Formulas for Higher Order Loewner Vector Fields A

Total Page:16

File Type:pdf, Size:1020Kb

Formulas for Higher Order Loewner Vector Fields A INDEX FORMULAS FOR HIGHER ORDER LOEWNER VECTOR FIELDS A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Steven Edward Broad Frederico Xavier, Director Graduate Program in Mathematics Notre Dame, Indiana April 2009 c Copyright by ! Steven Broad 2009 All Rights Reserved INDEX FORMULAS FOR HIGHER ORDER LOEWNER VECTOR FIELDS Abstract by Steven Edward Broad n Let ∂z¯ be the Cauchy-Riemann operator and f be a C real-valued function in 2 n a neighborhood of 0 in R for which ∂z¯ f = 0 for all z = 0 in that neighborhood. " " Carath´eodory conjectured that a sphere immersed in R3 must have at least two umbilics. This later motivated Loewner to conjecture the bound Ind(∂nf,0) n z¯ ≤ n on the index of vector fields given in complex notation by ∂z¯ f. Both of these conjectures remain open. Recent work of F. Xavier produced a formula for com- puting the index of such vector fields in the case n = 2 using data about the Hessian of f. In this paper, we extend this result and establish an index for- mula for ∂nf that is valid for all n 2. Structurally, our index formula is of the z¯ ≥ form Ind(∂nf,0) = n + (f), where the defect term contains geometric data z¯ Dn Dn extracted from Hessian-like objects associated with higher order derivatives of f. In particular, our index formula computes the Fredholm index of the Toeplitz n operator on the unit circle whose symbol is ∂z¯ f. Dedication To Karen, Emily and Aiden. ii CONTENTS FIGURES . iv SYMBOLS . v PREFACE . vi CHAPTER 1: INTRODUCTION . 1 1.1 An introduction to umbilics . 1 1.2 Conjectures of Carath´eodory and Loewner . 10 1.3 A brief survey of recent work related to umbilics . 11 CHAPTER 2: EQUIVALENCE OF TWO CONJECTURES . 19 n CHAPTER 3: A MATRIX REPRESENTATION FOR ∂z¯ f ........ 30 3.1 Some natural identifications . 30 3.2 Some useful properties of functions in Cn(D,¯ R) . 35 3.3 The matrix representation . 38 n CHAPTER 4: INDEX FORMULAS FOR ∂z¯ f ................ 45 4.1 Background and Bendixson’s index formula . 45 4.2 An index formula for n 2 ..................... 50 4.3 A defect term for Loewner’s≥ conjecture . 57 4.4 Proof of Lemma 4.9 . 66 CHAPTER 5: FURTHER REMARKS . 69 5.1 Application to the Loewner conjecture . 69 5.2 Xavier’s index theorem . 70 5.3 Application to the Carath´eodory conjecture . 71 5.4 Application to Toeplitz operators . 72 BIBLIOGRAPHY . 75 iii FIGURES 1.1 A planar curve showing planar curvature κ 0.33 . 4 ≈− 1.2 Normal curvature. k (p) =1/R .................. 5 | T | 1.3 Triaxial ellipsoid with lines of curvature. 7 1.4 Lemon (D1), Monstar (D2) and Star (D3) configuration. 8 1.5 An embedded sphere with exactly two umbilics. 9 1.6 Lines of curvature configurations for codimension 1 umbilics . 15 4.1 Using Bendixson’s index formula . 49 iv SYMBOLS R The real numbers R2 The real plane C The complex plane D The open unit disk in the complex plane ∂z¯ The partial derivative with respect toz ¯ T The unit circle in the complex plane Tr(A) The trace of a matrix, A (2) The subset of symmetric, S traceless matrices in M2(R) σ A mapping of C into (2) S ι The inclusion of C into R2 Hf The hessian matrix of f (f) The traceless part of H H f n Λn(f) The matrix representation of ∂z¯ f v PREFACE This work represents a significant improvement in the understanding of a con- jecture of Charles Loewner regarding the index of Loewner vector fields at singular points. In the case n = 2, Loewner’s conjecture implies the Carath´eodory conjec- ture about the minimum number of umbilics of immersed spheres. Although this work does not directly improve our collective understanding of the Carath´eodory conjecture, there is hope that it may provide useful notions of higher order um- bilics. More immediately, the proof of a formula for computing the index of a Loewner vector field is broadly applicable in and of itself. Such a formula should provide greater insight into the proof of –or counterexample to – Loewner’s conjecture. Furthermore, it will be useful to mathematicians for whom computing such indices is a necessary (and previously strenuous) task. The following work presents detailed proofs of the main theorems placed in the context of the history of the problem. In Chapter 1, we introduce some of the basic notions related to the study of umbilics and lines of curvature and state the conjectures of Carath´eodory and Loewner. We also discuss some recent progress in problems closely related to this area of study. In Chapter 2, we reproduce a proof of the equivalence of Loewner’s conjecture for n = 2 and the local Carath´eodory conjecture. In Chapter 3, we n develop a matrix representation of the Loewner vector field ∂z¯ f. This is an es- vi sential technical step in approaching the problem of proving an index theorem for Loewner vector fields. In Chapter 4, we use this matrix representation to prove two index formulas for Loewner vector fields. This chapter contains the main result of this paper which provides a defect term for Loewner’s conjecture. In Chapter 5, we discuss some consequences of the index formulas proved in Chapter 4. I would like to thank Fred for being patient and helping me stay focused on the task at hand. He also provided great direction for my work, without which nothing would have happened. Fran¸coisLedrappier helped me broaden my mathematical interests and was always encouraging. I would also like to thank Cabral Balreira whose own experiences going though this process – and his willingness to share them – were a great source of information and reassurance for me. Giuseppe Tinaglia helped me appreciate the fact that everything in mathematics is difficult even if we say otherwise. vii CHAPTER 1 INTRODUCTION The existence of isolated umbilical points on immersed surfaces has been stud- ied since the 18th century. This chapter introduces the reader to two conjectures in differential geometry which are related to the existence of umbilical points, one attributed to Constantin Carath´eodory, the other to Charles Loewner. We will begin with an introduction to umbilics including the definition of an umbilic and some remarks to motivate these conjectures. Once we have made the necessary definitions and some appropriate historical remarks, we will state the conjectures and review their current status. We will conclude with a discussion of precisely how these two conjectures are related to each other. 1.1 An introduction to umbilics In this section, we will review the definitions and basic results related to um- bilical points, or simply umbilics, of a surface immersed in R3. Notions of umbilics exist for higher dimensional immersions. However, the results of this work pri- marily relate to surfaces embedded or immersed in R3. There are several ways to approach the definition of an umbilic. The first notion that we need is that of principal curvature. This requires us to define the first and second fundamental forms of an immersed Riemannian manifold. 1 Definition 1.1. Let x : M R3 be a sufficiently smooth isometric immersion of → the Riemannian manifold M into R3. Given a point p M, the first fundamental ∈ form is defined by I (X ,Y )= X ,Y , p p p ) p p* where Xp,Yp are vectors in TpM. In a (u, v)-coordinate neighborhood of p, we can define the coefficients E = I(xu,xu) 2F = I(xu,xv) G = I(xv,xv) for the first fundamental form. Thus, in this coordinate neighborhood, EF T I(Xp,Yp)=Xp Yp. (1.2) FG Definition 1.3. Let x : M 2 R3 be a sufficiently smooth isometric immersion → of the 2-dimensional Riemannian manifold M into R3. Given a point p M, the ∈ second fundamental form is defined by II p(Xp,Yp)= x (Xp),Yp , )− ∗ * where Xp,Yp are vectors in TpM. The second fundamental form is a bilinear form. Hence we can represent it by a matrix (II ) where II = II (X ,X ) and X ,X forms an orthonormal basis. ij ij i j { i j} The eigenvalues and eigenvectors of (II ij) have a very special meaning, which will 2 be discussed further in what follows. In a (u, v)-coordinate neighborhood of p, we can define the coefficients e = II (xu,xu) 2f = II (xu,xv) g = II (xv,xv) for the second fundamental form. This does not affect the eigenvalues or eigendi- rections in R3 of the second fundamental form, but it does provide a straightfor- ward way of computing quantities related to the second fundamental form as we will see below. Definition 1.4. The eigenvalues k k of II for p M are known as the 1 ≥ 2 p ∈ principal curvatures of M at p. The principal curvatures are important in many undertakings in geometry. Two useful curvature quantities arise from them. The Gauss curvature of M at p 1 is K(p) = det(II p)=k1k2 and the mean curvature of M at p is H(p)= 2 Tr(II p)= 1 2 (k1 + k2). The above definition of principal curvature also allows one to formally define umbilics as follows. Definition 1.5. An umbilic (or umbilical point) of a sufficiently smooth surface immersed in R3 is a point at which the principal curvatures are equal.
Recommended publications
  • Lecture 20 Dr. KH Ko Prof. NM Patrikalakis
    13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 20 Dr. K. H. Ko Prof. N. M. Patrikalakis Copyrightc 2003Massa chusettsInstitut eo fT echnology ≤ Contents 20 Advanced topics in differential geometry 2 20.1 Geodesics ........................................... 2 20.1.1 Motivation ...................................... 2 20.1.2 Definition ....................................... 2 20.1.3 Governing equations ................................. 3 20.1.4 Two-point boundary value problem ......................... 5 20.1.5 Example ........................................ 8 20.2 Developable surface ...................................... 10 20.2.1 Motivation ...................................... 10 20.2.2 Definition ....................................... 10 20.2.3 Developable surface in terms of B´eziersurface ................... 12 20.2.4 Development of developable surface (flattening) .................. 13 20.3 Umbilics ............................................ 15 20.3.1 Motivation ...................................... 15 20.3.2 Definition ....................................... 15 20.3.3 Computation of umbilical points .......................... 15 20.3.4 Classification ..................................... 16 20.3.5 Characteristic lines .................................. 18 20.4 Parabolic, ridge and sub-parabolic points ......................... 21 20.4.1 Motivation ...................................... 21 20.4.2 Focal surfaces ..................................... 21 20.4.3 Parabolic points ................................... 22
    [Show full text]
  • Riemannian Submanifolds: a Survey
    RIEMANNIAN SUBMANIFOLDS: A SURVEY BANG-YEN CHEN Contents Chapter 1. Introduction .............................. ...................6 Chapter 2. Nash’s embedding theorem and some related results .........9 2.1. Cartan-Janet’s theorem .......................... ...............10 2.2. Nash’s embedding theorem ......................... .............11 2.3. Isometric immersions with the smallest possible codimension . 8 2.4. Isometric immersions with prescribed Gaussian or Gauss-Kronecker curvature .......................................... ..................12 2.5. Isometric immersions with prescribed mean curvature. ...........13 Chapter 3. Fundamental theorems, basic notions and results ...........14 3.1. Fundamental equations ........................... ..............14 3.2. Fundamental theorems ............................ ..............15 3.3. Basic notions ................................... ................16 3.4. A general inequality ............................. ...............17 3.5. Product immersions .............................. .............. 19 3.6. A relationship between k-Ricci tensor and shape operator . 20 3.7. Completeness of curvature surfaces . ..............22 Chapter 4. Rigidity and reduction theorems . ..............24 4.1. Rigidity ....................................... .................24 4.2. A reduction theorem .............................. ..............25 Chapter 5. Minimal submanifolds ....................... ...............26 arXiv:1307.1875v1 [math.DG] 7 Jul 2013 5.1. First and second variational formulas
    [Show full text]
  • Basics of the Differential Geometry of Surfaces
    Chapter 20 Basics of the Differential Geometry of Surfaces 20.1 Introduction The purpose of this chapter is to introduce the reader to some elementary concepts of the differential geometry of surfaces. Our goal is rather modest: We simply want to introduce the concepts needed to understand the notion of Gaussian curvature, mean curvature, principal curvatures, and geodesic lines. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate differential geometry course offered in the fall of 1994. Most of the topics covered in this course have been included, except a presentation of the global Gauss–Bonnet–Hopf theorem, some material on special coordinate systems, and Hilbert’s theorem on surfaces of constant negative curvature. What is a surface? A precise answer cannot really be given without introducing the concept of a manifold. An informal answer is to say that a surface is a set of points in R3 such that for every point p on the surface there is a small (perhaps very small) neighborhood U of p that is continuously deformable into a little flat open disk. Thus, a surface should really have some topology. Also,locally,unlessthe point p is “singular,” the surface looks like a plane. Properties of surfaces can be classified into local properties and global prop- erties.Intheolderliterature,thestudyoflocalpropertieswascalled geometry in the small,andthestudyofglobalpropertieswascalledgeometry in the large.Lo- cal properties are the properties that hold in a small neighborhood of a point on a surface. Curvature is a local property. Local properties canbestudiedmoreconve- niently by assuming that the surface is parametrized locally.
    [Show full text]
  • Minimal Surfaces
    Minimal Surfaces December 13, 2012 Alex Verzea 260324472 MATH 580: Partial Dierential Equations 1 Professor: Gantumur Tsogtgerel 1 Intuitively, a Minimal Surface is a surface that has minimal area, locally. First, we will give a mathematical denition of the minimal surface. Then, we shall give some examples of Minimal Surfaces to gain a mathematical under- standing of what they are and nally move on to a generalization of minimal surfaces, called Willmore Surfaces. The reason for this is that Willmore Surfaces are an active and important eld of study in Dierential Geometry. We will end with a presentation of the Willmore Conjecture, which has recently been proved and with some recent work done in this area. Until we get to Willmore Surfaces, we assume that we are in R3. Denition 1: The two Principal Curvatures, k1 & k2 at a point p 2 S, 3 S⊂ R are the eigenvalues of the shape operator at that point. In classical Dierential Geometry, k1 & k2 are the maximum and minimum of the Second Fundamental Form. The principal curvatures measure how the surface bends by dierent amounts in dierent directions at that point. Below is a saddle surface together with normal planes in the directions of principal curvatures. Denition 2: The Mean Curvature of a surface S is an extrinsic measure of curvature; it is the average of it's two principal curvatures: 1 . H ≡ 2 (k1 + k2) Denition 3: The Gaussian Curvature of a point on a surface S is an intrinsic measure of curvature; it is the product of the principal curvatures: of the given point.
    [Show full text]
  • The Index of Isolated Umbilics on Surfaces of Non-Positive Curvature
    The index of isolated umbilics on surfaces of non-positive curvature Autor(en): Fontenele, Francisco / Xavier, Frederico Objekttyp: Article Zeitschrift: L'Enseignement Mathématique Band (Jahr): 61 (2015) Heft 1-2 PDF erstellt am: 11.10.2021 Persistenter Link: http://doi.org/10.5169/seals-630591 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch LEnseignement Mathematique (2) 61 (2015), 139-149 DOI 10.4171/LEM/61-1/2-6 The index of isolated umbilics on surfaces of non-positive curvature Francisco Fontenele and Frederico Xavier Abstract. It is shown that if a C2 surface M c M3 has negative curvature on the complement of a point q e M, then the Z/2-valued Poincare-Hopf index at q of either distribution of principal directions on M — {q} is non-positive.
    [Show full text]
  • MA3D9: Geometry of Curves and Surfaces
    Geometry of Curves and Surfaces Weiyi Zhang Mathematics Institute, University of Warwick November 20, 2020 2 Contents 1 Curves 5 1.1 Course description . .5 1.1.1 A bit preparation: Differentiation . .6 1.2 Methods of describing a curve . .8 1.2.1 Fixed coordinates . .8 1.2.2 Moving frames: parametrized curves . .8 1.2.3 Intrinsic way(coordinate free) . .9 n 1.3 Curves in R : Arclength Parametrization . 11 1.4 Curvature . 13 1.5 Orthonormal frame: Frenet-Serret equations . 16 1.6 Plane curves . 18 1.7 More results for space curves . 20 1.7.1 Taylor expansion of a curve . 21 1.7.2 Fundamental Theorem of the local theory of curves . 21 1.8 Isoperimetric Inequality . 23 1.9 The Four Vertex Theorem . 25 3 2 Surfaces in R 29 2.1 Definitions and Examples . 29 2.1.1 Compact surfaces . 32 2.1.2 Level sets . 33 2.2 The First Fundamental Form . 34 2.3 Length, Angle, Area . 35 2.3.1 Length: Isometry . 36 2.3.2 Angle: conformal . 37 2.3.3 Area: equiareal . 37 2.4 The Second Fundamental Form . 38 2.4.1 Normals and orientability . 39 2.4.2 Gauss map and second fundamental form . 40 2.5 Curvatures . 42 2.5.1 Definitions and first properties . 42 2.5.2 Calculation of Gaussian and mean curvatures . 45 2.5.3 Principal curvatures . 47 3 4 CONTENTS 2.6 Gauss's Theorema Egregium . 49 2.6.1 Compatibility equations . 52 2.6.2 Gaussian curvature for special cases .
    [Show full text]
  • Differential Geometry
    18.950 (Differential Geometry) Lecture Notes Evan Chen Fall 2015 This is MIT's undergraduate 18.950, instructed by Xin Zhou. The formal name for this class is “Differential Geometry". The permanent URL for this document is http://web.evanchen.cc/ coursework.html, along with all my other course notes. Contents 1 September 10, 20153 1.1 Curves...................................... 3 1.2 Surfaces..................................... 3 1.3 Parametrized Curves.............................. 4 2 September 15, 20155 2.1 Regular curves................................. 5 2.2 Arc Length Parametrization.......................... 6 2.3 Change of Orientation............................. 7 3 2.4 Vector Product in R ............................. 7 2.5 OH GOD NO.................................. 7 2.6 Concrete examples............................... 8 3 September 17, 20159 3.1 Always Cauchy-Schwarz............................ 9 3.2 Curvature.................................... 9 3.3 Torsion ..................................... 9 3.4 Frenet formulas................................. 10 3.5 Convenient Formulas.............................. 11 4 September 22, 2015 12 4.1 Signed Curvature................................ 12 4.2 Evolute of a Curve............................... 12 4.3 Isoperimetric Inequality............................ 13 5 September 24, 2015 15 5.1 Regular Surfaces................................ 15 5.2 Special Cases of Manifolds .......................... 15 6 September 29, 2015 and October 1, 2015 17 6.1 Local Parametrizations ...........................
    [Show full text]
  • Universid Ade De Sã O Pa
    A new approach to the differential geometry of frontals in the Euclidean space Tito Alexandro Medina Tejeda Tese de Doutorado do Programa de Pós-Graduação em Matemática (PPG-Mat) UNIVERSIDADE DE SÃO PAULO DE SÃO UNIVERSIDADE Instituto de Ciências Matemáticas e de Computação Instituto Matemáticas de Ciências SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP Data de Depósito: Assinatura: ______________________ Tito Alexandro Medina Tejeda A new approach to the differential geometry of frontals in the Euclidean space Thesis submitted to the Instituto de Ciências Matemáticas e de Computação – ICMC-USP – in accordance with the requirements of the Mathematics Graduate Program, for the degree of Doctor in Science. FINAL VERSION Concentration Area: Mathematics Advisor: Profa. Dra. Maria Aparecida Soares Ruas USP – São Carlos August 2021 Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi e Seção Técnica de Informática, ICMC/USP, com os dados inseridos pelo(a) autor(a) Medina Tejeda, Tito Alexandro M491n A new approach to the differential geometry of frontals in the Euclidean space / Tito Alexandro Medina Tejeda; orientadora Maria Aparecida Soares Ruas. -- São Carlos, 2021. 93 p. Tese (Doutorado - Programa de Pós-Graduação em Matemática) -- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2021. 1. Frontal. 2. Wavefront. 3. Singular surface. 4. Relative curvature. 5. Tangent moving basis. I. Soares Ruas, Maria Aparecida, orient. II. Título. Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: Gláucia Maria Saia Cristianini - CRB - 8/4938 Juliana de Souza Moraes - CRB - 8/6176 Tito Alexandro Medina Tejeda Uma nova abordagem da geometria diferencial de frontais no espaço euclidiano Tese apresentada ao Instituto de Ciências Matemáticas e de Computação – ICMC-USP, como parte dos requisitos para obtenção do título de Doutor em Ciências – Matemática.
    [Show full text]
  • M435: Introduction to Differential Geometry
    M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY MARK POWELL Contents 5. Second fundamental form and the curvature 1 5.1. The second fundamental form 1 5.2. Second fundamental form alternative derivation 2 5.3. The shape operator 3 5.4. Principal curvature 5 5.5. The Theorema Egregium of Gauss 11 References 14 5. Second fundamental form and the curvature 5.1. The second fundamental form. We will give several ways of motivating the definition of the second fundamental form. Like the first fundamental form, the second fundamental form is a symmetric bilinear form on each tangent space of a surface Σ. Unlike the first, it need not be positive definite. The idea of the second fundamental form is to measure, in R3, how Σ curves away from its tangent plane at a given point. The first fundamental form is an intrinsic object whereas the second fundamental form is extrinsic. That is, it measures the surface as compared to the tangent plane in R3. By contrast the first fundamental form can be measured by a denizen of the surface, who does not possess 3 dimensional awareness. Given a smooth patch r: U ! Σ, let n be the unit normal vector as usual. Define R(u; v; t) := r(u; v) − tn(u; v); with t 2 (−"; "). This is a 1-parameter family of smooth surface patches. How is the first fundamental form changing in this family? We can compute that: 1 @ ( ) Edu2 + 2F dudv + Gdv2 = Ldu2 + 2Mdudv + Ndv2 2 @t t=0 where L := −ru · nu 2M := −(ru · nv + rv · nu) N := −rv · nv: The reason for the negative signs will become clear soon.
    [Show full text]
  • Differential Topology and Geometry of Smooth Embedded Surfaces: Selected Topics Frédéric Cazals, Marc Pouget
    Differential topology and geometry of smooth embedded surfaces: selected topics Frédéric Cazals, Marc Pouget To cite this version: Frédéric Cazals, Marc Pouget. Differential topology and geometry of smooth embedded surfaces: selected topics. International Journal of Computational Geometry and Applications, World Scientific Publishing, 2005, Vol. 15, No. 5, pp.511-536. 10.1142/S0218195905001816. hal-00103023 HAL Id: hal-00103023 https://hal.archives-ouvertes.fr/hal-00103023 Submitted on 3 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Differential topology and geometry of smooth embedded surfaces: selected topics F. Cazals, M. Pouget March 18, 2005 Abstract The understanding of surfaces embedded in E3 requires local and global concepts, which are respectively evocative of differential geometry and differential topology. While the local theory has been classical for decades, global objects such as the foliations defined by the lines of curvature, or the medial axis still pose challenging mathematical problems. This duality is also tangible from a practical perspective, since algorithms manipulating sampled smooth surfaces (meshes or point clouds) are more developed in the local than the global category. As a prerequisite for those interested in the development of algorithms for the manipulation of surfaces, we propose a concise overview of core concepts from differential topology applied to smooth embedded surfaces.
    [Show full text]
  • L8 – Differential Geometry of Surfaces
    L8 – Differential Geometry of Surfaces • We will discuss intrinsic properties of surfaces independent its parameterization • Topics to be covered including: – Tangent plane and surface normal – First fundamental form I (metric) – Second fundamental form II (curvature) – Principal curvatures – Gaussian and mean curvatures – Euler’s theorem 1 Tangent Plane and Surface Normal • Consider a curve u=u(t) v=v(t) in the parametric domain of a parametric surface r=r(u, v), then r=r(t)=r(u(t), v(t)) is a parametric curve lying on the surface r. z r(u, v) v Using the chain rule on r(u(t), v(t)) r(t)=r(u(t), v(t)) u=u(t) 풓ሶ 푡 = 풓푢푢ሶ + 풓푣푣ሶ v=v(t) o y u x • The tangent plane at point p can be considered as a union of the tangent vectors of the form in above equation for all r(t) (i.e., many curves) passing through p. z N rv 풓푢 × 풓푣 ru 푵 = 풓푢 × 풓푣 o y x 2 Tangent Plane and Surface Normal (cont.) • The equation of the tangent plane at r(up, vp) is (p - r(up, vp)) ∙ N(up, vp) =0 • Definition: A regular (ordinary) point p on a parametric surface is defined as a point where ru x rv ≠ 0. A point with ru x rv = 0 is called a singular point. • Implicit surface f(x,y,z)=0, the unit normal vector is given by 훻푓 푵 = 훻푓 3 First Fundamental Form I (Metric) • If we define the parametric curve by a curve u=u(t) v=v(t) on a parametric surface r=r(u,v) 푑풓 푑푢 푑푣 푑푠 = 푑푡 = 풓 + 풓 푑푡 푑푡 푢 푑푡 푣 푑푡 = (풓푢푢ሶ + 풓푣푣ሶ) ∙ (풓푢푢ሶ + 풓푣푣ሶ)푑푡 푑푢 푑푣 = 퐸푑푢2 + 2퐹푑푢푑푣 + 퐺푑푣2 (∵ 푢ሶ = , 푣ሶ = ) 푑푡 푑푡 where 퐸 = 풓푢 ∙ 풓푢, 퐹 = 풓푢 ∙ 풓푣, 퐺 = 풓푣 ∙ 풓푣 • E, F, G are call the first fundamental form
    [Show full text]
  • 3. the GEOMETRY of the GAUSS MAP Goal
    Math 501 - Differential Geometry Professor Gluck February 7, 2012 3. THE GEOMETRY OF THE GAUSS MAP Goal. Learn how surfaces in 3-space are curved. Outline Pages 5 - 24. The Gauss map S = orientable surface in R3 with choice N of unit normal. Definition of the Gauss map N: S S2 . 2 Its differential dNp: TpS TpS = TpS . Self-adjointness of dNp , meaning < dNp(V) , W > = < V , dNp(W) > . Second fundamental form encodes how surface is curved. 1 Pages 25 - 78. Curvature of curves on a surface Many examples to develop intuition. Meusnier's Theorem considers all curves on a given surface through a given point with a given tangent direction there, and compares their curvatures. Definition of normal curvature of a surface at a point in a given direction. Question. How does the normal curvature of a surface at a point vary as we vary the direction? 2 Principal curvatures of the surface S at the point p . Lines of curvature on a surface. Definition of Gaussian curvature and mean curvature. Definition of umbilical points on a surface. Theorem. If all points of a connected surface S are umbilical points, then S is contained in a sphere or a plane. 3 Pages 79 - 123. The Gauss map in local coordinates Develop effective methods for computing curvature of surfaces. Detailed example of a paraboloid. The equations of Weingarten express the entries in the matrix for dNp in terms of the coefficients of the first and second fundamental forms. Explicit formulas for principal curvatures, Gaussian and mean curvatures. Detailed example on a torus of revolution.
    [Show full text]