Ceramic Materials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glaze Materials Linda Bloomfield Begins a New Series on the Science
Making glazes Linda Bloomfield begins a new series on the science behind glazes lazes can be daunting, but making glazes is actually quite similar to cooking. G Potters usually follow glaze recipes they find in books or online. The ingredients come as white powders: ground flint, whiting, feldspar and clay. The powdered materials are weighed out carefully and added to a container half full of water, then left to slake, until the water has completely wetted the powder. The glaze can then be sieved through an 80 mesh potters’ sieve (meaning it has 80 holes per linear inch). Once the water has been adjusted until the glaze consistency is somewhere between milk and single cream, either by adding water or leaving overnight to settle and removing water, then it is ready to use. Like cooking, it is possible to make a reasonable glaze without much knowledge. It is important to measure the glaze ingredients very carefully with accurate scales and to make a note of the recipe and then number the This is pure silicon dioxide (also known the melt. Clay contains aluminium corresponding test tile. However, to as silica) and is a glass former. The oxide (alumina) and silica. China clay, really gain an understanding of the melting point of silica is too high to ball clay or bentonite can be used as science behind glazes means you can melt in a kiln, so fluxes are added to glaze materials. Clay also helps to have much more control over what reduce the melting temperature. The suspend the heavier ingredients in comes out of the kiln. -
United States Patent (19) 11 Patent Number: 5,496,392 Sims Et Al
USOO5496392A United States Patent (19) 11 Patent Number: 5,496,392 Sims et al. 45) Date of Patent: * Mar. 5, 1996 54 METHOD OF RECYCLING INDUSTRIAL 56) References Cited WASTE U.S. PATENT DOCUMENTS 75) Inventors: Bobby H. Sims, Lonsdale; Carl T. 5,198,190 3/1993 Philipp et al. .......................... 420/.582 Philipp, Hot Springs, both of Ark. 5,364,447 11/1994 Philipp et al. ............................ 75.1500 73 Assignee: Enviroscience, Hot Springs, Ark. Primary Examiner-Melvyn Andrews *) Notice: The portion of the term of this patent Attorney, Agent, or Firm-Peter A. Borsari subsequent to Dec. 21, 2010, has been 57 ABSTRACT disclaimed. The present invention relates to a process for the production 21 Appl. No.: 219,527 of metal alloys, metal oxides and slag-based products, such as mineral wool, from industrial waste materials. More 22 Filed: Mar 29, 1994 specifically, the present invention relates to a process for recycling industrial waste materials into valuable commer Related U.S. Application Data cial products, including, pure metals, metal alloys, metal 63 Continuation-in-part of Ser. No. 38,464, Mar. 29, 1993, Pat. oxides, and a molten slag comprising non-reducible metal No. 5,364,447, which is a continuation-in-part of Ser. No. oxides which thereafter can be converted to vitreous fiber 632,000, Dec. 21, 1990, Pat. No. 5,198,190. and shot. Industrial waste materials suitable for use in the present invention include metal-containing waste products, (51) Int. Cl. .................................. C22B 7/00 particularly inorganic hazardous waste materials. The 52 U.S. Cl. ................................. 75/414; 7.5/586; 75/958; present process accomplishes total recycling in such a 75/959; 75/961; 588/234; 423/DIG. -
Notes on Glazes
LA MERIDIANA INTERNATIONAL SCHOOL OF CERAMIC ART IN TUSCANY Notes on glazes These notes on glazes represent a summary of some topics treated over the years at La Meridiana. They are incomplete, but constitute a sufficient base for all those who wish to start preparing their own glazes, starting from raw materials. THE CHEMICAL NATURE OF GLAZES AND THE USE OF SYMBOLS Glazes (and clays) are made up of oxides. Oxides are combinations of pure materials, elements, with the element oxygen. Oxygen combines with other elements not in a casual way, but in a precise ratio that depends on the context. Ceramic literature follows the practice of scientific literature and it uses the chemical symbols of the elements, for example K for potassium; Pb for lead; O for oxygen. The atom is the smallest particle of an element; the molecule is the smallest particle of a compound. One molecule of K2O, potassium oxide, contains 2 atoms of K, potassium, combined with 1 atom of O, oxygen. SEGER AND THE MOLECULAR APPROACH TO THE GLAZES (facultative reading) A German scientist and ceramic chemist, Herman Seger, was a pioneer in the scientific study of glazes. He was the first to introduce the idea of using the ideal formula in the materials for glazes in order to be able to represent and compare molecular formulae of different glazes. The reason the ideal formula was introduced is that many materials that we find in nature have a relative constant composition, and that once determined the presence of the major components, the minor impurities (even though always present) can be ignored. -
Coccolithophore Populations and Their Contribution to Carbonate Export During an 2 Annual Cycle in the Australian Sector of the Antarctic Zone
1 Coccolithophore populations and their contribution to carbonate export during an 2 annual cycle in the Australian sector of the Antarctic Zone 3 Andrés S. Rigual Hernández1,*, José A. Flores1, Francisco J. Sierro1, Miguel A. Fuertes1, 4 Lluïsa Cros 2 and Thomas W. Trull3,4 5 1 Área de Paleontología, Departamento de Geología, Universidad de Salamanca, 37008 6 Salamanca, Spain 7 2 Institut de Ciències del Mar, CSIC, Passeig Marítim 37-49, 08003 Barcelona, Spain. 8 3 Antarctic Climate and Ecosystems Cooperative Research Centre, University of 9 Tasmania, Hobart, Tasmania 7001, Australia 10 4 CSIRO Oceans and Atmosphere Flagship, Hobart, Tasmania 7001, Australia 11 *corresponding author 12 Email: [email protected] 13 Abstract 14 The Southern Ocean is experiencing rapid and relentless change in its physical and 15 biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current 16 exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing 17 basin-wide ocean acidification. Observational data suggest that these changes are 18 influencing the distribution and composition of pelagic plankton communities. Long-term 19 and annual field observations on key environmental variables and organisms are a critical 20 basis for predicting changes in Southern Ocean ecosystems. These observations are 21 particularly needed, since high-latitude systems have been projected to experience the 22 most severe impacts of ocean acidification and invasions of allochthonous species. 23 Coccolithophores are the most prolific calcium carbonate producing phytoplankton 24 group, playing an important role in Southern Ocean biogeochemical cycles. Satellite 25 imagery has revealed elevated particulate inorganic carbon concentrations near the major 26 circumpolar fronts of the Southern Ocean, that can be attributed to the coccolithophore 27 Emiliania huxleyi. -
Proposal of Ceramic Course Art Department University of El-Fatah, Libya
Proposal of ceramic course art department University of El-Fatah, Libya Item Type text; Thesis-Reproduction (electronic) Authors Shebani, Meftah Ali Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 14:22:48 Link to Item http://hdl.handle.net/10150/557860 PROPOSAL OF CERAMIC COURSE ART DEPARTMENT UNIVERSITY OF EL-FATAH,- LIBYA by Meftab All Shebani A Thesis Submitted to the Faculty of the DEPARTMENT OF ART In Partial Fulfillment of the Requirements For the Degree of MASTER OF ARTS In the Graduate College THE UNIVERSITY OF ARIZONA 19 8 1 STATEMENT BY AUTHOR This thesis, has been submitted in partial fulfillment of re quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or re production of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permis sion must be obtained from the author. -