The Search for the Missing Mantles of Differentiated Asteroids: Evidence from Taxonomic A-Class Asteroids and Olivine- Dominated Achondrite Meteorites

Total Page:16

File Type:pdf, Size:1020Kb

The Search for the Missing Mantles of Differentiated Asteroids: Evidence from Taxonomic A-Class Asteroids and Olivine- Dominated Achondrite Meteorites University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2011 The Search for the Missing Mantles of Differentiated Asteroids: Evidence from Taxonomic A-class Asteroids and Olivine- Dominated Achondrite Meteorites Michael Peter Lucas University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons, Geology Commons, and the Other Astrophysics and Astronomy Commons Scholar Commons Citation Lucas, Michael Peter, "The Search for the Missing Mantles of Differentiated Asteroids: Evidence from Taxonomic A-class Asteroids and Olivine-Dominated Achondrite Meteorites" (2011). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/3219 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Search for the Missing Mantles of Differentiated Asteroids: Evidence from Taxonomic A-class Asteroids and Olivine-Dominated Achondrite Meteorites by Michael Peter Lucas A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Geology College of Arts and Sciences University of South Florida Major Professor: Jeffrey Ryan, Ph.D. Matthew Pasek, Ph.D. Livio Tornabene, Ph.D. Date of Approval: July 8, 2011 Keywords: asteroids, taxonomic A-class, achondrite meteorite, pallasite, ureilite Copyright © 2011, Michael Peter Lucas DEDICATION I dedicate this thesis to the memory of my cousin, Kathryn “Kate” Pokorny. ACKNOWLEDGMENTS I would like to thank the following organizations for their support of this research; the Florida Space Grant Consortium for a Space Grant Fellowship, the Geological Society of America for a Graduate Student Research Grant, the USF Geology Alumni Society for a Richard A. Davis, Jr. Fellowship, the Antarctic Meteorite Working Group for supplying eight ureilite meteorite specimens, and Tenagra Observatories, Ltd. for providing telescope time. Second, I would like to thank Michael Fauerbach of Florida Gulf Coast University for fruitful collaborations over the years, Tom Beasley of the Florida Center for Analytical Electron Microscopy for assistance on the electron microprobe, Zachary Atlas for assistance on USF’s LA-ICP-MS instrument, and Ciprian “Cosmin” Stremtan for assistance with geochemical data processing. Lastly, I would like to thank the following friends and colleagues for their support; Meghan Lindsey for encouragement and friendship over the years, Mel Rodgers for friendship and occasionally housing a “hobo”, and Nathan Collins for becoming a true friend and colleague and for putting me up at his apartment so much during my second year of graduate school, I could not have done it without you. Finally, I would like to thank my committee members for being a positive influence in my life, my major professor – Jeffrey Ryan, and committee members Matthew Pasek and Livio Tornabene. TABLE OF CONTENTS List of Tables .................................................................................................................... iii List of Figures .................................................................................................................... iv Abstract .................................................................................................................... vi Introduction ......................................................................................................................1 Where Are All of the A-class Asteroids? ................................................................1 Background ......................................................................................................................5 Evolution of Asteroid Taxonomy ............................................................................5 Physical Properties of A-class Asteroids .................................................................7 Spectral Properties of A-class Asteroids................................................................11 Olivine-Dominated Achondrite Meteorites ...........................................................15 Main Group Pallasites ................................................................................16 Ureilites ......................................................................................................16 Brachinites .................................................................................................17 Meteoritic Parent-Body Linkages for A-class Objects ..........................................18 Analytical Methodology ....................................................................................................21 Photometric Telescopic Observations....................................................................21 Differential Photometry and Lightcurve Analysis .................................................24 Asteroid Lightcurve Inversion and Shape Modeling .............................................25 Meteorite Sample Acquisition and Preparation .....................................................26 Electron Probe Microanalysis (EPMA) .................................................................28 Laser Ablation Inductively Coupled Plasma Mass Spectrophotometry (LA-ICP-MS) .............................................................29 Results ....................................................................................................................34 Taxonomic Classification and Orbital Distribution of A-class Asteroids .............34 Asteroid Lightcurves ..............................................................................................39 Shape Model of 446 Aeternitas..............................................................................42 Pallasite and Ureilite Petrology .............................................................................44 Pallasites ....................................................................................................44 Ureilites ......................................................................................................47 Major Element Cosmochemistry ...........................................................................51 Trace Element Cosmochemistry ............................................................................59 i Discussion ....................................................................................................................66 Conclusions ....................................................................................................................71 References ....................................................................................................................73 Appendices ....................................................................................................................80 Appendix A: Glossary of Astronomical Terms ....................................................81 Appendix B: Standard Element Values for Three USGS Glass Rock Standards ....................................................................................................84 Appendix C: LA-ICP-MS Analysis of Three USGS Basalt Glass Standards ....................................................................................................85 ii LIST OF TABLES Table 1: Summary of large asteroid taxonomic surveys ............................................6 Table 2: Physical properties of seventeen recognized A-class asteroids .................10 Table 3: Meteorite statistics of unpaired olivine-dominated achondrites ................15 Table 4: Observational circumstances for six A-class asteroids ..............................23 Table 5: Observational circumstances for 446 Aeternitas .......................................26 Table 6: Pallasite and ureilite meteorites acquired for analysis ...............................28 Table 7: EPMA analysis of major elements for olivine and pyroxene grains .........30 Table 8: LA-ICP-MS analysis of trace elements for pallasite olivines ....................32 Table 9: LA-ICP-MS analysis of trace elements for ureilite silicates .....................33 Table 10: Orbital elements and taxonomic classification of A-class asteroids ..........36 Table 11: Rotational periods and amplitudes for five A-class asteroids ....................40 Table 12: Parameters for the derived shape model of 446 Aeternitas .......................42 Table B1: Standard trace element values for three USGS glass rock standards .........84 Table C1: LA-ICP-MS analysis of three USGS basalt glass standards ......................85 iii LIST OF FIGURES Figure 1: The distribution of 2940 asteroids based on rotational period versus diameter ............................................................................................9 Figure 2: Deconvolved near-IR spectra for forsteritic olivine and clinopyroxene .............................................................................................11 Figure 3: Distribution of proper orbital elements for 25 olivine-dominated asteroids .....................................................................................................37 Figure 4: Composite lightcurves for five A-class asteroids ......................................41 Figure 5: Shape model of 446 Aeternitas ..................................................................43
Recommended publications
  • Non-Principal Axis Rotation (Tumbling) Asteroids
    NON-PRINCIPAL AXIS ROTATION (TUMBLING) ASTEROIDS Asteroid PAR Per1 Amp1 Per2 Amp2 Reference 244 Sita T0 129.51 0.82 0 129.51 0.82 Brinsfield, 09 253 Mathilde T 417.7 0.50 –3 417.7 0.45 250. Mottola, 95 –3 418. 0.5 250. Pravec, 05 288 Glauke T 1170. 0.9 –1 1200. 0.9 Harris, 99 0 Pravec, 14 –2 1170. 0.37 740. Pilcher, 15 299∗ Thora T– 272.9 0.50 0 274. 0.39 Pilcher, 14 +2 272.9 0.47 Pilcher, 17 319∗ Leona T 430. 0.5 –2 430. 0.5 1084. Pilcher, 17 341∗ California T 318. 0.92 –2 318. 0.9 250. Pilcher, 17 –2 317.0 0.54 Polakis, 17 –1 317.0 0.92 Polakis, 17 408 Fama T0 202.1 0.58 0 202.1 0.58 Stephens, 08 470 Kilia T0 290. 0.26 0 290. 0.26 Stephens, 09 0 Stephens, 09 496∗ Gryphia T 1072. 1.25 –2 1072. 1.25 Pilcher, 17 571 Dulcinea T 126.3 0.50 –2 126.3 0.50 Stephens, 11 630 Euphemia T0 350. 0.45 0 350. 0.45 Warner, 11 703∗ No¨emi T? 200. 0.78 –1 201.7 0.78 Noschese, 17 0 115.108 0.28 Sada, 17 –2 200. 0.62 Franco, 17 707 Ste¨ına T0 414. 1.00 0 Pravec, 14 763∗ Cupido T 151.5 0.45 –1 151.1 0.24 Polakis, 18 –2 151.5 0.45 101. Pilcher, 18 823 Sisigambis T0 146.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Asteroid Family Ages. 2015. Icarus 257, 275-289
    Icarus 257 (2015) 275–289 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Asteroid family ages ⇑ Federica Spoto a,c, , Andrea Milani a, Zoran Knezˇevic´ b a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c SpaceDyS srl, Via Mario Giuntini 63, 56023 Navacchio di Cascina, Italy article info abstract Article history: A new family classification, based on a catalog of proper elements with 384,000 numbered asteroids Received 6 December 2014 and on new methods is available. For the 45 dynamical families with >250 members identified in this Revised 27 April 2015 classification, we present an attempt to obtain statistically significant ages: we succeeded in computing Accepted 30 April 2015 ages for 37 collisional families. Available online 14 May 2015 We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model Keywords: for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The Asteroids best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each Asteroids, dynamics Impact processes family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are provided, and the results are discussed and compared with the literature. The ages of several families have been estimated for the first time, in other cases the accu- racy has been improved.
    [Show full text]
  • The Minor Planet Bulletin and How the Situation Has Gone from One Mt Tarana Observatory of Trying to Fill Pages to One of Fitting Everything In
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 2, A.D. 2006 APRIL-JUNE 29. PHOTOMETRY OF ASTEROIDS 133 CYRENE, adjusted up or down to line up with the V-band data). The near- 454 MATHESIS, 477 ITALIA, AND 2264 SABRINA perfect overlay of V- and R-band data show no evidence of color change as the asteroid rotates. This result replicates the lightcurve Robert K. Buchheim period reported by Harris et al. (1984), and matches the period and Altimira Observatory lightcurve shape reported by Behrend (2005) at his website. 18 Altimira, Coto de Caza, CA 92679 USA [email protected] (Received: 4 November Revised: 21 November) Photometric studies of asteroids 133 Cyrene, 454 Mathesis, 477 Italia and 2264 Sabrina are reported. The lightcurve period for Cyrene of 12.707±0.015 h (with amplitude 0.22 mag) confirms prior studies. The lightcurve period of 8.37784±0.00003 h (amplitude 0.32 mag) for Mathesis differs from previous studies. For Italia, color indices (B-V)=0.87±0.07, (V-R)=0.48±0.05, and phase curve parameters H=10.4, G=0.15 have been determined. For Sabrina, this study provides the first reported lightcurve period 43.41±0.02 h, with 0.30 mag amplitude. Altimira Observatory, located in southern California, is equipped with a 0.28-m Schmidt-Cassegrain telescope (Celestron NexStar- 454 Mathesis. DiMartino et al. (1994) reported a rotation period of 11 operating at F/6.3), and CCD imager (ST-8XE NABG, with 7.075 h with amplitude 0.28 mag for this asteroid, based on two Johnson-Cousins filters).
    [Show full text]
  • Olivine-Dominated Asteroids and Meteorites: Distinguishing Nebular and Igneous Histories
    Meteoritics & Planetary Science 42, Nr 2, 155–170 (2007) Abstract available online at http://meteoritics.org Olivine-dominated asteroids and meteorites: Distinguishing nebular and igneous histories Jessica M. SUNSHINE1*, Schelte J. BUS2, Catherine M. CORRIGAN3, Timothy J. MCCOY4, and Thomas H. BURBINE5 1Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA 2University of Hawai‘i, Institute for Astronomy, Hilo, Hawai‘i 96720, USA 3Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723–6099, USA 4Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560–0119, USA 5Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, USA *Corresponding author. E-mail: [email protected] (Received 14 February 2006; revision accepted 19 November 2006) Abstract–Melting models indicate that the composition and abundance of olivine systematically co-vary and are therefore excellent petrologic indicators. However, heliocentric distance, and thus surface temperature, has a significant effect on the spectra of olivine-rich asteroids. We show that composition and temperature complexly interact spectrally, and must be simultaneously taken into account in order to infer olivine composition accurately. We find that most (7/9) of the olivine- dominated asteroids are magnesian and thus likely sampled mantles differentiated from ordinary chondrite sources (e.g., pallasites). However, two other olivine-rich asteroids (289 Nenetta and 246 Asporina) are found to be more ferroan. Melting models show that partial melting cannot produce olivine-rich residues that are more ferroan than the chondrite precursor from which they formed. Thus, even moderately ferroan olivine must have non-ordinary chondrite origins, and therefore likely originate from oxidized R chondrites or melts thereof, which reflect variations in nebular composition within the asteroid belt.
    [Show full text]
  • The Exploration of Near-Earth Objects
    PREFACE i The Exploration of Near-Earth Objects Committee on Planetary and Lunar Exploration Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1998 Copyright © 2003 National Academy of Sciences. All rights reserved. Unless otherwise indicated, all materials in this PDF File provided by the National Academies Press (www.nap.edu) for research purposes are copyrighted by the National Academy of Sciences. Distribution, posting, or copying is strictly prohibited without written permission of the NAP. Generated for [email protected] on Sat Nov 8 11:41:41 2003 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers.
    [Show full text]
  • Für Astronomie Nr
    für Astronomie Nr. 28 Zeitschrift der Vereinigung der Sternfreunde e.V. / VdS DAS WELTALL Orionnebel DU LEBST DARIN – ENTDECKE ES! Computerastronomie Internationales Jahr der Astronomie INTERNATIONALES ISSN 1615 - 0880 www.vds-astro.de I/ 2009 ASTRONOMIEJAHR [email protected] • www.astro-shop.com Tel.: 040/5114348 • Fax: 040/5114594 Eiffestr. 426 • 20537 Hamburg Astroart 4.0 The Night Sky Observer´s Guide Photoshop Astronomy Die aktuellste Version Dieses hilfreiche Werk Der Autor arbeitet seit fast 10 Jahren mit Photo- des bekannten Bildbe- dient der erfolg- shop, um seine Astrofotos zu bearbeiten. Die arbeitungspro- reichen Vorbereitung dabei gemachten Erfahrungen hat er in diesem grammes gibt es jetzt einer abwechslungs- speziell auf die Bedürfnisse des Amateurastro- mit interessanten reichen Deep-Sky- nomen zugeschnitte- neuen Funktionen. Nacht. Sortiert nach nen Buch gesammelt. Moderne Dateifor- Sternbildern des Die behandelten The- men sind unter ande- mate wie DSLR-RAW Sommer- und Win- rem: die technische werden unterstützt, terhimmels nden Ausstattung, Farbma- Bilder können sich detaillierte NEU nagement, Histo- durch automa- Beschreibungen Südhimmel gramme, Maskie- 3. Band tische Sternfelderken- zu hunderten rungstechniken, nung direkt überlagert werden, was die Bild- Galaxien, Nebeln, Oenen Stern- und Addition mehrerer feldrotation vernachlässigbar macht. Auch die Kugelhaufen. Der Teleskopanblick jedes Bilder, Korrektur von Bearbeitung von Farbbildern wurde erweitert. Objekts ist beschrieben und mit einem Hin- Vignettierungen, Besonderes Augenmerk liegt auf der Erken- weis bezüglich der verwendeten Optik verse- Farbhalos, Deformationen oder nung und Behandlung von Pixelfehlern der hen. 2 Bände mit insgesamt 446 Fotos, 827 überbelichteten Sternen, LRGB und vieles Aufnahme-Chips. Zeichnungen, 143 Tabellen und 431 Sternkar- mehr. Auf der beigefügten DVD benden sich 90 alle im Buch besprochenen und verwendeten Update ten.
    [Show full text]
  • Ages of Asteroid Families Estimated Using the YORP-Eye Method
    MNRAS 484, 1815–1828 (2019) doi:10.1093/mnras/sty3446 Advance Access publication 2018 December 31 Ages of asteroid families estimated using the YORP-eye method Paolo Paolicchi ,1‹ F. Spoto,2‹ Z. Knezeviˇ c´3‹ and A. Milani4† 1Department of Physics, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy 2IMMCE, Observatoire de Paris, Av. Denfert–Rochereau 77, F-75014 Paris, France 3Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia Downloaded from https://academic.oup.com/mnras/article-abstract/484/2/1815/5267148 by Università di Pisa user on 27 February 2019 4Department of Mathematics, University of Pisa, Largo Pontecorvo 5, I-56127 Pisa, Italy Accepted 2018 December 14. Received 2018 December 13; in original form 2018 October 18 ABSTRACT Recently, we have shown that it is possible, despite several biases and uncertainties, to find footprints of the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, concerning the members of asteroid dynamical families, in a plot of the proper semimajor axis versus magnitude (the so-called V-plot). In our previous work, we introduced the concept of the YORP-eye, the depopulated region in the V-plot, whose location can be used to diagnose the age of the family. In this present paper, we complete the analysis using an improved algorithm and an extended data base of families, and we discuss the potential errors arising from uncertainties and from the dispersion of the astronomical data. We confirm that the analysis connected to the search for the YORP-eye can lead to an estimate of the age, which is similar and strongly correlated to that obtained by the analysis of the V-slope size-dependent spreading due to the Yarkovsky effect.
    [Show full text]
  • Orbital Stability Assessments of Satellites Orbiting Small Solar System Bodies a Case Study of Eros
    Delft University of Technology, Faculty of Aerospace Engineering Thesis report Orbital stability assessments of satellites orbiting Small Solar System Bodies A case study of Eros Author: Supervisor: Sjoerd Ruevekamp Jeroen Melman, MSc 1012150 August 17, 2009 Preface i Contents 1 Introduction 2 2 Small Solar System Bodies 4 2.1 Asteroids . .5 2.1.1 The Tholen classification . .5 2.1.2 Asteroid families and belts . .7 2.2 Comets . 11 3 Celestial Mechanics 12 3.1 Principles of astrodynamics . 12 3.2 Many-body problem . 13 3.3 Three-body problem . 13 3.3.1 Circular restricted three-body problem . 14 3.3.2 The equations of Hill . 16 3.4 Two-body problem . 17 3.4.1 Conic sections . 18 3.4.2 Elliptical orbits . 19 4 Asteroid shapes and gravity fields 21 4.1 Polyhedron Modelling . 21 4.1.1 Implementation . 23 4.2 Spherical Harmonics . 24 4.2.1 Implementation . 26 4.2.2 Implementation of the associated Legendre polynomials . 27 4.3 Triaxial Ellipsoids . 28 4.3.1 Implementation of method . 29 4.3.2 Validation . 30 5 Perturbing forces near asteroids 34 5.1 Third-body perturbations . 34 5.1.1 Implementation of the third-body perturbations . 36 5.2 Solar Radiation Pressure . 36 5.2.1 The effect of solar radiation pressure . 38 5.2.2 Implementation of the Solar Radiation Pressure . 40 6 About the stability disturbing effects near asteroids 42 ii CONTENTS 7 Integrators 44 7.1 Runge-Kutta Methods . 44 7.1.1 Runge-Kutta fourth-order integrator . 45 7.1.2 Runge-Kutta-Fehlberg Method .
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • Ground-Based Visible Spectroscopy of Asteroids to Support the Development of an Unsupervised Gaia Asteroid Taxonomy A
    Ground-based visible spectroscopy of asteroids to support the development of an unsupervised Gaia asteroid taxonomy A. Cellino, Ph. Bendjoya, M. Delbo’, Laurent Galluccio, J. Gayon-Markt, P. Tanga, E.F. Tedesco To cite this version: A. Cellino, Ph. Bendjoya, M. Delbo’, Laurent Galluccio, J. Gayon-Markt, et al.. Ground-based visible spectroscopy of asteroids to support the development of an unsupervised Gaia asteroid tax- onomy. Astronomy and Astrophysics - A&A, EDP Sciences, 2020, 10.1051/0004-6361/202038246. hal-02942763 HAL Id: hal-02942763 https://hal.archives-ouvertes.fr/hal-02942763 Submitted on 12 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astronomy & Astrophysics manuscript no. TNGspectra2ndrev c ESO 2020 July 28, 2020 Ground-based visible spectroscopy of asteroids to support development of an unsupervised Gaia asteroid taxonomy A. Cellino1, Ph. Bendjoya2, M. Delbo’3, L. Galluccio3, J. Gayon-Markt3, P. Tanga3, and E. F. Tedesco4 1 INAF, Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy e-mail: [email protected] 2 Université de la Côte d’Azur - Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Campus Valrose Nice, Nice Cedex 4, France e-mail: [email protected] 3 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, CS34229, 06304, Nice Cedex 4, France e-mail: [email protected], [email protected], [email protected] 4 Planetary Science Institute, Tucson, AZ, USA e-mail: [email protected] Received ..., 2020; accepted ..., 2020 ABSTRACT Context.
    [Show full text]
  • Near Earth Objects As Resources for Space Industrialization
    Solar System Development Journal (2001) 1(1), 1-31 http://www.resonance-pub.com ISSN:1534-8016 NEAR EARTH OBJECTS AS RESOURCES FOR SPACE INDUSTRIALIZATION MARK SONTER Consultant, Asteroid Enterprises Pty Ltd, 28 Ian Bruce Crescent, Balgownie, New South Wales 2519, Australia [email protected] (Received 11 February 2001, and in final form 13 August 2001*) This paper reviews concepts for mining the Near-Earth Asteroids for supply of resources to future in-space industrial activities. It identifies Expectation Net Present Value as the appropriate measure for determining the technical and economic feasibility of a hypothetical asteroid mining venture, just as it is the appropriate measure for the feasibility of a proposed terrestrial mining venture. In turn, ENPV can obviously be used as a ‘design driver’ to sieve the alternative options, in selection of target, mission profile, mining and processing methods, propulsion for return trajectory, and earth-capture mechanism. 1. INTRODUCTION The Near Earth Asteroids are potential impact threats to Earth, but also a particularly accessible subset of them does provide potentially attractive targets for resources to support space industrialization. Robust technical and economic approaches to evaluation of the feasibility of proposed projects are necessary for assessment of such space mining ventures. This paper discusses the technical engineering and mission–planning choices and shows how the concept of probabilistic Net Present Value can be used to optimize these choices, and hence select between alternative asteroid mining mission designs. The generic mission reviewed envisages a lightweight remote (teleoperated) or semiautonomous miner, recovering products such as water or nickel-iron metal, from highly- accessible NEAs, and returning it to Low Earth Orbit (LEO), for sale and use in LEO, using solar power and some of the recovered mass as propellant.
    [Show full text]