/. [3] LLVM: Low Level Virtual Machine. http://llvm.org. 3 [4] J. Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97{ 113, 2003. 4.
Recommended publications
  • SNC: a Cloud Service Platform for Symbolic-Numeric Computation Using Just-In-Time Compilation
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE Transactions on Cloud Computing IEEE TRANSACTIONS ON CLOUD COMPUTING 1 SNC: A Cloud Service Platform for Symbolic-Numeric Computation using Just-In-Time Compilation Peng Zhang1, Member, IEEE, Yueming Liu1, and Meikang Qiu, Senior Member, IEEE and SQL. Other types of Cloud services include: Software as a Abstract— Cloud services have been widely employed in IT Service (SaaS) in which the software is licensed and hosted in industry and scientific research. By using Cloud services users can Clouds; and Database as a Service (DBaaS) in which managed move computing tasks and data away from local computers to database services are hosted in Clouds. While enjoying these remote datacenters. By accessing Internet-based services over lightweight and mobile devices, users deploy diversified Cloud great services, we must face the challenges raised up by these applications on powerful machines. The key drivers towards this unexploited opportunities within a Cloud environment. paradigm for the scientific computing field include the substantial Complex scientific computing applications are being widely computing capacity, on-demand provisioning and cross-platform interoperability. To fully harness the Cloud services for scientific studied within the emerging Cloud-based services environment computing, however, we need to design an application-specific [4-12]. Traditionally, the focus is given to the parallel scientific platform to help the users efficiently migrate their applications. In HPC (high performance computing) applications [6, 12, 13], this, we propose a Cloud service platform for symbolic-numeric where substantial effort has been given to the integration of computation– SNC.
    [Show full text]
  • A Reader Framework for Guile for Guile-Reader 0.6.2
    A Reader Framework for Guile for Guile-Reader 0.6.2 Ludovic Court`es Edition 0.6.2 8 March 2017 This file documents Guile-Reader. Copyright c 2005, 2006, 2007, 2008, 2009, 2012, 2015, 2017 Ludovic Court`es Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the con- ditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another lan- guage, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. i Table of Contents A Reader Framework for Guile ................ 1 1 Introduction............................... 3 2 Overview .................................. 5 3 Quick Start................................ 7 4 API Reference............................. 9 4.1 Token Readers .............................................. 9 4.1.1 Defining a New Token Reader............................ 9 4.1.2 Token Reader Calling Convention ........................ 9 4.1.3 Invoking a Reader from a Token Reader ................. 10 4.1.4 Token Reader Library .................................. 11 4.1.5 Limitations............................................ 16 4.1.5.1 Token Delimiters .................................
    [Show full text]
  • PDF File, Or As a Single HTML Page
    MyJIT: Documentation version 0.9.0.x Petr Krajča, 2015 Dept. Computer Science Palacký University Olomouc Contents 1 About MyJIT 1 2 Instruction Set 2 2.1 Registers ............................................ 2 2.2 Notation ............................................ 3 2.3 Instructions .......................................... 3 2.3.1 Transfer Operations ................................. 3 2.3.2 Binary Arithmetic Operations ............................ 3 2.3.3 Unary Arithmetic Operations ............................ 5 2.3.4 Load Operations .................................... 5 2.3.5 Store Operations ................................... 6 2.3.6 Compare Instructions ................................ 6 2.3.7 Conversions ...................................... 7 2.3.8 Function declaration ................................. 7 2.3.9 Function calls ..................................... 8 2.3.10 Jumps .......................................... 9 2.3.11 Branch Operations .................................. 9 2.3.12 Misc ........................................... 11 3 Getting Started 13 4 Debugging 15 4.1 Debugging messages ..................................... 15 4.2 Warnings ............................................ 15 4.3 Code listing ........................................... 16 4.3.1 Example of the IL listing (JIT_DEBUG_OPS) ..................... 16 4.3.2 Example of the machine code listing (JIT_DEBUG_CODE) ............. 17 4.3.3 Example of the combined listing (JIT_DEBUG_COMBINED) ............. 17 5 Optimizations 18 6 Download 19 6.1 Getting
    [Show full text]
  • Latexsample-Thesis
    INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah.
    [Show full text]
  • GCC Plugins and MELT Extensions
    GCC plugins and MELT extensions Basile STARYNKEVITCH [email protected] (or [email protected]) June 16th 2011 – ARCHI’11 summer school (Mont Louis, France) These slides are under a Creative Commons Attribution-ShareAlike 3.0 Unported License creativecommons.org/licenses/by-sa/3.0 and downloadable from gcc-melt.org th Basile STARYNKEVITCH GCC plugins and MELT extensions June 16 2011 ARCHI’11 ? 1 / 134 Table of Contents 1 Introduction about you and me about GCC and MELT building GCC 2 GCC Internals complexity of GCC overview inside GCC (cc1) memory management inside GCC optimization passes plugins 3 MELT why MELT? handling GCC internal data with MELT matching GCC data with MELT future work on MELT th Basile STARYNKEVITCH GCC plugins and MELT extensions June 16 2011 ARCHI’11 ? 2 / 134 Introduction Contents 1 Introduction about you and me about GCC and MELT building GCC 2 GCC Internals complexity of GCC overview inside GCC (cc1) memory management inside GCC optimization passes plugins 3 MELT why MELT? handling GCC internal data with MELT matching GCC data with MELT future work on MELT th Basile STARYNKEVITCH GCC plugins and MELT extensions June 16 2011 ARCHI’11 ? 3 / 134 Introduction about you and me opinions are mine only Opinions expressed here are only mine! not of my employer (CEA, LIST) not of the Gcc community not of funding agencies (e.g. DGCIS)1 I don’t understand or know all of Gcc ; there are many parts of Gcc I know nothing about. Beware that I have some strong technical opinions which are not the view of the majority of contributors to Gcc.
    [Show full text]
  • Integral Estimation in Quantum Physics
    INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical Physics Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah.
    [Show full text]
  • I Don't Really Want to Read Dave's Book. I Just
    “I don’t really want to read Dave’s book. I just wanted to have one so I could impress people and say, ‘I have Dave’s book.’” -- Tim Wenzl, author, historian 1 Other books by David S. Myers: “Spearville vs. the Aliens” With Jim Myers: “Mr. Brown; A Spirited Story of Friendship” “Mr. Brown and the Golden Locket” Copyright © 2014 David S. Myers All rights reserved. ISBN-10: 1466294485 ISBN-13: 978-1466294486 2 ... And Jesus Chuckled Humorous Stories of Faith, Inspiration, and General Silliness By David S. Myers 3 Special thanks to my wife, Charlene Scott-Myers, for her guidance and editing skills, her love and laughter (Charlene is the author of “The Shroud of Turin: the Research Continues,” “Screechy,” and “The Journeycake Saga”); to my parents, Jim and Ruth Myers, for passing on to me their weird and wonderful sense of humor (Dad and I are co-authors of “Mr. Brown, A Spirited Story of Friendship” and “Mr. Brown and the Golden Locket”); to Bishop Ronald M. Gilmore, for allowing me a voice in the Southwest Kansas Register, and to Bishop John B. Brungardt, for allowing that voice to continue; to the people of southwest Kansas, who have never tried even once to have me run me out of town (that I know of); to my Lab, Sarah, for helping me realize what’s truly important in life; and, as always, to the Good Lord, who has humbly refused any royalties for this book, should there be any. 4 Forward or more than ten years now, I have watched David My- Fers at work.
    [Show full text]
  • Sem Vložte Zadání Vaší Práce
    Sem vložte zadání Vaší práce. České vysoké učení technické v Praze Fakulta informačních technologií Katedra softwarového inženýrství Diplomová práce Integrace a využití JIT překladače a prostředí v PostgreSQL pro OLAP využití Bc. Ondřej Psota Vedoucí práce: Ing. Pavel Stěhule 12. května 2015 Poděkování Rád bych poděkoval svému konzultantovi a vedoucímu práce panu Ing. Pavlu Stěhulemu za jeho cenné rady a vstřícný přístup při řešení problémů. Dále bych chtěl rovněž poděkovat všem, kteří mi byli nápomocni a vytvořily podmínky pro to, abych se své práci mohl plně věnovat. Prohlášení Prohlašuji, že jsem předloženou práci vypracoval(a) samostatně a že jsem uvedl(a) veškeré použité informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací. Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona, ve znění pozdějších předpisů. V souladu s ust. § 46 odst. 6 tohoto zákona tímto uděluji nevýhradní oprávnění (licenci) k užití této mojí práce, a to včetně všech počítačových programů, jež jsou její součástí či přílohou, a veškeré jejich dokumentace (dále souhrnně jen „Dílo“), a to všem osobám, které si přejí Dílo užít. Tyto osoby jsou oprávněny Dílo užít jakýmkoli způsobem, který nesnižuje hodnotu Díla, a za jakýmkoli účelem (včetně užití k výdělečným účelům). Toto oprávnění je časově, teri- toriálně i množstevně neomezené. Každá osoba, která využije výše uvedenou licenci, se však zavazuje udělit ke každému dílu, které vznikne (byť jen zčásti) na základě Díla, úpravou Díla, spojením Díla s jiným dílem, zařazením Díla do díla souborného či zpracováním Díla (včetně překladu), licenci alespoň ve výše uvedeném rozsahu a zároveň zpřístupnit zdrojový kód takového díla ale- spoň srovnatelným způsobem a ve srovnatelném rozsahu, jako je zpřístupněn zdrojový kód Díla.
    [Show full text]
  • Bulletin Issue 18
    Copyright c 2011 Free Software Foundation How to Contribute 51 Franklin Street, 5th Floor Boston, MA 02110-1301 Associate Membership: (617) 542-5942 Become an associate member of [email protected] the FSF. Members will receive www.fsf.org a bootable USB card and e-mail Issue 18 Bulletin June 2011 forwarding. To sign-up or get This bulletin was published by more information, visit member. the GNU Press (gnupress. fsf.org or write to membership@ Welcome to the org) and produced using only fsf.org. In this issue of free software – Inkscape, GIMP, Bulletin Markdown, and LATEX. Online: Use your credit card or the Bulletin... PayPal account to make a dona- by Matt Lee Remember, if you have any ideas, tion at donate.fsf.org or con- Welcome to the 1 Editor feedback or suggestions for things tact [email protected] for more Bulletin you’d like to see in future editions information on supporting the Why should I care 2 elcome to the first FSF Bulletin of the FSF Bulletin, we’d love to FSF. about that? Wof our 26th year. In this issue hear them! LibrePlanet 2011 4 we have insights on some of the excit- Jobs: List your job offers on our Recommending licenses 5 ing developments in free software, as jobs page. See fsf.org/jobs for The articles in this bulletin are for new projects well as articles reminding us of poten- details. individually licensed under the Thedangerofebooks 6 tial threats to our freedom and auton- Creative Commons Attribu- United Way: As a 501(c)(3) Spotlight: Merlin Cloud 8 omy.
    [Show full text]
  • Just-In-Time Compilation Techniques
    Just-in-time Compilation Techniques Timo Lilja January 25, 2010 Timo Lilja () Just-in-time Compilation Techniques January 25, 2010 1 / 19 Course arrangements Course code: T-106.5800 Giving one presentation gives you 3 credits, two gives 5 credits Assignment: presentation and 4-page extended abstract Meetings on Mondays, 16-18 at T4 Mandatory attendance: 90% presence required Timo Lilja () Just-in-time Compilation Techniques January 25, 2010 2 / 19 Introduction Contents 1 Introduction 2 Conclusion 3 Topics Timo Lilja () Just-in-time Compilation Techniques January 25, 2010 3 / 19 Introduction Just-in-time compilation A technique that compiles virtual machine byte code into native code during run-time Run-time compilation can give several benets Better information of the specic CPU (i.e., SSE2 instructions) Can use proling information to produce better compilation Better global optimizations even with dynamically linked libraries Can rearrange memory for better cache utilization System start-up can be slower than purely interpreted environments Usually only hot-spot code is JIT-compiled while the rest is only interpreted JIT compilation can be done step-by-step gradually improving hot-spot code Timo Lilja () Just-in-time Compilation Techniques January 25, 2010 4 / 19 Introduction History Earliest JIT compilation in McCarthy's 1960s Lisp systems Thompson's method to compile regular expressions to native code in 1960s LC2: the interpreted code was stored during execution works only for code that is executed Mixed code: program is a mixture
    [Show full text]
  • Bulletin Issue 16 Forwarding
    Copyright c 2010 Free Software Foundation How to Contribute 51 Franklin Street, 5th Floor Boston, MA 02110-1301 Associate Membership: (617)542-5942 Become an associate member of [email protected] the FSF. Members will receive http://www.fsf.org/ a bootable USB card and e-mail Bulletin Issue 16 forwarding. To sign-up or get May 2010 This bulletin was produced using more information, visit member. only free software. fsf.org or write to membership@ fsf.org. The articles in this bulletin are Contents individually licensed under the Online: Use your credit card or Creative Commons Attribu- PayPal account to make a dona- Working together for 1 tion No Derivative Works tion at donate.fsf.org or con- free software 3.0 United States License. tact [email protected] for more LibrePlanet2010 2 To view a copy of this license, information on supporting the Freedom-friendly 4 LibrePlanet shirts now available visit http://creativecommons. FSF. government policy org/licenses/by-nd/3.0/us/ Encouraging nonprofits 5 Jobs: List your job offers on our or send a letter to Creative Com- to work together for free Working together for jobs page. See fsf.org/jobs for mons, 171 Second Street, Suite software details. free software 300, San Francisco, California, End Software Patents 8 Interview: Nina Paley 9 94105, USA. United Way: As a 501(c)(3) by Peter Brown DRM sticker contest 12 tax-exempt organization, the Executive Director Systems update 12 FSF is eligible to receive United Free software needs free 14 few weeks ago, my six-year-old Way funds.
    [Show full text]
  • JIT Technology for Simleon Numerical Emulation of LEON2/LEON3 Processors
    JIT Technology for SimLEON Numerical Emulation of LEON2/LEON3 processors Olivier MEURANT Astrium Satellites 31 rue des Cosmonautes Z.I. du Palays 31402 Toulouse Cedex 4 [email protected] INTRODUCTION SimLEON is a LEON2/LEON3 processor emulator developed by Astrium Satellites as a core component of full software simulation facilities. It is used operationally on most in-house spacecraft projects as well as in some applications in launchers and aircraft fields. LEON processors implement SPARC-V8 with cache and 7-stage pipeline designed to be clocked up to 200MHz, delivering computing power much higher than previous generations. Thus software simulation of such processors is very demanding to be able to meet real-time simulation (with hardware in the loop) or faster (full software simulation). This paper presents JIT technology, successfully implemented into SimLEON and providing a breakthrough in emulation performance. JIT TECHNOLOGY JIT technology is based on two principles: cache and regroup operations. A classical emulator is based on a loop: (See Fig 1) 1. Fetch: read next instruction to be executed 2. Decode: detect instruction type and parameters 3. Execute: execute instruction 4. Timing: compute time in cycle taken by the instruction Fig. 1. Classical emulation loop Emulated flight software is approximately constant: same set of operations is always performed for fetching and decoding. The first principle is then to cache operations in native code (PC-x86) for fetch and decode steps. Fig. 2 presents the new architecture of SimLEON. Fig. 2. Native code is stored in cache to be used later during execution Flight software is composed of sparc assembly instruction.
    [Show full text]