Using Stable Isotope Geochemistry to Determine Changing

Total Page:16

File Type:pdf, Size:1020Kb

Using Stable Isotope Geochemistry to Determine Changing University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2017 Using Stable Isotope Geochemistry to Determine Changing Paleohydrology and Diagenetic Alteration in the Late Cretaceous Kaiparowits Formation, UT USA Daigo Yamamura University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geology Commons, Paleobiology Commons, and the Sedimentology Commons Recommended Citation Yamamura, Daigo, "Using Stable Isotope Geochemistry to Determine Changing Paleohydrology and Diagenetic Alteration in the Late Cretaceous Kaiparowits Formation, UT USA" (2017). Theses and Dissertations. 2499. http://scholarworks.uark.edu/etd/2499 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Using Stable Isotope Geochemistry to Determine Changing Paleohydrology and Diagenetic Alteration in the Late Cretaceous Kaiparowits Formation, UT USA A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geosciences by Daigo Yamamura Montana State University Bachelor of Science in Earth Science, 2008 Montana State University Bachelor of Science in Organismal Biology, 2008 Montana State University Master of Science in Earth Science, 2013 August 2017 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Dr. Celina A. Suarez Dissertation Director Dr. Phillip D. Hays Dr. Margaret Guccione Committee Member Committee Member Dr. Doy Zachry Dr. Ryan Tian Committee Member Committee Member Abstract The Western Interior Basin of the North America preserves one of the best sedimentary and paleontological records of the Cretaceous in the world. The Upper Cretaceous Kaiparowits Formation is a rapidly deposited fluvial sequence and preserves one of the most complete terrestrial fossil record of the North America. Such a unique deposit provides an opportunity to investigate the interaction between the physical environment and ecology. In an effort to decipher such interaction, stable isotope composition of cements in sedimentary rocks, concretions and vertebrate fossils were analyzed. Despite the difference in facies and sedimentary architecture, the isotope composition does not change significantly at ~110 m from the base of the formation. Among the well- preserved cement samples, stable isotope composition indicates a significant hydrologic change within the informal Middle unit; a 6.37‰ depletion in 13C and 3.30‰ enrichment in 18O occurs at ~300 m above the base of the formation. The isotope values indicate that the sandstone cements below 300 m were precipitated in a mixing zone between marine and terrestrial groundwater, whereas the cements in upper units were precipitated in a terrestrial groundwater. Despite the difference in physical appearance (i.e. color and shape), the isotopic compositions of cements in concretions are similar to well-cemented sandstone bodies in similar stratigraphic positions. Isotope compositions of the host rock are similar to that of mudrock and weathered sandstone, suggesting the origin of cementing fluids for the sandstone and concretions were the same indicating that: 1) the concretions were formed in shallow groundwater and not related to the groundwater migration, or 2) all cements in upper Kaiparowits Formation are precipitated or altered during later stage groundwater migration. 18 18 Average Oc from each taxon show the same trend as the Op stratigraphic change, 18 suggesting Oc is still useful as a paleoclimatic proxy. Compared to other Campanian 18 formations, fossil Op are depleted for their paleolatitude, suggesting the Kaiparowits Plateau had higher input from high-elevation runoff, consistent with other paleoclimatic studies. 18 Estimated Ow ranged between vadose influenced dry season values of -8.88‰ to high elevation runoff values of -13.76‰ suggesting dynamic hydrologic interactions. Copyright © Daigo Yamamura 2017 All Rights Reserved Acknowledgements The permit for fieldwork was issued by BLM; UT-15-033-02-G. Funding for the stable isotope analyses were provided by the University of Arkansas Fulbright College and Office of Sponsored Research as part of start up funds to C. Suarez. The On to the future grant from the Geological Society of America and Graduate School at the University of Arkansas helped attending conferences. I would like to thank Walter Manger, Ron and Doris Keisler, the Liners and the Department of Geoscience at the University of Arkansas for the departmental scholarships for supporting fieldwork. I would like to thank C. Levitt and R. Irmis from the UMNH for providing the GPS coordinates of fossil localities. I would like to thank A. Titus and S. Richardson of BLM, J. Sertich, I. Miller and M. Getty of DMNS and E. Roberts for sharing information about the Kaiparowits Formation. I would like to thank E. Pollock and L. Conaway for assistance in isotope analyses. I would like to thank Joshua Blackstock for hydrological insight. I would like to thank D. De Breaux of Utah Geological Survey and K. Morgan for conference accommodation. Table of Contents Chapter 1: Using stable isotope geochemistry to determine changing paleohydrological and diagenetic alteration in the Late Cretaceous Kaiparowits Formation, UT USA ................. 1 1.1 Introduction ............................................................................................................... 1 1.2 History of Investigation ............................................................................................ 1 1.3 Geologic Setting ....................................................................................................... 3 1.4 Physical Environment ............................................................................................... 4 1.5 Faunal Composition .................................................................................................. 5 1.6 Stable Isotope Geochemistry .................................................................................... 7 1.7 References ............................................................................................................... 11 1.8 Figures .................................................................................................................... 17 Chapter 2: Isotopic Evidence for Sudden Paleohydrologic Change in the Campanian (Upper Cretaceous) Kaiparowits Formation, South-Central Utah ................................................ 25 2.1 Abstract ................................................................................................................... 25 2.2 Introduction ............................................................................................................. 25 2.3 Materials and Methods ............................................................................................ 29 2.4 Results ..................................................................................................................... 35 2.5 Discussion ............................................................................................................... 38 2.6 Conclusion .............................................................................................................. 44 2.7 Acknowledgement .................................................................................................. 45 2.8 References ............................................................................................................... 45 2.9 Tables ...................................................................................................................... 49 2.10 Figures .................................................................................................................. 51 Chapter 3: Geochemical significance of the spheroidal concretions from the Kaiparowits Formation, south-central Utah .......................................................................................... 59 3.1 Abstract ................................................................................................................... 59 3.2 Introduction ............................................................................................................. 60 3.3 Materials and Methods ............................................................................................ 62 3.4 Results ..................................................................................................................... 63 3.5 Discussion ............................................................................................................... 67 3.6 Conclusion .............................................................................................................. 69 3.7 Acknowledgement .................................................................................................. 69 3.8 Reference ................................................................................................................ 70 3.9 Tables ...................................................................................................................... 72 3.10 Figures .................................................................................................................. 73 Chapter 4: Diagenesis of vertebrate skeletal remains of the
Recommended publications
  • A New Troodontid Theropod, Talos Sampsoni Gen. Et Sp. Nov., from the Upper Cretaceous Western Interior Basin of North America
    A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America Lindsay E. Zanno1,2*, David J. Varricchio3, Patrick M. O’Connor4,5, Alan L. Titus6, Michael J. Knell3 1 Field Museum of Natural History, Chicago, Illinois, United States of America, 2 Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America, 3 Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America, 4 Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio, United States of America, 5 Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America, 6 Grand Staircase-Escalante National Monument, Bureau of Land Management, Kanab, Utah, United States of America Abstract Background: Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species—Troodon formosus—presently known from substantial skeletal remains. Methodology/Principal Findings: Here we report a gracile new troodontid theropod—Talos sampsoni gen. et sp. nov.— from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar.
    [Show full text]
  • Scoping Report: Grand Staircase-Escalante National
    CONTENTS 1 Introduction .............................................................................................................................................. 1 2 Scoping Process ....................................................................................................................................... 3 2.1 Purpose of Scoping ........................................................................................................................... 3 2.2 Scoping Outreach .............................................................................................................................. 3 2.2.1 Publication of the Notice of Intent ....................................................................................... 3 2.2.2 Other Outreach Methods ....................................................................................................... 3 2.3 Opportunities for Public Comment ................................................................................................ 3 2.4 Public Scoping Meetings .................................................................................................................. 4 2.5 Cooperating Agency Involvement ................................................................................................... 4 2.6 National Historic Preservation Act and Tribal Consultation ....................................................... 5 3 Submission Processing and Comment Coding .................................................................................... 5
    [Show full text]
  • Terrestrial Vertebrate Fauna of the Kaiparowits Basin
    Great Basin Naturalist Volume 40 Number 4 Article 2 12-31-1980 Terrestrial vertebrate fauna of the Kaiparowits Basin N. Duane Atwood U.S. Forest Service, Provo, Utah Clyde L. Pritchett Brigham Young University Richard D. Porter U.S. Fish and Wildlife Service, Provo, Utah Benjamin W. Wood Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Atwood, N. Duane; Pritchett, Clyde L.; Porter, Richard D.; and Wood, Benjamin W. (1980) "Terrestrial vertebrate fauna of the Kaiparowits Basin," Great Basin Naturalist: Vol. 40 : No. 4 , Article 2. Available at: https://scholarsarchive.byu.edu/gbn/vol40/iss4/2 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. TERRESTRIAL VERTEBRATE FAUNA OF THE KAIPAROWITS BASIN N. Diiane Atwood', Clyde L. Pritchctt', Richard D. Porter', and Benjamin W. Wood' .\bstr^ct.- This report inehides data collected during an investigation by Brighani Young University personnel to 1976, as well as a literature from 1971 review. The fauna of the Kaiparowits Basin is represented by 7 species of salamander, toads, mnphihians (1 5 and 1 tree frog), 29 species of reptiles (1 turtle, 16 lizards, and 12 snakes), 183 species of birds (plus 2 hypothetical), and 74 species of mammals. Geographic distribution of the various species within the basin are discussed. Birds are categorized according to their population and seasonal status.
    [Show full text]
  • Geomorphology, Stratigraphy, and Paleohydrology of the Aeolis Dorsa Region, Mars, with Insights from Modern and Ancient Terrestrial Analogs
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 Geomorphology, Stratigraphy, and Paleohydrology of the Aeolis Dorsa region, Mars, with Insights from Modern and Ancient Terrestrial Analogs Robert Eric Jacobsen II University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geology Commons Recommended Citation Jacobsen, Robert Eric II, "Geomorphology, Stratigraphy, and Paleohydrology of the Aeolis Dorsa region, Mars, with Insights from Modern and Ancient Terrestrial Analogs. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4098 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert Eric Jacobsen II entitled "Geomorphology, Stratigraphy, and Paleohydrology of the Aeolis Dorsa region, Mars, with Insights from Modern and Ancient Terrestrial Analogs." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Devon M. Burr,
    [Show full text]
  • A Preliminary Assessment of Archaeological Resources Within the Grand Staircase-Escalante National Monument, Utah
    A PRELIMINARY ASSESSMENT OF ARCHAEOLOGICAL RESOURCES WITHIN THE GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, UTAH by David B. Madsen Common rock art elements of the Fremont and Anasazi on the Colorado Plateau and the Grand Staircase-Escalante National Monument. ,I!! CIRCULAR 95 . 1997 I~\' UTAH GEOLOGICAL SURVEY ." if;~~ 6EPARTMENT OF NATURAL RESOURCES ISBN 1-55791-605-5 STATE OF UTAH Michael O. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Ted Stewart, Executive Director UTAH GEOLOGICAL SURVEY M. Lee Allison~ Director UGS Board Member Representing Russell C. Babcock, Jr. (chairman) .................................................................................................. Mineral Industry D. Cary Smith ................................................................................................................................... Mineral Industry Richard R. Kennedy ....................................................................................................................... Civil Engineering E.H. Deedee O'Brien ......................................................................................................................... Public-at-Large C. William Berge .............................................................................................................................. Mineral Industry Jerry Golden ..................................................................................................................................... Mineral Industry Milton E. Wadsworth ...............................................................................................
    [Show full text]
  • 38-Simpson Et Al (Wahweap Fm).P65
    Sullivan et al., eds., 2011, Fossil Record 3. New Mexico Museum of Natural History and Science, Bulletin 53. 380 UPPER CRETACEOUS DINOSAUR TRACKS FROM THE UPPER AND CAPPING SANDSTONE MEMBERS OF THE WAHWEAP FORMATION, GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, UTAH, U.S.A. EDWARD L. SIMPSON1, H. FITZGERALD MALENDA1, MATTATHIAS NEEDLE1, HANNAH L. HILBERT-WOLF2, ALEX STEULLET3, KEN BOLING3, MICHAEL C. WIZEVICH3 AND SARAH E. TINDALL1 1 Department of Physical Sciences, Kutztown University, Kutztown, PA 19530; 2 Department of Geology, Carleton College, Northfield, MN, 55057; 3 Central Connecticut State University, Department of Physics and Earth Sciences, New Britain, Connecticut 06050, USA Abstract—Tridactyl tracks were identified in the fluvial strata of the Upper Cretaceous Wahweap Formation in Grand Staircase-Escalante National Monument, southern Utah, U.S.A. An isolated track and a trackway are located within the upper member at the Cockscomb, and an isolated track is in the capping sandstone member at Wesses Canyon. The upper member tracks are tridactyl pes imprints consisting of a longer, blunt digit III and shorter, blunt digits II-IV. This trace corresponds well to an ornithropod dinosaur as the trackmaker. The capping sandstone member track is a tridactyl pes with an elongate digit III and shorter digits II-IV. Claw impressions are present on the terminus of digits II and III. This trace is consistent with the pes impression of a one meter tall theropod. The tracks further highlight the diversity of dinosaurs in the capping sandstone of the Wahweap Formation. INTRODUCTION During the Late Cretaceous, North America, in particular the west- ern United States, was the site of a radiation of new dinosaurian genera.
    [Show full text]
  • A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
    www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail.
    [Show full text]
  • Print Optimized PDF File
    U.S. DEPARTMENT OF THE INTERIOR MISCELLANEOUS FIELD STUDIES MAP MF–2405 U.S. GEOLOGICAL SURVEY Version 1.1 Qesy o 50 o 10 CORRELATION OF MAP AND SUBSURFACE UNITS Basalt cinder and intrusive centers, San Felipe volcanic (1977), lower member of lower unnamed formation of Table 1. Correlation chart for alluvial deposits of the Jemez River 13 Qalo Tbc ULT Qaly field (upper Pliocene)—Vent-related basaltic cinder, Santa Fe Group of Spiegel (1961), upper and middle (upstream is to left), indicated by map unit symbols. Qesy A F spatter, scoria, and dikes. Forms cinder cones, small parts of middle Santa Fe Group units of Personius and [Units in bold type shown on this map. Leaders (--) indicate deposit not mapped in quadrangle] Qalo o Tc Tbc ARTIFICIAL ARROYO EOLIAN COLLUVIUM JEMEZ BEDROCK Tzcc Tcc 10 Qcb shield volcanoes, depressions, and ring dikes and plugs at others (2000), and Navajo Draw Member of Arroyo c Qesy Tb FILL ALLUVIUM DEPOSITS AND LANDSLIDES RIVER A o o eruptive centers; after Kelley and Kudo (1978). Cones Ojito Formation of Connell and others (1999) in Ponderosa Jemez Pueblo Bernalillo NW Santa Ana Qeso o N 9 Qcb ALLUVIUM form an elongate array that trends north-south, in Bernalillo NW quadrangle (Koning and Personius, 2002). quadrangle1 and San quadrangle3 Pueblo A 10 12 o Tc 12o 11 general alignment with numerous normal faults that Mapped as Chamisa Mesa Member of Santa Fe Ysidro quadrangle 2 offset the surface of Santa Ana Mesa (Kelley and Kudo, quadrangles Qaly o Formation by Soister (1952) and as Zia Member of o o12 Qalh Qalh A 10 Qf 15 historic 1978).
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • Giant Raptor Dinosaur Discovered in Utah Monument 3 April 2006
    Giant Raptor Dinosaur Discovered in Utah Monument 3 April 2006 and published in the latest issue of the Journal of Vertebrate Paleontology, was authored by Lindsay Zanno, a graduate student in the Department of Geology and Geophysics, and Scott Sampson, chief curator at the Utah Museum of Natural History (UMNH), and associate professor in the Department of Geology and Geophysics. The new dinosaur, formally dubbed Hagryphus giganteus, which means "giant four-footed, bird-like god of the western desert” in reference to the animal's outward resemblance to a large land bird, its giant stature, and its discovery in the Utah desert. Hagryphus is a member of the oviraptorosaurs, a group of bird-like feathered dinosaurs with toothless beaks, powerful arms and formidable claws. These enigmatic animals are thought by some paleontologists to have been omnivorous, feeding on a mixture of meat and plants. Although only the hands and feet of The fleshed-out rendering by artist Michael Skrepnick Hagryphus are known, the scientists were able to best represents what the new dinosaur, called Hagryphus, looked like. Photo Credit: copyright Michael use the animal"s close relatives to estimate the size W. Skrepnick 1999 of the skeleton. The researchers say they do not know why this dinosaur was so much larger than its northern cousins but speculate that it may have been related to different environmental conditions Scientists from the University of Utah and the Utah in the south. Museum of Natural History have discovered the remains of a new bird-like, meat-eating dinosaur in Ruthless Thief or Protective Parent? Grand Staircase-Escalante National Monument (GSENM), southern Utah.
    [Show full text]
  • Diversity of Late Cretaceous Dinosaurs from Mexico. Boletín Geológico Y Minero, 126 (1): 63-108 ISSN: 0366-0176
    Articulo 4_ART. El material tipo de la 25/03/15 08:29 Página 63 Ramírez-Velasco, A. A. and Hernández-Rivera, R., 2015. Diversity of late cretaceous dinosaurs from Mexico. Boletín Geológico y Minero, 126 (1): 63-108 ISSN: 0366-0176 Diversity of late cretaceous dinosaurs from Mexico A. A. Ramírez-Velasco(1) and R. Hernández-Rivera(2) (1) Posgrado Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito de Investigación Científica, Ciudad Universitaria. Delegación Coyoacán, México Distrito Federal, 04510. (2) Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria. Delegación Coyoacán, México Distrito Federal, 04510. [email protected] ABSTRACT For many years the diversity of dinosaurs of Mexico during the Late Cretaceous has been poorly understood. This is due to the limited taxonomical determinations and the abundant undescribed material. This paper presents a new review of the up-to-date osteological record of Late Cretaceous dinosaurs from Mexico, based on published papers, unpublished data and direct observation of the material housed in Mexican paleonto- logical collections and in the field. Some diagnostic dinosaur bones were taxonomically reassigned and oth- ers reported in the literature were located in collections. We document new localities with dinosaur remains in Fronteras Sonora, Manuel Benavides and Jiménez Chihuahua, General Cepeda and Saltillo Coahuila. Additionally we report new material relating to tyrannosaurids, ornithomimids, ankylosaurs, ceratopsids and hadrosaurids which extends their geographic and temporal distribution in Mexico. This investigation has revealed a dinosaur faunal assemblage consistent with others studies of North American Late Cretaceous fau- nas, abundant large bodied dinosaurs and poorly represented small dinosaurs.
    [Show full text]
  • Guidebook Contains Preliminary Findings of a Number of Concurrent Projects Being Worked on by the Trip Leaders
    TH FRIENDS OF THE PLEISTOCENE, ROCKY MOUNTAIN-CELL, 45 FIELD CONFERENCE PLIO-PLEISTOCENE STRATIGRAPHY AND GEOMORPHOLOGY OF THE CENTRAL PART OF THE ALBUQUERQUE BASIN OCTOBER 12-14, 2001 SEAN D. CONNELL New Mexico Bureau of Geology and Mineral Resources-Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, New Mexico 87106 DAVID W. LOVE New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 JOHN D. SORRELL Tribal Hydrologist, Pueblo of Isleta, P.O. Box 1270, Isleta, NM 87022 J. BRUCE J. HARRISON Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 Open-File Report 454C and D Initial Release: October 11, 2001 New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 NMBGMR OFR454 C & D INTRODUCTION This field-guide accompanies the 45th annual Rocky Mountain Cell of the Friends of the Pleistocene (FOP), held at Isleta Lakes, New Mexico. The Friends of the Pleistocene is an informal gathering of Quaternary geologists, geomorphologists, and pedologists who meet annually in the field. The field guide has been separated into two parts. Part C (open-file report 454C) contains the three-days of road logs and stop descriptions. Part D (open-file report 454D) contains a collection of mini-papers relevant to field-trip stops. This field guide is a companion to open-file report 454A and 454B, which accompanied a field trip for the annual meeting of the Rocky Mountain/South Central Section of the Geological Society of America, held in Albuquerque in late April.
    [Show full text]