Downsized, Boosted Gasoline Engines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Greenhouse Gases and Light-Duty Vehicles (PDF)
Greenhouse Gases and Light-duty Vehicles Clean Air Act Advisory Committee Meeting th Sept 18 , 2008 David Haugen National Vehicle and Fuel Emissions Laboratory Office of Transportation and Air Quality 1 Many technology options available to reduce Light Duty vehicle GHGs • Tendency is to focus on the “big hitters” – Hybrids (and PHEVs) like the Prius, “2-Mode”, and the Volt – Advanced Clean Diesels • However, there are many “small hitters” that remain available to the fleet to reduce vehicle GHGs at very affordable costs – Better engines (for efficiency, not just improved performance) – Advanced transmissions – Improved vehicle and accessories Care must be taken when combining these technologies, so appropriate benefits are predicted 2 Vehicle Technologies available to reduce GHGs from Light Duty • Engines – Reduced Engine Friction & Improved Lubricants – Variable valve timing and lift – Cylinder deactivation – Gasoline direct injection – Turbocharging with engine downsizing – Clean Diesels • Transmissions – 6-speed automatic – Automated manual • Hybrids (“mild”, “medium” and “full” – electric, plug-ins and series hydraulic) • Vehicle and Accessories – Reduced aerodynamic vehicle drag, through design – Improved low rolling resistance tires – Weight reduction – Halting or rolling back the “performance race” – Improved alternators, electrical & A/C systems and other accessories – Electric power steering 3 LD Technologies Entering Fleet 1998 2008 Multi-valve engine 40% 77% Variable valve timing negligible 58% Cylinder deactivation 0% 7% Turbocharging 1.4% 2.5% Manual transmission 13% 7% Continuously variable trans 0% 8% Hybrid 0 2.5% Diesel 0.1% 0.1% 4 Engine Technologies • Variable Valve Timing & Lift (VVT & VVL) – Also known as cam phasing – Precise control of valve opening & closing and how much they open and close. -
Development of Two-Stage Electric Turbocharging System for Automobiles
Mitsubishi Heavy Industries Technical Review Vol. 52 No. 1 (March 2015) 71 Development of Two-stage Electric Turbocharging system for Automobiles BYEONGIL AN*1 NAOMICHI SHIBATA*2 HIROSHI SUZUKI*3 MOTOKI EBISU*1 Engine downsizing using supercharging is progressing to cope with tightening global environmental regulations. In addition, further improvement in fuel consumption is expected with such applications as ultra-high EGR, Miller cycle, and lean combustion. Mitsubishi Heavy Industries, Ltd. (MHI) has developed a two-stage electric turbocharging system to balance better drivability and improved fuel consumption by increasing the turbocharging pressure and improving the transient response. |1. Introduction Engine downsizing/downspeeding through supercharging is progressing to cope with annually enhanced improvement in fuel consumption and exhaust gas. Downsizing through direct injection and supercharging has been developed mainly in European countries where the CO2 regulations are the most stringent, and it has expedited the increase of the turbocharger installation rate in other areas. Diesel vehicles are supposed to satisfy the CO2 and exhaust gas regulation standards in 2021. However, gasoline vehicles are still not able to meet the standards even in the case of low-fuel consumption vehicles with supercharged downsizing, and further measures are required. The adoption of WLTC (Worldwide harmonized Light duty driving Test Cycle) is planned globally in and after 2017, and new regulations taking actual driving conditions into consideration are being discussed. Turbochargers are required to provide a further boost pressure and better response, as well as robust and easy to operate characteristics, for this purpose. Existing turbochargers have a time-lag and EGR response delay, and proper control is difficult. -
Engine Downsizing - an Analysis Perspective
Visit the SIMULIA Resource Center for more customer examples. Engine Downsizing - An Analysis Perspective Mark Stephenson MAHLE Powertrain MAHLE Powertrain (MPT) is constantly exploring new ways to improve the efficiency and performance of engines to meet the demanding objectives Automotive OEM’s are faced with today, i.e. to reduce fuel consumption and emissions. MPT’s key expertise lies in the development of high performance engines with low emissions and excellent fuel economy through the optimisation of gas exchange, combustion, friction and durability. This strategy is being demonstrated by the development of MAHLE’s own state of the art three- cylinder 1.2-litre downsizing technology demonstrator engine which has been designed, built and tested at Northampton in the UK. One of the objectives of the project was to design a compact engine with high specific power output by using a turbo charger combined with state of the art direct injection technology and variable valve timing. This ensures that vehicle performance targets can be met using the smallest capacity engine thus minimising throttling losses which otherwise leads to high fuel consumption. With such a high specific power output predictive analysis has played a key role in guiding, validating and optimising the design. This paper highlights the use of Abaqus to perform structural analysis of the main engine: connecting rod, crankshaft and cylinder block bottom end as well as thermo-mechanical analyses of the head and block assembly and exhaust manifolds. 1. Introduction Since the agreement to reduce average new car CO2 emissions to 140g/km by 2008, fuel consumption improvement has been one of the main drivers for engine development within the automotive industry. -
Terms and Definitions of Fuel Injection Management Systems
THROTTLE BODY TERMS AND DEFINITIONS OF INJECTION (TBI) — In TBI FUEL INJECTION systems the throttle body assembly has two major MANAGEMENT SYSTEMS functions: regulate the air- flow, and house the fuel Throttle Body Assembly (TBA) — The throttle body injectors and the fuel pres- assembly (also called air valve), controls the airflow to the sure regulator. The choices engine through one, two or four butterfly valves and of throttle bodies range provides valve position feedback via the throttle position from single barrel/single sensor. Rotating the throttle lever to open or close the injector unit generally sized for less than 150 HP to four bar- passage into the intake manifold controls the airflow to the rel/four injector unit capable of supporting fuel and air flow for engine. The accelerator pedal controls the throttle lever posi- 600 HP. The injectors are located in an injector pod above the tion. Other functions of the throttle body are idle bypass air throttle valves. The quantity of fuel the injector spray into the control via the idle air control valve, coolant heat for avoiding intake manifold is continuously controlled by the ECU. Most of icing conditions, vacuum signals for the the TBI systems use bottom fed fuel injectors. ancillaries and the sensors. MULTI-POINT FUEL INJECTION (MPFI) — In the multi point fuel FUEL INJECTOR — There are basically three approaches in injection system an injector is located in the intake manifold delivering the fuel to the engine: passage. The fuel is supplied to the injectors via a fuel rail in • Above the throttle plate as in throttle body injection the case of top fed fuel injectors and via a fuel galley in the • In the intake port toward the intake valves as in multi-port injec- intake manifold in the case of bottom fed fuel injectors. -
And Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2
DOT HS 812 194 February 2016 Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Reinhart, T. E. (2016, February). Commercial medium- and heavy-duty truck fuel efficiency technology study – Report #2. (Report No. DOT HS 812 194). Washington, DC: National Highway Traffic Safety Administration. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 194 4. Title and Subtitle 5. Report Date Commercial Medium- and Heavy-Duty Truck Fuel Efficiency February 2016 Technology Study – Report #2 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas E. Reinhart, Institute Engineer SwRI Project No. 03.17869 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Southwest Research Institute 6220 Culebra Rd. 11. Contract or Grant No. San Antonio, TX 78238 GS-23F-0006M/DTNH22- 12-F-00428 12. Sponsoring Agency Name and Address 13. -
Nos Roots-Type Nitrous Systems Supercharger Series
NOS ROOTS-TYPE NITROUS SYSTEMS SUPERCHARGER SERIES P/N 13350NOS & 02520NOS INSTRUCTION P/N A5118-SNOS APPLICATIONS: These kits are designed to work on highly modified domestic V-8 engines using 671 and 871 roots-type superchargers, with mechanical fuel injection or carburetion. PERFORMANCE POTENTIAL: These kits come with jetting that allows power gain to be easily adjusted to 225-250 HP. Typical power gains for the roots-type supercharger systems are as follows: Nitrous/Fuel Power Gain (BHP) Jetting 16/20* 80 20/24* 120 26/29 175 32/36* 200 36/38* 200+ *Not supplied with kits. At the 200+ horsepower level, the Cheater nitrous solenoid is flowing at maximum capability. Increasing jetting sizes beyond this point will probably not result in any performance increase. If performance greater than 200+ horsepower is desired, it is recommended that the roots-type supercharger plate system be upgraded with a Pro Shot nitrous solenoid. This will increase maximum power capability to 325+. TUNING SUGGESTIONS: The tuning combinations listed on the next page are for engines using a moderate amount of supercharger boost (5-10 psi). If attempting to use one of these systems with elevated boost, extreme care should be taken in arriving at proper ignition timing setting. Ignition timing will vary with engine combination, but you can expect at least 4°-8° less than the value recommended in these tables. When using kit P/N 02520NOS at higher power levels, gasoline of at least 116 octane is required. Suggested Tuning Combinations for NOS Roots-Type Super -
Comparison of Characteristics of Spark Plug Engines Fsi, Tsi/Tfsi Type of Volkswagen Company
SCIENTIFIC PROCEEDINGS XXIII INTERNATIONAL SCIENTIFIC-TECHNICAL CONFERENCE "trans & MOTAUTO ’15" ISSN 1310-3946 COMPARISON OF CHARACTERISTICS OF SPARK PLUG ENGINES FSI, TSI/TFSI TYPE OF VOLKSWAGEN COMPANY PhD. Eng. Krzysztof Miksiewicz Faculty of Mechanical Engineering – Wroclaw University of Technology, Poland [email protected] Abstract: The use of direct injection in spark ignition engines, significantly facilitated the use of chargers in these engines. This resulted lately in the significant popularization of direct injection engines, initially freely sucking and in final result turbocharged. The greatest popularity on the market gained engines of Volkswagen company, named FSI and TFSI / TSI. Application of Common Rail systems allowed not only to improve the characteristics of the engine by increasing the accuracy in dispensing fuel into individual cylinders. The most important gain is the possibility of second injection of the fuel to the cylinder after the intake valve is closed. On the one hand it allows better control of the load in the cylinder, at first with the piston crown, and now with shaping the injection by the injector. KEYWORDS: TRANSPORT, COMBUSTION ENGINES, FUEL INJECTION, STRATIFIED INJECTION, CHARGE ENGINES 1. Introduction Light-red color indicates the characteristics of power of the 1.6 FSI Petrol engines recently lost competitiveness against turbocharged engine, and the purple its torque. Dark-red color indicates the diesel engines. Previously used indirect injection technology, was engine power of 1.4 TSI and blue, its torque. It is clear that the a restriction in supercharging those engines, so that the most curve under the turbo-charged engine is steeper and more quickly effective way of raising the torque of the engine was increasing its reaches its maximum. -
Summary of Current Status of Alternative Fuels and Vehicles
1. INTRODUCTION Motor vehicles are the underlying source for two major global issues the United States (U.S.) faces: 1) the dependence on foreign oil from unstable political regions, and 2) the increase in carbon dioxide (CO2) emissions, a leading contributor of greenhouse gases (GHGs) that affect Earth’s climate. There are 200 million drivers traveling 10 trillion vehicle miles each year in the U.S. In the Denver region alone, vehicles are driven more than 70 million miles each day. Dependence on foreign oil: A matter of U.S. Security The U.S. uses about 14.5 million barrels of oil per day for transportation (which equates to 609 million gallons) and imports more than 60% of its petroleum, two-thirds of which is used to fuel vehicles in the form of gasoline and diesel. The demand for petroleum imports is increasing and with much of the worldwide petroleum resources located in politically volatile countries, the U.S. is vulnerable to supply disruptions. Climate Change While the U.S. contains only 5% of the world’s population, it is responsible for 25% of global GHG emissions. Transportation accounts for 28% of GHG emissions in the U.S., second to electric power Figure 1 (Figure 1). It is the 2006 U.S. Greenhouse Gas Emissions fastest growing by sector (Million Metric Tons CO2 Equivalent) source of GHGs, Residential accounting for 47% of Commericial 5% the net increase in 6% total U.S. GHG Agriculture emissions since 1990. 8% Trends in Colorado are similar, with Electric Power electric power being 34% the lead source of Industry 19% CO2 emissions at 42%, followed by transportation at 31% Transportation (Figure 2). -
High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology
AMR 2015 NETL/DOE Award No. DE-EE0005981 High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology June 12, 2015 Charles Mendler, ENVERA PD/PI David Yee, EATON Program Manager, PI, Supercharging Scott Brownell, EATON PI, Valvetrain This presentation does not contain any proprietary, confidential, or otherwise restricted information. ENVERA LLC Project ID Los Angeles, California ACE092 Tel. 415 381-0560 File 020408 2 Overview Timeline Barriers & Targets Vehicle-Technology Office Multi-Year Program Plan Start date1 April 11, 2013 End date2 December 31, 2017 Relevant Barriers from VT-Office Program Plan: Percent complete • Lack of effective engine controls to improve MPG Time 37% • Consumer appeal (MPG + Performance) Budget 33% Relevant Targets from VT-Office Program Plan: • Part-load brake thermal efficiency of 31% • Over 25% fuel economy improvement – SI Engines • (Future R&D: Enhanced alternative fuel capability) Budget Partners Total funding $ 2,784,127 Eaton Corporation Government $ 2,212,469 Contributing relevant advanced technology Contractor share $ 571,658 R&D as a cost-share partner Expenditure of Government funds Project Lead Year ending 12/31/14 $733,571 ENVERA LLC 1. Kick-off meeting 2. Includes no-cost time extension 3 Relevance Research and Development Focus Areas: Variable Compression Ratio (VCR) Approx. 8.5:1 to 18:1 Variable Valve Actuation (VVA) Atkinson cycle and Supercharging settings Advanced Supercharging High “launch” torque & low “stand-by” losses Systems integration Objectives 40% better mileage than V8 powered van or pickup truck without compromising performance. GMC Sierra 1500 baseline. Relevance to the VT-Office Program Plan: Advanced engine controls are being developed including VCR, VVA and boosting to attain high part-load brake thermal efficiency, and exceed VT-Office Program Plan mileage targets, while concurrently providing power and torque values needed for consumer appeal. -
FUEL INJECTION SYSTEM for CI ENGINES the Function of a Fuel
FUEL INJECTION SYSTEM FOR CI ENGINES The function of a fuel injection system is to meter the appropriate quantity of fuel for the given engine speed and load to each cylinder, each cycle, and inject that fuel at the appropriate time in the cycle at the desired rate with the spray configuration required for the particular combustion chamber employed. It is important that injection begin and end cleanly, and avoid any secondary injections. To accomplish this function, fuel is usually drawn from the fuel tank by a supply pump, and forced through a filter to the injection pump. The injection pump sends fuel under pressure to the nozzle pipes which carry fuel to the injector nozzles located in each cylinder head. Excess fuel goes back to the fuel tank. CI engines are operated unthrottled, with engine speed and power controlled by the amount of fuel injected during each cycle. This allows for high volumetric efficiency at all speeds, with the intake system designed for very little flow restriction of the incoming air. FUNCTIONAL REQUIREMENTS OF AN INJECTION SYSTEM For a proper running and good performance of the engine, the following requirements must be met by the injection system: • Accurate metering of the fuel injected per cycle. Metering errors may cause drastic variation from the desired output. The quantity of the fuel metered should vary to meet changing speed and load requirements of the engine. • Correct timing of the injection of the fuel in the cycle so that maximum power is obtained. • Proper control of rate of injection so that the desired heat-release pattern is achieved during combustion. -
AP-42, Vol. I, 3.3: Gasoline and Diesel Industrial Engines
3.3 Gasoline And Diesel Industrial Engines 3.3.1 General The engine category addressed by this section covers a wide variety of industrial applications of both gasoline and diesel internal combustion (IC) engines such as aerial lifts, fork lifts, mobile refrigeration units, generators, pumps, industrial sweepers/scrubbers, material handling equipment (such as conveyors), and portable well-drilling equipment. The three primary fuels for reciprocating IC engines are gasoline, diesel fuel oil (No.2), and natural gas. Gasoline is used primarily for mobile and portable engines. Diesel fuel oil is the most versatile fuel and is used in IC engines of all sizes. The rated power of these engines covers a rather substantial range, up to 250 horsepower (hp) for gasoline engines and up to 600 hp for diesel engines. (Diesel engines greater than 600 hp are covered in Section 3.4, "Large Stationary Diesel And All Stationary Dual-fuel Engines".) Understandably, substantial differences in engine duty cycles exist. It was necessary, therefore, to make reasonable assumptions concerning usage in order to formulate some of the emission factors. 3.3.2 Process Description All reciprocating IC engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated. There are 2 methods used for stationary reciprocating IC engines: compression ignition (CI) and spark ignition (SI). -
May 4, 1943. H. R. RICARDO 2,318,333 INTERNAL COMBUSTION ENGINE OPERATING on the - TWO-STROKE CYCLE with LIQUID FUEL Injection Filed Jan
May 4, 1943. H. R. RICARDO 2,318,333 INTERNAL COMBUSTION ENGINE OPERATING ON THE - TWO-STROKE CYCLE WITH LIQUID FUEL INJEcTIoN Filed Jan. 17, 1940 ‘ 4 Sheets-Sheet 1 May 4, 1943. H. R. RICARDO ~ 2,318,333 INTERNAL COMBUSTION ENGINE OPERATING ON THE TWO-STROKE CYCLE WITH LIQUID FUEL INJECTION Filed Jan. 17, 1940 \ 4 Sheets-Sheet 2 mu,’ 7 A ttIn'ney .( May 4, 1943. ' H, R, RICAYRDO I 2,318,333 INTERNAL COMBUSTION ENGINE OPERATING ON THE TWO-STROKE CYCLE WITH LIQUID FUEL INJECTION , Filed Jan. 17, 1940 4 Sheets-Sheet 3 . D3 _' ' H, ' » Fig. 231 E > ‘B2 \\ \\ M, Invuntor A Home): May 4, 1943. ' H. R. RICARD/O 2,318,333 . INTERNAL COMBUSTION ENGINE OPERATING ON THE TWO-STROKE CYCLE WITH LIQUID FUEL INJECTION Filed Jan. 17, 1940 4 Sheets-Sheét 4 ‘ w 1? m‘ Invent!» ' . b v A Home) ‘Patented. May 4, 1943 I 2,318,333 , UNITED; STATES PATENT OFFICE ’ INTERNAL COMBUSTION ENGINE organ- ING ON The 'rwo-s'rnoxn CYCLE wrrII uoom FUEL INJECTION - _ Harry Ralph Ricardo,_ London, England Application January 17, 1940, Serial No. 314,323 Q / In Great Britain‘ January 17, 1939 c _ 4 Claims. ((1123-32) This invention relates internal combustion s only through one or more relatively narrow pas engines operating on the two-stroke cycle with sages. " v > / liquid fuel injection but employing fuel which is ' Where the combustion chamber in the cylinder always spark-ignited and thus distinctfrom en- ’ head, is of a bulbous form, theidiameter of the gines operating with compression ignition.