Lightning Effects on Holtec on Dry Cask Storage Systems
Total Page:16
File Type:pdf, Size:1020Kb
ORNL/TM-2002/192 ORNL/NRC/LTR-02/08 Program Title: Lightning Effects on Dry Cask Storage Systems Document Title: Analysis of Lightning Strike Effects on a Holtec Hi-Storm 100 Dry Cask Storage System for Spent Nuclear Fuel Document Type: Letter Report, rev. 1 Author: J.J. Yugo NRC Manager: C.E. Antonescu ORNL Manager: R.T. Wood Prepared for U.S. Nuclear Regulatory Commission under DOE Interagency Agreement 1886-N662-4Y NRC JCN No. Y6624 Prepared by the Nuclear Science and Technology Division OAK RIDGE NATIONAL LABORATORY P.O. Box 2008 Oak Ridge, Tennessee 37831-6285 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 Notice This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. 0 TABLE OF CONTENTS TA BLE O F CO N TENTS ............................................................................................................................ iii LIST O F FIGU RES ...................................................................................................................................... v A BSTRA CT ................................................................................................................................................ vii EX ECU TIVE SUM M A RY ........................................................................................................................... ix 1. IN TROD UCTION ..................................................................................................................................... 1 2. LIG HTNIN G CURREN T PULSE M OD ELS ...................................................................................... 3 3. SK IN D EPTH ........................................................................................................................................... 7 4. CA SK DESIGN ........................................................................................................................................ 9 5. CA SK M O D ELS ..................................................................................................................................... 11 5.1 Tw o-D imensional (2-d) M odel .................................................................................................... 11 5.2 Three-D im ensional (3-d) M odel .................................................................................................... 14 5.3 Three-D im ensional Cylinder Model ............................................................................................ 16 6. RESULTS FROM TRANSIENT ELECTROMAGNETIC SIMULATIONS ................................... 19 6.1 Transient Results from the Two-D im ensional M odel ................................................................... 19 6.2 Transient Results from the 3-d Cask M odel ................................................................................. 29 6.3 Results from 3-d Cylinder M odel ................................................................................................. 36 7. CO N CLU SION S ..................................................................................................................................... 47 8. REFEREN CES ........................................................................................................................................ 51 APPEN DIX A ........................................................................................................................................... A -2 A .I General EM A S Code Capabilities D escription .............................................................................. A -2 A .2 Theoretical Basis for the EM A S Com puter Code ......................................................................... A-2 iii LIST OF FIGURES ES-1. Normalized voltage along outside surface of overpack .................................................................. xiii 2-1. Idealized lightning waveform, indicating reasonable ranges of currents and time durations for each portion of the lightning strike (adapted from ref 2) .......................................................................... 4 2-2. Example of the current profile at the excitation location in a simulation with both an initial strike current and a continuing current .................................................................................................... 4 3-1. Skin depth in carbon steel as a function of the pulse width (frequency) .......................................... 8 4-1. Cutaway view of the 3-d model from which the 2-d model was derived ........................... 10 5-1. Two-dimensional model of Holtec Hi-Storm 100 storage cask ...................................................... 12 5-2 Vertical cross section of 3-d model of storage cask. The center region is the MPC, surrounded by a steel shell, a concrete region and an outer steel shell ...................................................................... 15 5-3 Top view of 3-d storage cask model showing non-uniform azimuthal element spacing ................ 15 5-4. Cylindrical model walls and lids. The cement interior is not shown ............................................... 17 6-1. Power loss density in cask model, concrete pad and subsoil layer at a time near the peak of the lig htn in g p u lse ...................................................................................................................................... 20 6-2. Power deposition in non-metallic regions of the cask (MPC contents and concrete shielding). Case TR-02d: Grounded: Power loss density (W/m 3) ................................................................... 21 6-3. Power deposition in non-metallic regions of the cask (MPC contents and concrete shielding). Case TR-02c: Ungrounded: Power loss density (W/m 3) ................................................................. 21 6-4. Total current density in the non-metallic regions of the cask (MPC contents and concrete shielding). Case TR-02d: Grounded: Current density (A/m 2) .......................................... 22 6-5. Total current density in the non-metallic regions of the cask (MPC contents and concrete shielding). Case TR-02c: Ungrounded: Current density (A/m 2) ..................................... 22 6-6. Metal shell of overpack, lid, and MPC shell. Case TR-02d: Grounded: Current den sity (A/m 2 ) .................................................................................................................................... 23 6-7. Metal shell of overpack, lid, and MPC shell. Case TR-02c: Ungrounded: C urrent density (A /m 2 ) ......................................................................................................................... 23 6-8. Conduction current density (A/m 2) in a portion of the metal overpack and MPC walls, showing additional detail of current penetration through the carbon steel structure ...................................... 24 6-9. Power density profile on outside edge of overpack from the top of the cask to the bottom through the concrete pad and into the subsoil ................................................................... 24 6-10. Comparison of the time history of power deposition in the concrete radiological shielding in grounded and ungrounded dry storage casks ................................................................................. 25 6-11. Temporal profile of energy deposition in the radial concrete shielding, assuming uniform energy distribution throughout the concrete ..................................................................... 25 6-12. Temporal energy deposition in the internal concrete lid-shielding disk, assuming that the energy is uniformly spread throughout the concrete shielding ........................................................ 26 6-13. Temporal energy deposition in the external concrete lid-shielding ring, assuming that the energy is uniformly spread throughout the concrete ...................................................................... 26 6-14. Average temperature in the homogenized MPC assuming uniform energy distribution throughout the M P C ............................................................................................................................. 27 6-15. Peak Temperature profile in the hottest location of the MPC model. This location is on the side of the MPC contents, adjacent to the steel wall, one-third of the way down from the top ........... 27 6-16. Power density along a horizontal path through the 2-d model at a particular time and at a particular vertical location .................................................................................................................. 28 6-17. Calculated azimuthal profile of power deposition in the outer shell of the storage cask overpack... 30 6-18. Current Density on a plane, cut through the simplified cask model ............................................ 31 6-19. Power deposition in outer shell of the overpack in the 3-d cask model ........................................ 32 6-20. Power deposition in the concrete radiological shielding in the 3-d