Query Automata for Nested Words

Total Page:16

File Type:pdf, Size:1020Kb

Query Automata for Nested Words Query Automata for Nested Words P. Madhusudan Mahesh Viswanathan University of Illinois at Urbana-Champaign Urbana, IL, USA fmadhu, [email protected] Abstract document is hence better viewed as a linear structure with a nesting relation: We study visibly pushdown automata (VPA) models for expressing and evaluating queries, expressed using MSO <movie> My neighbor Totoro <director> Hayao Miyazaki </director> </movie> formulas, on words with a nesting structure (like XML docu- ments). We define a query VPA model, which is a 2-way de- The study of XML has naturally concentrated on its terministic VPA that can mark positions in a document, and tree representation; for example, document types are rep- show that it is equiexpressive as unary monadic queries. resented using the parse-trees generated by SDTDs, XML This surprising result parallels a classic result for queries query languages like XPath have modalities like “parent” on regular word languages. We also compare our model to and “child” that refer to the tree edges, and tree automata query models on unranked trees. (over unranked trees) have been used to model and solve We then consider the algorithmic problem of evaluating, decision problems for XML [26, 21, 13, 14, 19]. in one pass, the set of all positions satisfying a query in a Nested word automata are a recent invention, and is streaming nested word. We present an algorithm that an- an automaton that works directly on a linearly structured swers any fixed unary monadic query on a streaming docu- document with nesting relations as described above [2, 3]. ment which uses, at any point, at most space O(d+I log n), Nested word automata were discovered in the context of for- where d is the depth of the document at that point and I is mal verification for software, where program executions are the number of potential answers to the query in the word viewed as nested words, where the nesting relation relates processed thus far. This algorithm uses space close to the calls to procedures with corresponding returns. minimal space any streaming algorithm would need, and The nested word automaton model works left to right on generalizes to answering n-ary queries. an XML document, much like a finite automaton on words, but the automaton at a close-tag is allowed to change state by looking at the previous state as well as the state at the 1 Introduction open-tag associated with the close-tag. One way to imple- ment a nested word automaton on a word is by allowing an The general purpose markup language XML (eXtensi- automaton access to a stack: the automaton is allowed to ble Markup Language) represents hierarchically structured store its state at an open-tag and recover the state at the cor- data, and has become the standard for data exchange, partic- responding close-tag. This leads to the definition of visibly ularly on the web [27, 1]. An XML document is a text-based pushdown automata for XML: a pushdown automaton that linear encoding of tree-structured data. Markups in the text pushes onto the stack at open-tags and pops from the stack in terms of open- and close-tags are used to create a brack- on close-tags. The class of languages accepted by nested eting structure on the document, and captures the hierarchy word automata is exactly the same as that accepted by visi- of information in the tree. For example, an XML text of the bly pushdown automata, and we call this the class of visibly form: pushdown languages. The visibly pushdown automaton model is an appealing <movie> My neighbor Totoro <director> Hayao Miyazaki </director> </movie> formalism for studying and building algorithms for XML. encodes a movie title and its director tag is a child In earlier work [18], we have shown that document type node of the movie-tag (since it lies within the definitions are captured by special classes of visibly push- <movie>...</movie> fragment), indicating that down automata, and have used this characterization to build Miyazaki is the director of this particular movie. The XML streaming algorithms for type-checking and pre-order (and 1 post-order) typing XML documents. Visibly pushdown au- from the filtering problem that outputs just whether there tomata are particularly effective in building streaming al- is some position that satisfies the query, which is easy to gorithms, as the model naturally captures reading a nested implement using space O(d), where d is the depth of the word left-to-right in a streaming fashion, unlike standard document. tree-automata models that work on the tree represented by When a streaming querying algorithm has read a prefix an XML document. u of an input document, several positions in u may partially In this paper, we study the power of visibly pushdown satisfy the query requirement. These potential answers to automaton in expressing and answering queries on XML the query have to be stored as the rest of the document will documents. Our first contribution is an automaton model for determine whether these are valid answers to a query. Con- defining queries, called query visibly pushdown automata sequently, we cannot hope for a streaming algorithm that (query VPA). A query VPA is a two-way visibly pushdown takes constant space (or space O(d)). However, a position automaton that can mark positions of a document. When that has already satisfied the query requirements can be im- moving right, a query VPA pushes onto the stack when mediately output (to an output tape) and need not be kept reading open-tags and pops from the stack reading close- in main memory. Formally, let us call a position i · juj an tags, like a visibly pushdown automaton. However, when interesting position if there is some extension v of u such moving left it does the opposite: it pushes onto the stack that i is an answer to the query on uv, but there is another reading close-tags and pops from the stack reading open- extension v0 of u such that i is not an answer to the query tags. Hence it preserves the invariant that the height of the on uv0. Summarizing the above argument, a streaming al- stack when at a particular position in the document is pre- gorithm must keep track of all the interesting positions at cisely the number of unmatched calls before that position u, which would take space (without resort to compression) (which is the number of unmatched returns after that posi- O(I: log n), where I is the number of interesting positions tion). at u and n = juj. We show that query VPAs have the right expressive The streaming algorithm we present uses only the space power for defining queries by showing that a query is ex- argued above as being necessary: after reading u, it uses pressible as a unary formula in monadic second-order logic space O(d + I: log n) for any fixed query (accounting for (MSO) if and only if it is implemented by a query VPA. I pointers into the document), where d is the depth of the Unary MSO queries form perhaps the largest class of log- document. The algorithm is based on a simulation of a vis- ical queries one can hope to answer by automatic means, ibly pushdown automaton representing the query on an in- and obviously include practical query languages such as put document, with care taken to prune away positions that XPath. We find it remarkable that the simple definition of become uninteresting. The notion of basing the space com- two-way VPAs exactly captures all monadic queries. This plexity of the algorithm on the set of interesting positions result parallels a classic result in the theory of automata on is the algorithmic analog of the right congruence for finite finite words, which equates the power of unary monadic automata on words (Myhill-Nerode theorem). We believe queries on (nonnested) words to that of two-way automata that this is an interesting criterion of complexity for stream- on words [10, 22]. ing query processors, rather than the simplistic linear de- While query VPAs are a simple clean model for express- pendence on the entire length of the document commonly ing queries, they do not help answering queries efficiently. reported (eg. [8]). They in fact represent one extreme end of the space-time- The query complexity of our algorithm is of course non- streaming spectrum: they do not process streaming doc- elementary for queries expressed in MSO, and is not a fair uments and they are not time-efficient as they reread the appraisal of the algorithm. However, if the query is repre- document several times, but are incredibly space-efficient, sented by a non-deterministic visibly pushdown automaton utilizing only space O(d), where d is the depth of the docu- with m states, we show the query complexity to be poly- ment (with no dependence at all on the length of the docu- nomial in m. More precisely, the algorithm after reading ment!). u uses space O(m4: log m:d + m4:I: log n) where d is the We then turn to streaming algorithms and present our depth of the document at the point u, n = juj, and I is the second main result: a streaming algorithm that answers any set of interesting positions at u. unary monadic query and has efficient time and space data We believe that the streaming algorithm we present here complexity. As far as we know, this is the first time it has is a very efficient algorithm that holds promise in being use- been shown that any unary MSO query can be efficiently ful in practice.
Recommended publications
  • Rewriting Games on Nested Words
    Rewriting Games on Nested Words Martin Schuster Thomas Schwentick TU Dortmund Highlights 2014 Context-Free Games On Strings: Intuition Basic idea: Context-free grammar as Example two-player game T “ tafba, aafafa, abafau, JULIET chooses function f Ñ af | b symbols af f a ROMEO chooses Ó replacement strings af afa Ó JULIET wins if a target abafa string is reached Algorithmic problem JWIN Given: A context-free game G and a string w Question: Does JULIET have a winning strategy on w in G? Previous Results (Some) results from [Muscholl, Schwentick, Segoufin 2006]: JWIN is undecidable in general ù Left-to-right (L2R) restriction With L2R restriction and DFA-represented target language, JWin is EXPTIME-complete for finite or (D/N)FA-represented regular replacement languages PTIME-complete for finite replacement languages and bounded recursion Application: Active XML Schema Rewriting Server Client City Ñ Name, Weather, Events City Ñ Name, Weather, Events Events Ñ @event_svc Events Ñ (Sports|Concert)* event_svc: Ñ (Sports|Concert)* Server (CC-BY-SA 3.0) RRZE Icons, Client (LGPL) Everaldo Coelho Goal: Rewrite server documents into client schema Milo et al., 2003: DTD schema languages ù Reduction to string rewriting ù Claimed PTIME algorithm for bounded recursion (?) Our interest: stronger schema languages (XML Schema) ù Main target: identify tractable restrictions ù cfGs on nested words Nested Words Idea: Correct nesting of tags over label alphabet Σ ù Linearisations of Σ-labelled forests Example a a xayx{ayxayxbyxcyx{cyx{byxayx{ayx{ay b a c Schema
    [Show full text]
  • A Note on Nested Words
    A Note on Nested Words Andreas Blass¤ Yuri Gurevichy Abstract For every regular language of nested words, the underlying strings form a context-free language, and every context-free language can be obtained in this way. Nested words and nested-word automata are gen- eralized to motley words and motley-word automata. Every motley- word automation is equivalent to a deterministic one. For every reg- ular language of motley words, the underlying strings form a ¯nite intersection of context-free languages, and every ¯nite intersection of context-free languages can be obtained in this way. 1 Introduction In [1], Rajeev Alur and P. Madhusudan introduced and studied nested words, nested-word automata and regular languages of nested words. A nested word is a string of letters endowed with a so-called nested relation. Alur and Madhusudan prove that every nested-word automaton is equivalent to a deterministic one. In Section 2, we recall some of their de¯nitions. We quote from the introduction to [1]. \The motivating application area for our results has been soft- ware veri¯cation. Given a sequential program P with stack-based control flow, the execution of P is modeled as a nested word with nesting edges from calls to returns. Speci¯cation of the program is given as a nested word automaton A, and veri¯cation corre- sponds to checking whether every nested word generated by P is ¤Math Dept, University of Michigan, Ann Arbor, MI 48109; [email protected] yMicrosoft Research, Redmond, WA 98052; [email protected] 1 accepted by A. Nested-word automata can express a variety of requirements such as stack-inspection properties, pre-post condi- tions, and interprocedural data-flow properties." In Section 3, we show that all context-free properties, and only context- free properties, can be captured by a nested-word automaton in the following precise sense.
    [Show full text]
  • Equivalence of Deterministic Nested Word to Word Transducers
    Equivalence of Deterministic Nested Word to Word Transducers S lawomir Staworko13 and Gr´egoireLaurence23 and Aur´elienLemay23 and Joachim Niehren13 1 INRIA, Lille 2 University of Lille 3 Mostrare project, INRIA & LIFL (CNRS UMR8022) Abstract. We study the equivalence problem of deterministic nested word to word transducers and show it to be surprisingly robust. Modulo polynomial time reductions, it can be identified with 4 equivalence prob- lems for diverse classes of deterministic non-copying order-preserving transducers. In particular, we present polynomial time back and fourth reductions to the morphism equivalence problem on context free lan- guages, which is known to be solvable in polynomial time. Keywords: trees, transducers, automata, context-free grammars, XML. 1 Introduction Nested word automata (nas) [1] are tree automata, that operate on linearizations of unranked trees in streaming manner. All nodes of the tree are visited twice, as usual in preorder traversals. At the first visit (opening event), a symbol is to be pushed onto a stack that is popped at the second visit (closing event). nas were introduced as a reformulation of visibly pushdown automata [2] and proved equivalent to pushdown forest automata [11] and streaming tree automata [6]. More formally, a nested word over Σ is a word of parenthesis in Σ^ = fop; clg × Σ, such that all opening parenthesis are properly closed. We consider nested words as linearizations of unranked trees. For instance, the linearization of a(b(c); d) is the nested word (op; a) · (op; b) · (op; c) · (cl; c) · (cl; b) · (op; d) · (cl; d) · (cl; a), or in XML notation <a><b><c></c></b><d></d></a>.
    [Show full text]
  • A Uniformization Theorem for Nested Word to Word Transductions
    A Uniformization Theorem for Nested Word to Word Transductions Dmitry Chistikov and Rupak Majumdar Max Planck Institute for Software Systems (MPI-SWS) Kaiserslautern and Saarbr¨ucken, Germany fdch,[email protected] Abstract. We study the class of relations implemented by nested word to word transducers (also known as visibly pushdown transducers). We show that any such relation can be uniformized by a functional rela- tion from the same class, implemented by an unambiguous transducer. We give an exponential upper bound on the state complexity of the uniformization, improving a previous doubly exponential upper bound. Our construction generalizes a classical construction by Sch¨utzenberger for the disambiguation of nondeterministic finite-state automata, using determinization and summarization constructions on nested word au- tomata. Besides theoretical interest, our procedure can be the basis for synthesis procedures for nested word to word transductions. Keywords: uniformization, transduction, nested word, visibly push- down language. 1 Introduction A central result in the theory of rational languages is the unambiguity theo- rem [1,2], which states that every rational function can be implemented by an unambiguous transducer, that is, a transducer that has at most one success- ful run on any input. Sch¨utzenberger [3] gave an elegant and direct proof of the unambiguity theorem, by showing, for any rational function, a matrix repre- sentation which can be made unambiguous. Sakarovitch [2] subsequently showed that the construction of Sch¨utzenberger can be used as the foundation for several results in the theory of rational functions, most notably the rational uniformiza- tion theorem and the rational cross-section theorem (see [4,5,2]).
    [Show full text]
  • A Uniformization Theorem for Nested Word to Word Transductions
    A Uniformization Theorem for Nested Word to Word Transductions Dmitry Chistikov and Rupak Majumdar Max Planck Institute for Software Systems (MPI-SWS) Kaiserslautern and Saarbr¨ucken, Germany {dch,rupak}@mpi-sws.org Technical Report MPI-SWS-2013-002 March 12, 2013 Abstract. We study the class of relations implemented by nested word to word (visibly pushdown) transducers. We show that any such rela- tion can be uniformized by a functional relation from the same class, implemented by an unambiguous transducer. We give an exponential upper bound on the state complexity of the uniformization, generalizing the known Sch¨utzenberger construction for the disambiguation of a non- deterministic automaton from standard finite-state machines to nested word (visibly pushdown) automata. Keywords: uniformization, transduction, nested word, visibly push- down language. 1 Introduction A central result in the theory of rational languages is the unambiguity theorem [1, 2], which states that every rational function can be implemented by an unam- biguous transducer, that is, a transducer that has at most one successful run on any input. Sch¨utzenberger [3] gave an elegant and direct proof of the unambigu- ity theorem, by showing, for any rational function, a matrix representation which can be made unambiguous. It was subsequently shown [2] that the construction of Sch¨utzenberger can be used as the foundation for several results in the theory of rational functions, most notably the rational uniformization theorem and the rational cross-section theorem (see [4, 5, 2]). In more detail, the construction of Sch¨utzenberger starts with a (possibly non-deterministic) finite-state transducer T , and constructs a new finite-state transducer with the property that any input string has at most one successful run.
    [Show full text]
  • Synchronization of Deterministic Visibly Push-Down Automata
    Synchronization of Deterministic Visibly Push-Down Automata Henning Fernau Universität Trier, Fachbereich IV, Informatikwissenschaften, Germany [email protected] Petra Wolf Universität Trier, Fachbereich IV, Informatikwissenschaften, Germany https://www.wolfp.net/ [email protected] Abstract We generalize the concept of synchronizing words for finite automata, which map all states of the automata to the same state, to deterministic visibly push-down automata. Here, a synchronizing word w does not only map all states to the same state but also fulfills some conditions on the stack content of each run after reading w. We consider three types of these stack constraints: after reading w, the stack (1) is empty in each run, (2) contains the same sequence of stack symbols in each run, or (3) contains an arbitrary sequence which is independent of the other runs. We show that in contrast to general deterministic push-down automata, it is decidable for deterministic visibly push-down automata whether there exists a synchronizing word with each of these stack constraints, more precisely, the problems are in EXPTIME. Under the constraint (1), the problem is even in P. For the sub-classes of deterministic very visibly push-down automata, the problem is in P for all three types of constraints. We further study variants of the synchronization problem where the number of turns in the stack height behavior caused by a synchronizing word is restricted, as well as the problem of synchronizing a variant of a sequential transducer, which shows some visibly behavior, by a word that synchronizes the states and produces the same output on all runs.
    [Show full text]
  • Nested Word Automata
    Department of Computer Science & Automation Indian Institute of Science Nested Word Automata Seminar Presentation 08 Dec 16 Dara Singh Vohra Jibin Surendran Ashok Rawat Nested Word Automata Overview Motivation and background Nested words and their acceptors Determinization proof Conclusion 1 / 30 Nested Word Automata Motivation and background Overview Motivation and background Common languages Visibly pushdown languages Nested words and their acceptors Determinization proof Conclusion 1 / 30 q0 c q q 1 r 2 Nested Word Automata Motivation and background Common languages Regular language 1 procedure foo () § ¤ 2 { 3 r e t u r n ; 4 } ¦ L1 = fc rg ¥ 2 / 30 Nested Word Automata Motivation and background Common languages Regular language 1 procedure foo () § ¤ 2 { q0 3 r e t u r n ; 4 } c ¦ L1 = fc rg ¥ q q 1 r 2 2 / 30 q0 q3 ?, c, ?A A, r, " A, r, " q1 q2 B, r, " A, c, AB A, r, " B, c, BB Nested Word Automata Motivation and background Common languages (det.) Context-free language 1 procedure bar () § ¤ 2 { 3 i f (*) 4 c a l l bar (); 5 r e t u r n ; 6 } n n ¦ L2 = fc r j n > 0g ¥ 3 / 30 Nested Word Automata Motivation and background Common languages (det.) Context-free language q0 q3 1 procedure bar () § ¤ 2 { 3 i f (*) ?, c, ?A A, r, " A, r, " 4 c a l l bar (); 5 r e t u r n ; q1 q2 6 } B, r, " L = fcn rn j n > 0g ¦ 2 ¥ A, c, AB A, r, " B, c, BB 3 / 30 / / / all standard properties not under intersection and complementation all standard problems intersection, inclusion, equivalence undecidable powerset construction not possible Question:
    [Show full text]
  • Checking Compatibility of a Producer and a Consumer ∗ Evan Driscoll,† Amanda Burton,† and Thomas Reps†,‡ †University of Wisconsin ‡Grammatech, Inc
    Checking Compatibility of a Producer and a Consumer ∗ Evan Driscoll,y Amanda Burton,y and Thomas Repsy;z yUniversity of Wisconsin zGrammaTech, Inc. fdriscoll, burtona, [email protected] Abstract technique is really a heuristic for bug-finding, not a technique for verifying producer-consumer compatibility. This paper addresses the problem of identifying incompatibilities We have implemented the method in a tool called PCCA between two programs that operate in a producer/consumer rela- (for Producer-Consumer Conformance Analyzer). Given the two tionship. It describes the techniques that are incorporated in a tool source programs, along with information about which functions called PCCA (Producer-Consumer Conformance Analyzer), which perform I/O (see x4.2), PCCA infers a description of the language attempts to (i) determine whether the consumer is prepared to ac- that the producer generates and a description of the language that cept all messages that the producer can emit, or (ii) find a counter- the consumer expects, and determines whether the former is a sub- example: a message that the producer can emit and the consumer set of the latter. will reject. PCCA starts out by producing a nested word automaton (NWA) [1] P for the producer, which accepts an over-approximation of 1. Introduction language that the producer emits. Similarly, PCCA produces an Complex systems today are made up of many communicating com- NWA C for the consumer, which accepts an over-approximation ponents. For instance, a modern fuel-injected engine has a num- of language that the consumer accepts. In each of the nested- ber of sensors that send their current measurements to the engine- word languages L(P ) and L(C), internal calls and returns in the control unit, which decides, for instance, what the optimum fuel-air corresponding program are made manifest in the words of the mixture should be.
    [Show full text]
  • First-Order and Temporal Logics for Nested Words
    First-Order and Temporal Logics for Nested Words Rajeev Alur Marcelo Arenas Pablo Barcel´o University of Pennsylvania PUC Chile Universidad de Chile KoushaEtessami NeilImmerman LeonidLibkin University of Edinburgh University of Massachusetts University of Edinburgh Abstract Pushdown systems (PDSs), Boolean Programs, and Re- cursive State Machines (RSMs), are equivalent abstract Nested words are a structured model of execution paths models of procedural programs, with finite data abstrac- in procedural programs, reflecting their call and return tion but unbounded call stack. Software model checking nesting structure. Finite nested words also capture the technology is by now thoroughly developed for checking structure of parse trees and other tree-structured data, such ω-regular properties of runs for these models, when the as XML. runs are viewed as ordinary words (see [5, 8, 1]). Unfor- We provide new temporal logics for finite and infi- tunately, temporal logic and ω-regular properties over ordi- nite nested words, which are natural extensions of LTL, nary words are inadequate for expressing a variety of prop- and prove that these logics are first-order expressively- erties of program executions that are useful in interproce- complete. One of them is based on adding a ”within” dural program analysis and software verification. These in- modality, evaluating a formula on a subword, to a logic clude Hoare-like pre/post conditions on procedures, stack CaRet previously studied in the context of verifying prop- inspection properties, and other useful program analysis erties of recursive state machines. The other logic is based properties that go well beyond ω-regular (see [2] for some on the notion of a summary path that combines the linear examples).
    [Show full text]
  • Regular Languages of Nested Words: Fixed Points, Automata, and Synchronization ∗
    Regular Languages of Nested Words: Fixed Points, Automata, and Synchronization ∗ Marcelo Arenas Departamento de Ciencia de la Computaci´on Pontificia Universidad Cat´olica de Chile [email protected] Pablo Barcel´o Leonid Libkin Departamento de Ciencia de la Computaci´on School of Informatics Universidad de Chile University of Edinburgh [email protected] [email protected] Abstract Nested words provide a natural model of runs of programs with recursive procedure calls. The usual connection between monadic second-order logic (MSO) and automata extends from words to nested words and gives us a natural notion of regular languages of nested words. In this paper we look at some well-known aspects of regular languages – their characterization via fixed points, deterministic and alternating automata for them, and synchronization for defining regular relations – and extend them to nested words. We show that mu-calculus is as expressive as MSO over finite and infinite nested words, and the equivalence holds, more generally, for mu-calculus with past modalities evaluated in arbitrary positions in a word, not only in the first position. We introduce the notion of alternating automata for nested words, show that they are as expressive as the usual automata, and also prove that Muller automata can be determinized (unlike in the case of visibly pushdown languages). Finally we look at synchronization over nested words. We show that the usual letter-to-letter synchronization is completely incompatible with nested words (in the sense that even the weakest form of it leads to an undecidable formalism) and present an alternative form of synchronization that gives us decidable notions of regular relations.
    [Show full text]
  • Streaming Tree Transducers
    Streaming Tree Transducers Rajeev Alur and Loris D'Antoni University of Pennsylvania November 2, 2018 Abstract Theory of tree transducers provides a foundation for understanding expressiveness and com- plexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, exe- cutable, and expressive model for transforming unranked ordered trees (and hedges) in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are decidable for our model. 1 Introduction Finite-state machines and logics for specifying tree transformations offer a suitable theoretical foun- dation for studying expressiveness and complexity of analysis problems for languages for processing and transforming XML documents. Representative formalisms for specifying tree transductions include finite-state top-down and bottom-up tree transducers, Macro tree transducers (MTT), attribute grammars, MSO (monadic second-order logic) definable graph transductions, and spe- cialized programming languages such as XSLT and XDuce [1, 2, 3, 4, 5, 6, 7, 8].
    [Show full text]
  • Adding Nesting Structure to Words
    Adding Nesting Structure to Words RAJEEV ALUR University of Pennsylvania and P. Madhusudan University of Illinois at Urbana-Champaign We propose the model of nested words for representation of data with both a linear ordering and a hierarchically nested matching of items. Examples of data with such dual linear-hierarchical structure include executions of structured programs, annotated linguistic data, and HTML/XML documents. Nested words generalize both words and ordered trees, and allow both word and tree operations. We define nested word automata—finite-state acceptors for nested words, and show that the resulting class of regular languages of nested words has all the appealing the- oretical properties that the classical regular word languages enjoys: deterministic nested word automata are as expressive as their nondeterministic counterparts; the class is closed under union, intersection, complementation, concatenation, Kleene-*, prefixes, and language homomorphisms; membership, emptiness, language inclusion, and language equivalence are all decidable; and de- finability in monadic second order logic corresponds exactly to finite-state recognizability. We also consider regular languages of infinite nested words and show that the closure properties, MSO-characterization, and decidability of decision problems carry over. The linear encodings of nested words give the class of visibly pushdown languages of words, and this class lies between balanced languages and deterministic context-free languages. We argue that for algorithmic verification of structured programs, instead of viewing the program as a context- free language over words, one should view it as a regular language of nested words (or equivalently, a visibly pushdown language), and this would allow model checking of many properties (such as stack inspection, pre-post conditions) that are not expressible in existing specification logics.
    [Show full text]