Radio Observations of Massive Stars in the Galactic Centre: the Arches Cluster Gallego-Calvente1,?, A

Total Page:16

File Type:pdf, Size:1020Kb

Radio Observations of Massive Stars in the Galactic Centre: the Arches Cluster Gallego-Calvente1,?, A Astronomy & Astrophysics manuscript no. main ©ESO 2021 January 14, 2021 Radio observations of massive stars in the Galactic centre: The Arches Cluster Gallego-Calvente1,?, A. T., Schödel1, R., Alberdi1, A., Herrero-Illana2, R., Najarro3, F., Yusef-Zadeh4, F., Dong, H., Sanchez-Bermudez5; 6, J., Shahzamanian1, B., Nogueras-Lara6, F., and Gallego-Cano7, E. 1 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain e-mail: gallego@iaa.es 2 European Southern Observatory (ESO), Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago de Chile, Chile 3 Centro de Astrobiología (CSIC/INTA), Ctra. de Ajalvir Km. 4, 28850 Torrejón de Ardoz, Madrid, Spain 4 CIERA, Department of Physics and Astronomy Northwestern University, Evanston, IL 60208, USA 5 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70264, Ciudad de México 04510, México 6 Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, D-69 117, Germany 7 Centro Astronómico Hispano-Alemán (CSIC-MPG), Observatorio Astronómico de Calar Alto, Sierra de los Filabres, 04550, Gér- gal, Almería, Spain ABSTRACT We present high-angular-resolution radio observations of the Arches cluster in the Galactic centre, one of the most massive young clusters in the Milky Way. The data were acquired in two epochs and at 6 and 10 GHz with the Karl G. Jansky Very Large Array (JVLA). The rms noise reached is three to four times better than during previous observations and we have almost doubled the number of known radio stars in the cluster. Nine of them have spectral indices consistent with thermal emission from ionised stellar winds, one is a confirmed colliding wind binary (CWB), and two sources are ambiguous cases. Regarding variability, the radio emission appears to be stable on timescales of a few to ten years. Finally, we show that the number of radio stars can be used as a tool for constraining the age and/or mass of a cluster and also its mass function. 1. Introduction tral index at certain orbital phases in systems with significant ec- centricity. On the other hand, theoretical studies suggest that the Massive stars are of fundamental importance to understanding free-free thermal emission from the WCR may also affect the to- star formation and galaxy evolution because of their key role in tal radio spectrum, a phenomenon that becomes more important stirring and enriching the interstellar medium through intense as the stars get very close, increasing the spectral index to values ionising radiation, stellar winds, and supernovae. A striking fea- steeper than the nominal ionised wind at millimeter wavelengths ture of massive stars is their high fraction of multiplicity (∼ 91 %, (Montes et al. 2015). Sana et al. 2014), which must therefore be taken into account Past radio observations of massive stars lacked the sensitiv- when studying their evolution and the heavy end of the initial ity to reach beyond at most a few kiloparsecs. Because of the mass function. Considering that the wind properties of massive rareness and large mean distances of massive stars and clusters, stars are still poorly observationally constrained (see Benaglia researchers could were therefore only able to study a limited 2010), radio observations can provide further information about sample of such targets (Lang et al. 2001, 2005; Benaglia 2010; the wind properties and multiplicity of the most massive stars. Yusef-Zadeh et al. 2015). As concerns the properties of radio stars, for isolated stars The Galactic centre (GC) region occupies less than 1% of α we expect a spectral index of α ≈ 0:6 (flux density S ν / ν ) the volume of the Milky Way disc, but emits on the order 10% arising from the thermal emission of the ionised wind, while bi- of its total Lyman continuum flux, which is produced by a high naries can show flat to inverted spectra (α . 0) which result from number of massive, hot stars (e.g. Figer et al. 2004; Mauerhan the contribution of non-thermal emission in colliding wind re- et al. 2010; Dong et al. 2011). The Arches, Quintuplet, and the gions, provided this emission is not absorbed by the surrounding Central Parsec massive young clusters lie within 30 pc in projec- ionised wind, which is optically thick (Benaglia 2010; Montes tion of the central black hole Sagittarius A* (Sgr A*) and each 4 et al. 2015). Therefore, identifying binaries through radio obser- contain & 10 M of stars that formed 2-6 Myr ago (Figer et al. vations is typically limited to the detection of wide binaries with 2004). Massive young stellar objects (YSOs) and H II regions arXiv:2101.05048v1 [astro-ph.SR] 13 Jan 2021 periods of one year or longer (Sanchez-Bermudez et al. 2019). throughout the GC are further witnesses to recent or currently In the case of short-period (P ∼< 1 yr) colliding wind binaries ongoing massive star formation (SF) throughout the GC (e.g. (CWBs), the stars are too close and the wind–wind collision re- Yusef-Zadeh et al. 2009; Mauerhan et al. 2010; Nandakumar gion (WCR) is likely to lie within the optically thick region of et al. 2018; Shahzamanian et al. 2019). In summary, the GC is the winds. Therefore, in these systems, only the free-free thermal the Milky Way’s most important star forming region. The condi- emission from the unshocked winds is thought to be detected, tions in the GC resemble those in high-redshift starburst galaxies thereby masking any effect of their binarity. However, for some (Kruijssen & Longmore 2013). Thus, the GC is of special impor- short-period systems, the non-thermal emission escapes the ab- tance for studies of massive star formation. sorption, contributing to a composite spectrum with a flat spec- However, there are some unique observational challenges for studying the stellar population of the GC. Interstellar extinction ? e-mail: gallego@iaa.es is extremely high (AV > 30 mag) and also variable on arcsec- Article number, page 1 of 11 A&A proofs: manuscript no. main Table 1. Observational properties 1 h m s servatory (NRAO) . The position α, δ(J2000) = 17 45 50.49 , ◦ 0 00 a −28 49 19.92 was taken as phase centre. There are three Observation Band JVLA On source time epochs of X-band (3.0 cm or a representative frequency of date configuration (minutes) 10 GHz) and one of C-band (5.0 cm or 6 GHz) observations. De- Oct 04, 2016 X A 55 tails are listed in Table 1. All the observations in all epochs were Oct 26, 2016 X A 55 taken in the A configuration to achieve the highest angular reso- Apr 11, 2018 X A 55 lution. This configuration also helped us to filter out part of the Jun 10, 2018 C A 74 extended emission from the Arched Filaments (G0.10+0.08), a very extended H II region in which the Arches cluster is embed- (a) Notes. Frequency range of 4-8 GHz for C-band and 8-12 GHz for ded. X-band. Therefore, the total bandwidth was 4 GHz on each band. The At all frequencies, J1744−3116 was used as a phase cal- number of spectral windows was 32 and the number of channels 64 in both cases. ibrator and J1331+305 (3C286) as a band-pass and flux den- sity calibrator. For C- and X-bands, we required a sensitivity of 3.0 µJy beam−1. Raw data were processed automatically through ond scales (e.g. Scoville et al. 2003; Schödel et al. 2010; Fritz the JVLA calibration pipeline performing an initial flagging and et al. 2011; Nogueras-Lara et al. 2018, 2019b, 2020). There- calibration. Extra flagging was necessary to remove the lost or fore, even in the near-infrared (AK ≈ 2:5 mag), stellar colours corrupted data. We performed standard data reduction using the are dominated by reddening. Finally, sub-arcsecond angular res- Common Astronomy Software Applications package (CASA) olution (at least as good as about 0.200) is needed to overcome developed by an international consortium of scientists2. the high source crowding and to reliably study individual stars, Images were created with CASA using the classical task which requires the use of the Hubble Space Telescope, or speckle clean in interactive mode. We also tested a more advanced form or adaptive optics techniques from the ground. of imaging, multi-scale clean, to distinguish between the point In this work, we focus on the Arches cluster that is located sources and the extended emission. multi-scale clean involves at a projected distance of ∼ 26 pc to the northeast of Sgr A* (110, the use of multiple scales by means of an extension of the classi- 4 angular distance). It contains a few × 10 M with more than 100 cal clean algorithm assuming the sky is composed of emission at O-stars and thus belongs to a small handful of young, massive different angular scales. Its use did not improve the quality of the starburst-like clusters known in the Milky Way (in addition to, image. We also probed various other options for the task clean e.g. NGC3603, Quintuplet, or Westerlund 1 and 2). The cluster including wide-field, multi-term, multi-frequency synthesis and was formed between 2 and 4 Myr ago (e.g. Figer et al. 1999a,b; with w-projection without resulting in any significant improve- Najarro et al. 2004; Clarkson et al. 2012; Clark et al. 2018, 2019) ments. Additionally, we checked different weighting schemes to and has a half-light radius of rh ≈ 0:48 pc (Hosek et al. 2015). correct for visibility sampling effects. Natural weighting pro- Clark et al.
Loading...
Loading...
Loading...
Loading...
Loading...

6 pages remaining, click to load more.

Recommended publications
  • The Arches Cluster out to Its Tidal Radius: Dynamical Mass Segregation and the Effect of the Extinction Law on the Stellar Mass Function
    Astronomy & Astrophysics manuscript no. aa˙paper c ESO 2018 October 31, 2018 The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function. ? M. Habibi1;3 , A. Stolte1 , W. Brandner2 , B. Hußmann1 , K. Motohara4 1 Argelander Institut fur¨ Astronomie, Universitat¨ Bonn, Auf dem Hugel¨ 71, 53121 Bonn, Germany e-mail: [mhabibi;astolte;hussmann]@astro.uni-bonn.de 2 Max-Planck-Institut fur¨ Astronomie, Konigsstuhl¨ 17, 69117 Heidelberg, Germany e-mail: brandner@mpia.de 3 Member of the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. 4 Institute of Astronomy, The University of Tokyo, Osawa 2-21-1, Mitaka, Tokyo 181-0015, Japan e-mail: kmotohara@ioa.s.u-tokyo.ac.jp Received Oct 14, 2012; accepted May 13, 2013 ABSTRACT The Galactic center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law.
    [Show full text]
  • Star Formation at the Galactic Center
    Star Formation at the Galactic Center Mark Morris UCLA Outline § The Arena – central molecular zone, & the twisted ring § General dearth of star formation, relative to amount of gas § Orbital infuence on star formation § Mode of star formation: Massive young clusters vs. isolated YSOs § Star formation in the Central parsec § Cyclical star formation in the central parsec ? § Magnetic felds – a pitch for HAWC+ The inner Central Molecular Zone Molinari et al. 2011 … Herschel/SPIRE 250 µm Martin et al. 2004 7 CMZ: ~3 x 10 M8, ±170 pc Warm, turbulent molecular gas" Having large-scale order." overhead view of the! Molinari et al. 2011 twisted ring" Simulation of gas ! distribution in the CMZ" (Sungsoo Kim + 2011)" Henshaw et al. 2016 Top: HNCO, extracted using SCOUSE* *SCOUSE: Semi-automated mul-COmponent Universal Spectral-line fing Engine H2 column density contours from Herschel observations Color-coded to show velocity dispersion. Possible models: Henshaw et al. 2016 (Batersby et al., in prep) Henshaw+16 u Gas distribution dominated by two roughly parallel extended features in longitude-velocity space. u Henshaw+16 à the bulk of molecular line emission associated with the 20 & 50 km/s clouds is just a small segment of one of the extended features, in agreement with the Kruijssen+15 orbit, which places the clouds at a Galactocentric radius of ∼60 pc. u But this in inconsistent with the evidence that Sgr A East is interacting with the 50 km/s cloud and that the 20 km/s cloud is feeding gas into the central parsecs. Star Formation in the CMZ ♦ It has been known for some time that the CMZ has a much higher ratio of dense gas mass to star-formation tracers than elsewhere in the Galaxy [Morris 1989, 1993, Lis & Carlstrom 1994, Yusef-Zadeh et al.
    [Show full text]
  • Arxiv:Astro-Ph/9906299V1 17 Jun 1999 Cec Nttt,Wihi Prtdb H Soito Funiversit NAS5-26555
    HST/NICMOS Observations of Massive Stellar Clusters Near the Galactic Center1 Donald F. Figer2,3, Sungsoo S. Kim2,4, Mark Morris2, Eugene Serabyn5, R. Michael Rich2, Ian S. McLean2 ABSTRACT We report Hubble Space Telescope (HST) Near-infrared Camera and Multi- object Spectrometer (NICMOS) observations of the Arches and Quintuplet clusters, two extraordinary young clusters near the Galactic Center. For the first time, we have identified main sequence stars in the Galactic Center with initial masses well below 10 M⊙. We present the first determination of the initial mass function (IMF) for any population in the Galactic Center, finding an IMF slope which is significantly more positive (Γ ≈ −0.65) than the average for young clusters elsewhere in the Galaxy (Γ ≈ −1.4). The apparent turnoffs in the color-magnitude diagrams suggest cluster ages which are consistent with the ages implied by the mixture of spectral types in the clusters; we find τage ∼ 2±1 Myr for the Arches cluster, and τage ∼ 4±1 Myr for the Quintuplet. We estimate total cluster masses by adding the masses of observed stars down to the 50% completeness limit, and then extrapolating down to a lower mass cutoff 4 of 1 M⊙. Using this method, we find ∼>10 M⊙ for the total mass of the Arches cluster. Such a determination for the Quintuplet cluster is complicated by the double-valued mass-magnitude relationship for clusters with ages ∼> 3 Myr. We arXiv:astro-ph/9906299v1 17 Jun 1999 find a lower limit of 6300 M⊙ for the total cluster mass, and suggest a best 1Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc.
    [Show full text]
  • Metallicity in the GC Roberta M
    Journal of Physics: Conference Series OPEN ACCESS Related content - Massive stars in galaxies. Metallicity in the GC Roberta M. Humphreys - Do Voids Cluster? To cite this article: Francisco Najarro 2006 J. Phys.: Conf. Ser. 54 036 S. Haque-Copilah and D. Basu - Near-Infrared Spectra of Galactic Stellar Clusters Detected on Spitzer/GLIMPSE Images Maria Messineo, Ben Davies, Valentin D. View the article online for updates and enhancements. Ivanov et al. Recent citations - Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds J. Puls et al - Mass loss from hot massive stars Joachim Puls et al - Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas A. Barniske et al This content was downloaded from IP address 161.111.20.207 on 22/07/2021 at 11:58 Institute of Physics Publishing Journal of Physics: Conference Series 54 (2006) 224–232 doi:10.1088/1742-6596/54/1/036 Galaxy Center Workshop 2006 Metallicity in the GC Francisco Najarro1 1 Instituto de Estructura de la Materia, CSIC, Serrano 121, 29006 Madrid, Spain E-mail: najarro@damir.iem.csic.es Abstract. We review quantitative spectroscopic studies of massive stars in the three Galactic Center clusters: Quintuplet, Arches and Central cluster. Thanks to the impressive evolution of IR detectors and the new generation of line blanketed models for the extended atmospheres of hot stars we are able to accurately derive the physical properties and metallicity estimates of the massive stars in these clusters. For the Quintuplet cluster our analysis of the LBVs provides a direct estimate of α-elements and Fe chemical abundances in these objects.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • SOFIA/FORCAST Galactic Center Legacy Survey: Overview
    Draft version April 15, 2020 Typeset using LATEX modern style in AASTeX62 SOFIA/FORCAST Galactic Center Legacy Survey: Overview Matthew J. Hankins,1 Ryan M. Lau,2 James T. Radomski,3 Angela S. Cotera,4 Mark R. Morris,5 Elisabeth A. C. Mills,6 Daniel L. Walker,7, 8 Ashley T. Barnes,9 Janet P. Simpson,4 Terry L. Herter,10 Steven N. Longmore,11 John Bally,12 Mansi M. Kasliwal,1 Nadeen B. Sabha,13 and Macarena Garc´ıa-Marin14 1Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 2Institute of Space & Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan 3SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035, USA 4SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA 5Dept. of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA 6Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA 7National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 8Joint ALMA Observatory, Alonso de C´ordova 3107, Vitacura, Santiago, Chile 91Argelander-Institut f¨urAstronomie, Universit¨atBonn, Auf dem H¨ugel 71, 53121, Bonn, Germany 10Department of Astronomy, Cornell University, Space Sciences Bldg, Ithaca, NY 14853-6801, USA 11Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK 12Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309, USA 13Institut fr Astro- und Teilchenphysik, Universitt Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria 14European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218, USA ABSTRACT The Galactic Center contains some of the most extreme conditions for star formation in our Galaxy as well as many other phenomena that are unique to this region.
    [Show full text]
  • Spatial Distribution of Galactic Wolf–Rayet Stars and Implications for the Global Population
    MNRAS 447, 2322–2347 (2015) doi:10.1093/mnras/stu2525 Spatial distribution of Galactic Wolf–Rayet stars and implications for the global population C. K. Rosslowe‹ andP.A.Crowther Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, S3 7RH, UK Accepted 2014 November 26. Received 2014 November 26; in original form 2014 September 5 ABSTRACT We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf– Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic surveys. Application to 246 WR stars located in the field permits us to map their Galactic distribution. As anticipated, WR stars generally lie in the thin disc (∼40 pc half-width at half- maximum) between Galactocentric radii 3.5–10 kpc, in accordance with other star formation tracers. We highlight 12 WR stars located at vertical distances of ≥300 pc from the mid-plane. Analysis of the radial variation in WR subtypes exposes a ubiquitously higher NWC/NWN ratio than predicted by stellar evolutionary models accounting for stellar rotation. Models for non- rotating stars or accounting for close binary evolution are more consistent with observations. We consolidate information acquired about the known WR content of the Milky Way to build a simple model of the complete population. We derive observable quantities over a range of wavelengths, allowing us to estimate a total number of 1900 ± 250 Galactic WR stars, implying an average duration of ∼ 0.4 Myr for the WR phase at the current Milky Way star formation rate. Of relevance to future spectroscopic surveys, we use this model WR population to predict follow-up spectroscopy to KS 17.5 mag will be necessary to identify 95 per cent of Galactic WR stars.
    [Show full text]
  • Meeting Abstracts
    228th AAS San Diego, CA – June, 2016 Meeting Abstracts Session Table of Contents 100 – Welcome Address by AAS President Photoionized Plasmas, Tim Kallman (NASA 301 – The Polarization of the Cosmic Meg Urry GSFC) Microwave Background: Current Status and 101 – Kavli Foundation Lecture: Observation 201 – Extrasolar Planets: Atmospheres Future Prospects of Gravitational Waves, Gabriela Gonzalez 202 – Evolution of Galaxies 302 – Bridging Laboratory & Astrophysics: (LIGO) 203 – Bridging Laboratory & Astrophysics: Atomic Physics in X-rays 102 – The NASA K2 Mission Molecules in the mm II 303 – The Limits of Scientific Cosmology: 103 – Galaxies Big and Small 204 – The Limits of Scientific Cosmology: Town Hall 104 – Bridging Laboratory & Astrophysics: Setting the Stage 304 – Star Formation in a Range of Dust & Ices in the mm and X-rays 205 – Small Telescope Research Environments 105 – College Astronomy Education: Communities of Practice: Research Areas 305 – Plenary Talk: From the First Stars and Research, Resources, and Getting Involved Suitable for Small Telescopes Galaxies to the Epoch of Reionization: 20 106 – Small Telescope Research 206 – Plenary Talk: APOGEE: The New View Years of Computational Progress, Michael Communities of Practice: Pro-Am of the Milky Way -- Large Scale Galactic Norman (UC San Diego) Communities of Practice Structure, Jo Bovy (University of Toronto) 308 – Star Formation, Associations, and 107 – Plenary Talk: From Space Archeology 208 – Classification and Properties of Young Stellar Objects in the Milky Way to Serving
    [Show full text]
  • Stellar Family in Crowded, Violent Neighborhood Proves to Be Surprisingly Normal 4 June 2009
    Stellar family in crowded, violent neighborhood proves to be surprisingly normal 4 June 2009 Using the NACO adaptive optics instrument on ESO's Very Large Telescope, located in Chile, astronomers scrutinised the cluster in detail. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere, and so the new NACO images of the Arches Cluster are even crisper than those obtained with telescopes in space. Observing the Arches Cluster is very challenging because of the huge quantities of absorbing dust between Earth and the Galactic Centre, which visible light cannot penetrate. This is why NACO was used to observe the region in near-infrared light. The new study confirms the Arches Cluster to be the densest cluster of massive young stars known. This image of the Arches Cluster of young, massive It is about three light-years across with more than a stars was obtained with NACO on ESO's Very Large thousand stars packed into each cubic light-year — Telescope. The field of view is 28 arcseconds. North is an extreme density a million times greater than in up and east is to the left. This image is a composite of the Sun's neighbourhood. infrared images obtained through J, H and K filters. The stars appear as bright cores surrounded by faint diffuse halos. This is typical of images obtained by adaptive Astronomers studying clusters of stars have found optics instruments. The halo corresponds to light that that higher mass stars are rarer than their less was not fully corrected for the blurring effects of the massive brethren, and their relative numbers are Earth's atmosphere.
    [Show full text]
  • The Quintuplet Cluster III
    A&A 540, A14 (2012) Astronomy DOI: 10.1051/0004-6361/201117534 & c ESO 2012 Astrophysics The Quintuplet cluster III. Hertzsprung-Russell diagram and cluster age A. Liermann1, W.-R. Hamann2, and L. M. Oskinova2 1 Max-Planck Institut für Radioastronomie, 53121 Bonn, Germany e-mail: liermann@mpifr-bonn.mpg.de 2 Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany Received 21 June 2011 / Accepted 2 February 2012 ABSTRACT The Quintuplet, one of three massive stellar clusters in the Galactic center (GC), is located about 30 pc in projection from Sagittarius A∗. We aim at the construction of the Hertzsprung-Russell diagram (HRD) of the cluster to study its evolution and to constrain its star-formation history. For this purpose we use the most complete spectral catalog of the Quintuplet stars. Based on the K-band spectra we determine stellar temperatures and luminosities for all stars in the catalog under the assumption of a uniform reddening towards the cluster. We find two groups in the resulting HRD: early-type OB stars and late-type KM stars, well separated from each other. By comparison with Geneva stellar evolution models we derive initial masses exceeding 8 M for the OB stars. In the HRD these stars are located along an isochrone corresponding to an age of about 4 Myr. This confirms previous considerations, where a similar age estimate was based on the presence of evolved Wolf-Rayet stars in the cluster. We derive number ratios for the various spectral subtype groups (e.g. NWR/NO, NWC/NWN) and compare them with predictions of population synthesis models.
    [Show full text]
  • FIRST HARD X-RAY DETECTION of the NON-THERMAL EMISSION AROUND the ARCHES CLUSTER: MORPHOLOGY and SPECTRAL STUDIES with Nustar
    The Astrophysical Journal, 781:107 (11pp), 2014 February 1 doi:10.1088/0004-637X/781/2/107 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. FIRST HARD X-RAY DETECTION OF THE NON-THERMAL EMISSION AROUND THE ARCHES CLUSTER: MORPHOLOGY AND SPECTRAL STUDIES WITH NuSTAR Roman A. Krivonos1, John A. Tomsick1, Franz E. Bauer2,3, Frederick K. Baganoff4, Nicolas M. Barriere1, Arash Bodaghee1, Steven E. Boggs1, Finn E. Christensen5, William W. Craig1,6, Brian W. Grefenstette7, Charles J. Hailey8, Fiona A. Harrison7, JaeSub Hong9, Kristin K. Madsen7, Kaya Mori8, Melania Nynka8, Daniel Stern10, and William W. Zhang11 1 Space Science Lab, University of California, Berkeley, CA 94720, USA; krivonos@ssl.berkeley.edu 2 Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catlica de Chile, Casilla 306, Santiago 22, Chile 3 Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA 4 MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139, USA 5 DTU Space–National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby, Denmark 6 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 7 Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 8 Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA 9 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 10 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 11 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Received 2013 September 30; accepted 2013 December 7; published 2014 January 15 ABSTRACT The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity.
    [Show full text]
  • Discovery of X-Ray Flaring Activity in the Arches Cluster⋆
    A&A 525, L2 (2011) Astronomy DOI: 10.1051/0004-6361/201015758 & c ESO 2010 Astrophysics Letter to the Editor Discovery of X-ray flaring activity in the Arches cluster R. Capelli1,R.S.Warwick2, N. Cappelluti1, S. Gillessen1, P. Predehl1, D. Porquet3, and S. Czesla4 1 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany e-mail: capelli@mpe.mpg.de 2 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK 3 Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, 67000 Strasbourg, France 4 Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany Received 15 September 2010 / Accepted 16 November 2010 ABSTRACT Context. We present a study of the Arches cluster based on XMM-Newton observations performed over the past 8 years. Unexpectedly, we find that the X-ray emission associated with the cluster experienced a marked brightening in March/April 2007. Aims. We investigate the origin of both the X-ray continuum emission emanating from the star cluster and the flare. Methods. To study the time variability of the total X-ray flux, we stacked the PN and MOS data of observations performed within a time interval of a few days leading to the detection of the flaring episode. We then constructed two spectral datasets, one corresponding to the flare interval (March/April 2007) and another to the normal quiescent state of the source. Results. The X-ray light curve of the Arches cluster shows, with high significance (8.6σ), a 70% increase in the X-ray emission in the March/April 2007 timeframe followed by a decline over the following year to the pre-flare level; the short-term duration of the flare is constrained to be longer than four days.
    [Show full text]