/ / c Technical Paper No. 8/2552 9/2008

 ) *+,-*+.,/012341567,8/* 9 *: /3;

Some Biological Aspects of Pearl , leerii (Bleeker, 1852) in Toh-Daeng Peatswamp, Narathiwat Province

O04 8PQ * Chamaiporn Kaewsrithong 10. : T*QU Suwimon Seehirunwong 93 3 U 1O+, ;V Jeeranun Uraiprasit 6 - Y8P Worakit Khoowkheaw

[3 9 )8.,4 \3+,0*3Y[9]/ Inland Fisheries Research and Development Bureau 0+,0* Department of Fisheries , *b68.,:cU Ministry of Agriculture and Cooperatives

   / / Technical Paper No. 8/2552 9/2008

 ) *+,-*+.,/012341567,8/* 9 *: /3;

Some Biological Aspects of , Trichogaster leerii (Bleeker, 1852) in Toh-Daeng Peatswamp, Narathiwat Province

O04 8PQ * Chamaiporn Kaewsrithong 10. : T*QU Suwimon Seehirunwong 93 3 U 1O+, ;V Jeeranun Uraiprasit 6 - Y8P Worakit Khoowkheaw

Qf3)U9 )8.,4 \3+,0*3Y[9]/+g663 Pattani Inland Fisheries Research and Development Center [3 9 )8.,4 \3+,0*3Y[9]/ Inland Fisheries Research and Delopment Bureau 0+,0* Department of Fisheries  2009 :  , )39 ) 49-0550-49090

    Pearl Gourami  ! " # $ Trichogaster leerii (Bleeker, 1852)

i

 T

./0 123 1 Abstract 2 29 /9 3 #; <2$ 3 !=9 >/!/ 4 . /!/ "C D 4 B "C D 11 1.  DF  A /  != / 11 2. A. 3<G3 " 13 3. H I2 < 0 J" A 3 />J" 18 6. MG <E3 20 7. 2  E3 A 2 J/=$ . 3 <2  E3#3/K9 ./ A 2  28   A  !H F$B 31 E0>/A/ 36 >  0 <!< 37

ii

 T6*

# < ./0 1 H9 / /A 3 /E<  DF </  != /9 2E<  12 P/J I#QA F 1   13 3 3 />J"  P/J I#QA< H<. / =!  19 4 JS/ >H !J/=$E<  >J"BG0P/J I#QA< H<. / =!  20 I # H1 <>/K> ! 5 JS/ >H !J/=$E<  >J">P/J I#QA< H<. / =!  23 I # H1 <>/K> ! 6 23  !=!T2 1G F$E<  >J">P/J I#QA< H<. / =!  27 7 2  E3E<  P/J I#QA< H<. / =!  28

iii

 Ti4

U J ./0 1 1VC<  FJ I#QA< H<. / =!  > W1 1 # 3 <  13 3 H E/ I2 < 0 <   P/J I#QA< H<. / =!  14 4 2 J/=$ . 3 <2  A /K9 ./  P/J I#QA< H<. / =!  15 5 2 J/=$ . 3 <2  A /K9 ./  >J">P/J I#QA< 16 H<. / =!  6 2 J/=$ . 3 <2  A /K9 ./  >J"BG0P/J I#QA< 17 H<. / =!  7  DF2 A# #3 J"E<  P/J I#QA< 18 H<. / =!  : 2 1 A. P/>J"BG0 (1), 2 1. </P/>J"> (2) 8 JS/ >H !J/=$E<  >J"BG0P/J I#QA< H<. / =!  21 I # H1 <>/K> 9  JS/ E<  1J/=$>J"BG0 : spermatogonia (1), primary spermatocytes (2), 22 secondary spermatocytes (3), spermatids (4) A  spermatozoas (5) 10 JS/ >H !J/=$E<  >J"BG0P/J I#QA< H<. / =!  23 I # H1 <>/K> ! 11  DFE<  immature oocyte (1) A< cytoplasm (C), nucleus (N) A  nucleoli (NL) 24 12  DFE<  immature oocyte (1) A< cytoplasm (C), nucleus (N) A  nucleoli (NL) 24 > ! H G3E1/! >2  13  DFE<  maturing oocyte (2) A< yolk granule (YG) A  yolk vesicle (YV) 25 14  DFE<  maturing oocyte (2) A< germinal vesicle (GV) A B/<K/ follicle (F) 25 15  DFE<  mature oocyte (3) A< yolk granule (YG) H G33 <./ A/3/ 26 16  DFE<  artetic oocytes (4) A< yolk granule (YG) H G33 <./ A/3/ 26 17 23  !=!T2 1G F$E<  P/J I#QA< H<. / =!  28 18  DFE3E<  P/J I#QA< H<. / =!  29 19 2 J/=$ . 3 <2  E3 1/K9 ./ #  P/J I#QA< H<. / =!  30 20 2 J/=$ . 3 <2  E3 12  #  P/J I#QA< H<. / =!  30

 ) *+,-*+.,/012341567,8/* 9 *: /3;

O04 8PQ * j* 10. : T*QU 93 3 U 1O+, ;Vl 8.,6 - Y8P m j"G/$ !HA JS/ 

n /)o

"C D 2 KJ"C D  DF G 3 <  /  != / A. 3<G3 " A 2F  DF9 2 < ! 09 >/!/ I 1 # 3 / . 3 <>/JM"H! / 2548 ;C<>/# 2 2549 B "C D # 3 < 199 # 2  >.>h  8.44+0.67 >V/#!># A /K9 ./ >h  6.80+1.47  > j/>J"BG0 99 # A >J"> 100 # J1 3    DF G  j/ G E33 /0 >  2 0  .0A#32  0 W /0# I# > W G30 /./0  9 # A . > >3/ 2 H >. 1 H  # A 1 !> F2 1 2 10<> j/0. >. < H9 1 !> F2. < 1 H 2   # m />3 1 3.20-3.27 >3 E<2  C # A. 3< "J11 !> F A/K9 . > o . A3J"> j/ W = 0.0268 L 2.5880 (R2 = 0.8941, n = 199, p<0.05) >J"BG0  9 # >   2 1. < H/;C<2. < A 2 10<0 3 >J"> 3 />J">H 9 # l A  2 1. </ # 3 />J"BG0#3>J">>3 1 1:0.99    ;BJ/=$ <E3 0# K< t E3  DF> j/>W  >. <3/ > j/E3   3.  <E3 ! F2  E3 >h  893+491 k< I2  E32 J/=$#3/K9 ./ (R2 = 0.6221)  3 2  (R 2 = 0.4587)

29 9 2 :  /!> " ! JK/3/K9 /K9 H>E# 0/

*BG0 1B!1 : .G3 u #. v#G . < H. g## / wuxyz. e-mail : [email protected] 2

Some Biological Aspects of Pearl Gourami, Trichogaster leerii (Bleeker, 1852) in Toh Daeng Peatswamp, Narathiwat Province

Chamaiporn Kaewsritong 1* Suwimon Seehirunwong 2 Jeeranan Uraiprasit 3 and Worakit Khoowkheaw 4 1Pattani Inland Fisheries Research and Development Center 2Trang Inland Fisheries Research and Development Center 3Narathiwat Inland Fisheries Station 4Yala Inland Fisheries Station

Abstract

So me biological aspects of Pearl Gourami , Trichogaster leerii (Bleeker, 1852) in Toh Daeng peatswamp of Narathiwat Province were investigated and aimed to identify the general characteristics, , living habitats and other characteristics. Fish samples were monthly collected from local fishermen during November 2004 to October 2005. A total of 199 fishes were 99 males and 100 females. The total length and weight were 8.44+0.67 cm and 6.80+1.47 gm, respectively. A laterally compressed fish with long-oval shaped body similar to tree-spot gourami were found, but its body was deeper than those of tree-spot gourami, large eyes, and interior mouth. Body and head color was silvery gray and. The dominant of this is a distinct black lace running from the head and gradually thinning toward the caudal peduncle, pearl spots on body and filamentous fin rays on dorsal and anal fins, a dark spot on caudal-peduncle. Standard length was 3.20-3.27 times of body depth. Generally found in slow flow streams, swamp or nearly still water bodies. There were three cohorts in population structure. The length-weight relationship equation was W = 0.0268 L 2.5880 , (R2= 0.8941, n = 99, p<0.05). Dorsal fins of male longer and anal fin was more colorful than those of female. Female was ovate body small dorsal and posterior dorsal rounded. There was no statistical difference of annual or monthly sex ratio (p>0.05). The fish was able to breed all year round. Egg was rounding, yellowish and pelagic. Pearl Gourami is a builder. Fecundity was 893+491 and was closer related to weight (R2 = 0.6221) than to length (R2 = 0.4587).

Key words : Belontiidae, ecology, wetland, tropical freshwater fish. *Corresponding author : Mu 4 , Pitumudi Sub- districf, Yarang District, Pattani Province 94160 e-mail : [email protected] 3

n[3[

 Trichogaster leerii (bleeker, 1852) HG3P/ <"$  !  . (Family Belontiidae)  DF G 3 <2 0  .0 A#32  0 W /0   ; "G3 P/A. 3 j/A. 3 j/  > W /0  AJ 3 H P/A/ >E#>0/"G/$G# #K"  > >V !<2I $ H/;C<>   # >"!/I/>V ( !#, 2545; En. wikipedia , 2009) P/ >">2J1 /!/KP/U 2 <#/ 3 hJ P/J I#QA j/ ‰ J K<>!A.3<> P/ >" P/ gHH1/  A/ I/0 /0 <. U ;G 2 2  I> j/ /!HG3P/U ;G 2 2  A P 0GJ/=$ 9 /! 0A 3 #J V! ./G I/ ./ A EJ  A 9 J/ /K9 A< A   ( !#, 2545) >/ F 2 1 HH> j/>. <. 0 2 10 j/0. >. < A;19 J B3 /H H< H/;C<2. < HC<> j/ 2 /3 /PH/!./C

J > K< I 

2 #0< > K< >J2  <  ECK/9 P.0A/ I/0 1  /!/KH =  #!>J! ECK/> o # 2 #0< E<#  HC< H> j/ >.#./C<9 P.0 /!/KA/ I/0><#3  <. G .  H A. 3"0  j/3 <!< B 0H "C D P0> j/A/ 

j/ >J > K<> j/  < >J 3< > j/ U 2 2 H> !ECK/ 1 /!/K A 9 P.0 P0 J # $/K9 3 <</# H/

 6s1+,*nU

>J"C D  ! 1 <  E<  P/. E0#3 /K 1.  DF  A /  != / 2. A. 3<G3 " 3. H I2 < 0 J" A 3 />J" 4

6. MG <E3 6.1 # H1  >H !J/=$ <>/K> ! 6.2 >!/23  !=!T2 1G F$ 7. 2  E<E3 A 2 J/=$ . 3 <2  E3#32  A /K9 ./

;/[33

. *8t3Qub

"C D  ! 1 <  E<  P/J I#QA< H<. / =!  0 W1 1 # 3 <  H  < VC FJ I#QA< A/K9 . >o >/o  1 2 K<#K/JM"H! / 2548 ;C<>/# 2 2549  12 >/ >J/9  "C D P/  >#3

i4  1 1VC< 

-.  06 )o* 8.,;/[33Qub

9 >/!/ 1    !# A   DFU / 1G F$H   FJ I#QA< A 0 /9 # 3 <0P/A#3 >/ . (total length) # 0 >2 <<kkl 12  > 0.1  A 01 ./3 > j/>V/#!>#  12  > 0.1 >V/#!># A 0 /9 # 3 < 0 "C D #3# EK/#/A  != "C D 

5 1. . bc, O+ 8.,310;3

 DF  /9 # 3 < A 1G F$ "C D  DF G J FFm /U /   0  <> # A J!H F  DF G 3 < A  E0 <# K<  DFA #9 A./33/ 2 1 A # > j/#0/ A 0 /9  >!/  DF/!A JM#! P/ 9 < !# IP0A/ 2!P/ "C D H MDŠ ! S/ E<!< !# 3 3 !< !#A#3 /!#0   E<=  #! >J 1> /  DF G 3 . #3 9 < !## U J/!> "A ! j/G3 (Moyle, 1993; Wootton, 1998)  DF/  != / /9 # 3 < A   DFU / 1G F$ "C D  DFA  #9 A./33/ > W # 2 1 ./  A  H /K/> W1  D # 3 < 0  k $ !/ 10% >J"C D  DF </  != /#  !=E< Smith (1945); Day (1967); Rainboth (1996) I 3 /E<  DF9 2#3  0.01 >V/#!># A< 3 / 0> j/23 2   # m /#32  C 9 # A 2  3 /. A 23 2  3 /. #3 2  C 9 # #  !=E< Hubbs and Lagler (1947) A 0 H 9 1 </  != /IP0 11E< Nelson (1994)

2. 8:.o* )foQ )

# H1  DF <0 / U J A 2F1#!/K9 > j/A. 3< "E< P/ o >/ P/ /-> > / 19 > W1# 3 < I9 > W1# 3 J/9  !>2 .$. 23 J !># $#3 2 .$0P/U 2/  WH9 !>2 .$/ I/2FU J/K9 H9 "C D  $I!># $ ./3  > j/<" >V >V (°C)  12  C 30 >V/#!># 2) 2 I 3. W  (secchi disc) E/ >0/B3 /"G/$ < 20 >V/#!>#  E  19 A BG > # < < .3/>

.W/E . 9 1/AB3/>. W 1/C 23 2  C H B! /K9  12  > 0.1 >V/#!># 3) 2 > j/ 3 < (pH) P0>2 < pH meter E< Hanna model HI98130 3 /23 2  > 0.1 ./3   12  C 30 >V/#!>#

6

4) ! F V!>H/   (dissolved oxygen) P0>2 < DO meter YSI model 52 3 /23  2  > 0.01 ! ! #3 !#  12  C 30 >V/#!># 5) 2 > j/3 < (alkalinity) I != #>#  phenolpthalein A  methyl orange > j/ indicator ./3 > j/! ! #3 !# E< CaCO 3 6) 2  0 < (hardness) I != #>#  eriochrome black T > j/ indicator ./3 > j/

! ! #3 !# E< CaCO 3

3. ,9)5n*P*-3/+, +.

/9 E0G 2 ;2  E<  P/A#3 >/9 HP/ 1 t  !>2 .$I2 < 0 < A  G A11 H E 1>12 A# #3 /0  kP/ G A11E< H # 3 <> #3 < /

4. n0 04 3;U,:o*3Y[:3 8.,n0)6 +.

/9 # 3 < K<. 2  >. A . (L) E< 0  != least square method #  !=E< Rounsefell and Everhart (1953) A<2 J/=$E<E0G /K9 ./ A 2  H !>2 .$ ;; (regression analysis) P/ G E<  9 0/# < . (>V/#!># ) a A  b = 23 2< >29 / F0 A<2 J/=$A 23  !=!T# 9 ./ (R2) A 0 9 # H1 #3 3  < 3   ;=!1 2 B/A E<23 # A #  (23 A / Y) 03 <>. . 3 3 < I29 / F23 t H G# t = √(n-2) R2 / (1-R2) A 0 /9 23 t 29 / F0 > 1>1 123 t 

> vH # < t-distribution  12 >/ 95 A  99 >  $>VW/#$  t 0.05 (n-2) ;0 23 t 29 / F0  23  3 23 t > vH # < A< 3 >0/ A<2 J/=$2 >/P/ =!1 2 B/ A E<# A # 3 </9 2 <;!#!

7

5. n0866o*,:o*4Q 8., /o34Q

5.1 2 A# #3 < . 3 <>J" > 1>1  DF G 3 < 9 # ;C<  DFA #9 A./33/ 3<>J" # 2 1 A  9 # E<# 3 <E<>J"BG0A >J"> P/ F3  ;H9 A/ >J"0 # > 3 0 9 B3 #>/K>>J# HG  1J/=$0  0< H  "/$

5.2 3 />J" 9 3# 3 <  1 0P/A#3 >/o  8 # >/J"H  DFU / 0;G #0<1G F$ # HC/K> ! >J9 A >J" 03 <;G #0J"0  !>2 .$I 29 / F3 />J" A 12 A# #3 < <;!#!0  != Chi-square test (Snedecor and Cockran, 1973) H #K< #!m / 3 >J"BG0A  >J">3 />3 / 1:1 I9 13 />J"P/U J K< tH E0G K<.3# 3 <0P/A#3 >/A 1 3 />J" >/>J# H1 3 3 />J" > /A < # MG . 3 I29 / FH G# χ2 = ∑ (O-E) 2 / E - P/ 123 3 />J"P/U J K< t P0 > 1>123 χ2 29 / F0 123 χ2  > vH # < χ2 0.05  df = (number of row - 1) x (number of column - 1) - P/ 123 3 />J"J1 >/ P0 > 1>123 χ2 29 / F0 123 χ2  > vH # < χ2 0.05  df = (n-1) >23 χ2 29 / F023  3 23 χ2 > v0H # < A< 3 3 />J"J12  A# #3 < H #!m /#K< 0 A#3>23 χ2 29 / F023 /0 3 23 χ2 > v0H # < A< 3 3 />J"J123 3A# #3 < H #!m /

6. w/f*O-o

P/ "C D 2 KH !J/=$0 # > 3 0;G #0<1G F$ # HC/K> ! (histology) >J# H1  >H !J/=$ (maturity stage) A  >!/23  !=!T2 1G F$ (coefficient of condition, K) A 0 /9 B "C D 0 !>2 .$ A J!H F >J13<K 3 MG <E3E<  2 HG3P/3 <> PE< > "C D P/ 1 t

8

6.1 # H1  >H !J/=$ <>/K> ! (histology)

9 . 1 "C D  <>/K> ! (histology) 9 0  != ># >/K>0 J kv/>2/!2 I A3# 3 < K<# P//K9  Bouins fluid > j/> 24  I< A 0 /9  B3 / ethanol 2 >E0E0/ #KJ9 CV $ (dehydration) H /K//9 >/K>B3 / xylene A  ‘g<!K/>/K> (embedded) P/ paraffin /9 >/K> ## E < P.02 ./ 6 I2 ># #! <1/  $ H /K/00  Harriss hematoxylin & eosin #  != E< Humason (1979) # EK/#/ <#3 /K - B3 />/K>P/ xylene 2 2 K j/> 5 /  - 00  Harriss hematoxylin  F 7 /  - H3P//K9  2 /  - differentiate P/ 1% acid alcohol 5 !/  - H3P//K9  2 /  - B3 /P/ saturated lithium carbonate  F 10 !/   - 0 <0 /K9  1-2 /  - 00  eosin  F 1 /  - B3 / 95% ethanol 2 2 K j/ adhesive H /K/HCH !J/=$E< >J"BG0 A >J">0  0H !J/=$ E<  1J/=$>J"BG0 P/ "C D 2 KJ"BG0 (testis) A <#  !=E< J F"  A 2F (2538); Lehri (1967) IA13<> j/ 5  j/ germ cell > !ECK/P/ gonadal lamella VI#J VCH#!  IV!/ (eosin) /! >2 23/E0 !H A13<>V $E< spermatogonia  3 secondary spermatocytes > !H A13<>V $E< primary spermatocytes /! >2 < #!/K9 >E0 9

 4 spermatids E/ > W  > !H A13<>V $E< secondary spermatocytes /! >2  <2<#!/K9 >E0  5 spermatozoas > !H > / G 3 V $ A#3> / G 3 !ECK/ H#!JG 2)  >H !J/=$ E<  1J/=$>J"> "C D 3 /E< oocyte #3 1 0A 0  # HU P#0 0 j/ >  $>VW/#$I/1 oocyte K<.H 1 # (Najim and Bhatti, 1978) P/ "C D 2 K /A 2 VC< A13<> j/ 4  W /! >2 E/ P.3 > j/  <3  0  3 germ cell .  oogonium oogonium .   3 primary oocyte J!H9 / /3 <   VC #>.W/ nuclear membrane >H/ P/ /KH  0 < yolk vesicle G3U P/ ooplasm . J!H9 / /A  E H/>#W ooplasm  3 <./C<J1#  2 yolk globules P/3 /E< extra vesicular cytoplasm A  >J!H9 / /A E/ >JP.0 oocyte JS/ 1G F$ECK/  3 mature oocyte  DF oocyte P/ /K> j/ 3 nuclear membrane /! >2 AB3 0 < 1 oocyte <> #>.W/B/<>V $>H/ K//  2 K/ theca K/ < zona granulosa .  follicular epithelium A K/P/ zona radiata K/ zona granulosa   DF./ 39 >K<. >0 nuclei #!>E0  4 artetic oocyte  DF oocyte G 3 <> 0 o A. 3 j/JG>E0 3 < oocyte P/ /KA# #3 .W/0>H/ H  DFE< granulosa 2 ./ 9 ># K< oocyte

6.2 >!/ !=!T2 1G F$ (coefficient of condition, K)

/9 # 3 <  0/ A 0 /9 23 0 29 / F23  !=!T2 1G F$ . 23 K #  !=E< Swingle and Shell (1971) > 1>1 1 > /A <23  !=!T2 1G F$ P/ 1 t >J >!/A/ I/0 3 3 <> P>.W/3 <  23  !=!T2 1G F$ >h G3P/ 1G< VC

  1J/=$ 3 23 B/A G<#  0  A P023 < 3 13<1 ;C<3 <> E. 100 = 23 2<>JP0 1P.0023 > j/> EH9 / />#W./C<. 

7. n0/O-o 8.,n0 04 3;U,:o*n0/O-o6o3Y[:3 8.,n0)+.

/9 # 3 < E3A 3 H9 / / 25 # 3 <  1/K9 ./ A 2  A#3 #  B3 0<>J9 2  A # $ H /K//9 E0G 0 29 / F23 2 J/=$ . 3 <2  E3#3/K9 ./ A 2  #  !=E< Siddigui et al. (1976) VC<02 J/=$ . (>V/#!># ) a A  b = 23 2< >29 / F0 A<2 J/=$A 23  !=!T# 9 ./ (R2) A 0 9 # H1 #3 3  < 3   ;=!1 2 B/A E<23 # A #  (23 A / Y) 03 <>. . 3 3 < I29 / F23 t H G# t = √(n-2) R2 / (1-R2) A 0 /9 23 t 29 / F0 > 1>1 123 t 

> vH # < t-distribution  t 0.05 (n-2) ;0 23 t 29 / F023  3 23 t > vH # < A< 3 >0/  A<2 J/=$2 >/P/ =!1 2 B/A E<# A # 3 </9 2 < ;!#! A 1 G A11 >#!1I#0  123 b = 3 (isometric growth) . 3 IP0G# (J>  A "J , 2544) b-3 t0 = Sb

11

> t0 = # 1;!#!P0P/ > 1>1 123 t H # < # m / b = 23  9 < H 2 J/=$ . 3 <2  1/K9 ./ #

Sb = 23 2 2 >2 / # m /E< b

t.Qub

H "C D  ! 1 <  E<  P/J I#QA< H<. / =!  I9 > W1 1 # 3 FJ I#QA< . 3 <>/JM"H! / 2548 ;C< >/# 2 2549 B 

1. . bc, O+ 8.,310;3

1.1  DF 

B "C D J1 3    DF G  j/ G E33 /0 >  9 # 1 < A1/0 /E0 <2 0  .0 A#32  0 W /0 > WP.3 3  DF2 1. <. > 0 (emarginate) A 3 /H 2 1 0/ I > 0 C E<2 1. <3  2 1/K<3 /1/A 3 / 3 < 2 1 > W A P#K<G3 0 /E0 < 9 # P 0 13<> v>.< 2 10< 0 /2 13/ > j/ >0/ !K A 2 1 0/23/E0 #W 2 1. H/;C<1 !> F2. <3 /# > 2 1. <> W A  2 1/ 3 >J"BG0 E/ > W G3 <0 /./0 E<3 /. #  A E/  P.3#9 A./3<23/  <0 /./0 E<3 /. # ./<2  9 # A . > >. 1 H  # A 1 !> F2 1 2 10<> j/0. >. < # BG02 10E0 3 >J">

1.2 /  != /

H /1H9 / /A  3 /E<  DF9 2#3 j/ 3.20-3.27 >3 E<2  C E< 9 # A > j/ 3.21-3.80 >3 E<2  . 2   . > j/ 0.86-1.00 >3 E<2  C 9 #  G >.< 4 2G3 # E/ P.3 A >0/B3 /"G/$ < 0.62-0.69 >V/#!># > W G3  2 1. < 0 /AEW<2 1AEW< 6-7 0 / 2 13/ 8-9 0 / 2 1  0 /2 13/ 8-10 0 / 2 10 W  0 /2 13/ 4-5 0 /I 0 /2 1/ 12

 > j/>0/ 1 0 / 2 1 0/ 0 /2 1AEW< 12-14 0 / 0 /2 13/ 26-29 0 / A 2 1. < 0 / 2 13/ 14-16 0 / 9 . 1 "C D P/2 KActinopterygii Order Perciformes Family Belontiidae Trichogaster Species leerii (Bleeker, 1852)

6*  1 H9 / /A 3 /E<  DF </  != /9 2E<  P/J I#QA< H<. / =! 

 DF </  != / ./3  /1H9 / /A  3 / standard length >V/#!># 5.14-8.40 total length >V/#!># 6.90-9.30 head length >V/#!># 1.66-2.27 head width >V/#!># 0.72-2.12 eye diameter >V/#!># 0.62-0.69 mouth width >V/#!># 0.52-0.73 predorsal length >V/#!># 2.25-3.73 body depth at dorsal fin origin >V/#!># 0.23-2.84 caudal peduncle length >V/#!># 0.02-2.52 caudal peduncle depth >V/#!># 0.66-0.96 dorsal fin ray 0 / 13-16 pectoral fin ray 0 / 8-10 ventral fin ray 0 / 4-50 caudal fin ray 0 / 14-16 anal fin ray 0 / 38-42 total gill arch 2G3 4 head length : body depth - 0.86-1.00 standard length : body depth - 3.20-3.27 standard length : head length - 3.21-3.80

13

2. 8:.o* )foQ )

 J1P/JK/J I#QA<> j/  "G3 > j/ 3P/1 !> FJK/ 3/K9 . > o . /K9 23/E0 j/ > W /0 VC<> !H 3 E

i4  2 U JJK/1 !> FJ I#QA< H<. / =!  > W1 1 # 3 < 

H !>2 .$2F1#!EV/#!># 2 > j/ > j/3 < . 3 < 4.45-5.80 ! F V!>H/  /K9 . 3 < 3.55-5.30 ! ! / !# 2 > j/3 < . 3 < 2.0-30.0 ! ! / !# A 2  0 < . 3 < 18.0-74.0 ! ! / !# (# < 2)

6*  2 2F1#!/K9 P/J I#QA< H<. / =!  1 !> F 1  

F.UG!/K9 2 I 3 j/   V!>H/   2 > j/3 < 2  0 < >/ (°C) (V.) > j/3 < ( ./ !# ) ( ./ !# ) ( ./ !# ) J.. 48 28.3 120.5 4.72 4.24 26 62 =.2. 48 28.6 120.0 4.85 4.62 22 58 .2. 49 28.5 50.0 4.61 4.41 16 74 .J. 49 29.2 60.5 4.45 5.30 12 56 .2. 49 30.5 50.0 5.27 3.97 2 20 >.. 49 31.0 60.3 5.65 4.56 6 18 J.2. 49 29.4 55.0 5.72 3.95 8 22 !..49 29.9 50.0 5.80 4.67 20 20 .2. 49 28.7 50.0 5.61 4.15 25 24 .2. 49 26.4 120.0 5.72 3.55 15 24 .. 49 26.7 120.0 5.56 3.92 19 36 #.2. 49 27.5 120.0 5.60 3.75 30 46 14

3. ,9)5n*P*-3/+, +.

"C D H E/!/ 0 G A11 > 2 H # 3 <> #3 < /P/ 1 t I/9  H9 / / 199 #  AH AH<2 ; # 3 <2  E<# 3 < P/A#3 >/ (U J 3) J1 3   E/ > W  A E/ P.39 HJ12  6.00 >V/#!># A  10.50 >V/#!># #  9 1P/>/  2 2549 I  3 /P.32  G3 . 3 < 8.01-9.00 >V/#!># 2!> j/ 0  65.83 J1 P/>/ 2 2549 A >/!;/ /;C<!<. 2 2549 IP/>/ 2 2549 J1> 1 E/ 3 <2  ( > 0/3 V/#!># A 3 V/#!># ) A< 3 P/>/ 2 H E W1# 3 <0#K W H/;C j/ 0  27.14 I>/ H1 0 ! F  2>/  2 2549 ( 0  27.14) < < 2>/JM"H! / 2548 ( 0  14.57) A >/ Š 2 2549 ( 0  9.05) A A/ I/0J1  E/ > W H9 / / P/>/ 2>3/> /

25 J..-48 =.2.-48 .2.-49 .J.-49 20 .2.-49 >..-49 J.2.-49 !..-49 .2.-49 .2.-49 15 ..- 49 #.2.- 49

H9 / / (# ) /(# H9 / 10

5

0 5.51-6.0 6.01-6.5 6.51-7.0 7.01-7.5 7.51-8.0 8.01-8.5 8.51-9.0 9.01-9.5 9.51-10.0 10.01-10.5

2  >. (>V/#!># ) i4  3 H E/ I2 < 0 <   P/J I#QA< H<. / =! 

15

4. n0 04 3;U,:o*3Y[:3 6on0)6 +.

4.1 2 J/=$ . 3 J"

H "C D # 3 <  A113A >J"H9 / / 199 # 3 < J1 3  23 2  . 3 < 6.0-10.5 >V/#!># A /K9 ./ . 3 < 3.12-12.92  23 2  >h >3 1 8.44+0.67 >V/#!># A /K9 ./ >h >3 1 6.80+1.47  A > !>2 .$2 J/=$ . 3 < /K9 ./ #32  J1 3   2 J/=$ . 3 .W/0 3  2 J/=$E<  A113A >J"29 / F0 23  !=!T# 9 ./>3 1 0.8941 A.W/ 3 E0G 2 J/=$ . 3 /9 23  !=!T# 9 ./ (R2)  29 / F. 23 t

0>3 1 40.78 >J/9  > 1>1 123 t > v0H # < t-distribution  t0.05 (n-2) 23 >3 1 1.96 J1 3 23 t 29 / F023  3 23 t > vH # < A< 3 >0/ 2 J/=$29 / F0 12 >/P/ =!1 2 B/A E<# A # 3 </9 2 <;!#! (p<0.05)

14

12 W = 0.0268 L2.5880 2 10 R = 0.8941 n = 199 8 6 /K9 ./ ( ) 4 2 0

4 6 8 10 12

2  (>V/#!># ) i4  4 2 J/=$ . 3 <2  A /K9 ./  P/J I#QA< H<. / =!  16

4.2 2 J/=$ . 3 J">

H "C D # 3 <  >J"> 100 # 3 < J1 3  >J">23 2  . 3 < 6.1-10.1 >V/#!># A /K9 ./ . 3 < 3.10-11.74  23 2  >h >3 1 8.33+0.68 >V/#!># A /K9 ./ >h >3 1 6.62+1.54  A > !>2 .$2 J/=$ . 3 < /K9 ./ #32  J1 3   2 J/=$ . 3 .W/0 3  2 J/=$E<  >J">29 / F023  !=!T# 9 ./>3 1 0.9082 A.W/ 3 E0G 2 J/=$ . 3 /9 23  !=!T# 9 ./ (R2)  29 / F. 23 t 0

>3 1 31.12 >J/9  > 1>1 123 t > v0H # < t-distribution  t0.05 (n-2) 23 >3 1 1.96 J1 3 23 t 29 / F023  3 23 t > vH # < A< 3 >0/ 2 J/=$29 / F0 12 >/P/ =!1 2 B/A E<# A # 3 </9 2 <;!#! (p<0.05)

14 2.6652 12 W = 0.0229 L 2 10 R = 0.9082 n = 100 8

6

/K9 ./ ( ) 4

2 0 4 6 8 10 12

2  (>V/#!># ) i4  5 2 J/=$ . 3 <2  A /K9 ./  >J">P/J I#QA< H<. / =! 

17

4.3 2 J/=$ . 3 J"BG0

H "C D # 3 <  >J"BG0 99 # 3 < J1 3  >J"BG023 2  . 3 < 6.0-10.5 >V/#!># A /K9 ./ . 3 < 3.12-12.92  23 2  >h >3 1 8.56+0.64>V/#!># A /K9 ./ >h >3 1 6.98+1.39  > !>2 .$2 J/=$ . 3 .W/0 3  2 J/=$E<  A113A >J"29 / F 023  !=!T# 9 ./>3 1 0.8764 A.W/ 3 E0G 2 J/=$ . 3 /9 23  !=!T# 9 ./ (R2)  29 / F

. 23 t 0>3 1 26.23 >J/9  > 1>1 123 t > v0H # < t-distribution  t0.05 (n-2) 23 >3 1 1.96 J1 3 23 t 29 / F023  3 23 t > vH # < A< 3 >0/ 2 J/=$ 29 / F0 12 >/P/ =!1 2 B/A E<# A # 3 </9 2 <;!#! (p<0.05)

14 2.5313 12 W = 0.0300 L 2 10 R = 0.8764 n = 99 8

6

/K9 ./ ( ) 4

2 0 4 6 8 10 12

2  (>V/#!># ) i4  6 2 J/=$ . 3 <2  A /K9 ./  >J"BG0P/J I#QA< H<. / =! 

18

5. n0866o*,:o*4Q 8., /o34Q

5.1 2 A# #3 < . 3 <>J"

H "C D J1 3 A >J"H <> #  DFU / 0 # > 3 9 0 IG  DF E< A 2 1. <2 >J"BG0>E0 3 >J">I>hJ 1 !> F2 1 0/ A  >J"BG02 1 . <  3 2 1. < >J">I H 2. < . > 2. < 3 /2 1. < >J">  DF 2 1/ 3;C<2. < P/MGBJ/=$H<> #  DFU / 0>H/ECK/ I >J" >0<  DFG 3  >J"BG03 <>.W/0 (U J 7)

4Q tfP 4Q 0) (1) (2)

(2) (1)

4Q tfP 4Q 0) : www.aquafanet.com   : www.seriouslyfish.com i4  7  DFA# #3 < . 3 <>J"E<  P/J I#QA< H<. / =!  : 2 1 A. P/>J"BG0 (1), 2 1. </P/>J"> (2)

5.2 3 />J"

H 3# 3 <  P/ 1 t  199 # P/3 <2  6.0-10.5 >V/#!># /K9 ./ 3.12-12.92  J1 3 > j/ >J"BG0 99 # A >J"> 100 # 3 />J"E< >J"BG0#3 >J"> 23 >3 1 1:0.99 A B !>2 .$3 />J"P/ 1 t0  != Chi-square test  12  >/ 95 >  $>VW/#$  degree of freedom (df) = 11 J1 3 23 χ2 29 / F023 >3 1 1.77 VC<23 /0 3 23 χ2 > v0H # 3 1 19.68 J"E<  J1P/JK/ 19

J I#QA< H<. / =! P/ 1 t/K/ 32 A# #3 < / . 3 < >J"BG0A  >J"> A > J!H F 3 />J" >/J1 3 3 />J"E<  H10P/ o >/32 A# #3 < / I23 χ2 0H 29 / F23 /0 3 23 χ2 0H # < df = 1 VC<23 >3 1 3.84  1 2 >/ 95 >  $>VW/#$ (# < 3)

6*  3 3 />J"  P/J I#QA< H<. / =! 

>/ H9 / / (# ) # 3 / 23 >h  χ2 > W1# 3 <  >J"BG0 >J"> >J"BG0:>J"> J.. 48 29 12 17 14.5 1:0.71 0.86 =.2. 48 8 4 4 4.0 1:1.00 0.00 .2. 49 54 29 25 27.0 1:1.16 0.30 .J. 49 17 9 8 8.5 1:1.13 0.06 .2. 49 8 4 4 4.0 1:1.00 0.00 >.. 49 8 4 4 4.0 1:1.00 0.00 J.2. 49 8 3 5 4.0 1:0.60 0.50 !.. 49 16 8 8 8.0 1:1.00 0.00 .2. 49 18 9 9 9.0 1:1.00 0.00 .2. 49 17 9 8 8.5 1:1.13 0.06 .. 49 8 4 4 4.0 1:1.00 0.00 #.2. 49 8 4 4 4.0 1:1.00 0.00  199 99 100 99.5 1:0.99 1.77

:0):61 # < Chi-square (χ2)  degree of freedom (2-1), [(2-1)x(12-1)] = 1, 11  12  >/ 95 >  $>VW/#$ = 3.84, 19.68 #  9 1

20

6. w/f*O-o

"C D MG <E3E<  P/J I#QA< H<. / =!  I >!/A #!#  > /A J"BG0A  >J">H # H1  >H !J/=$ <>/K> ! A 0 /9 B 0 !>2 .$A J!H F >J13<K 3 MG <E3E<   P/J I#QA< H<. / =!  /K/0B "C D 

6.1  >H !J/=$ E<  1J/=$  >J"BG0

P/ "C D 2 KH !J/=$0 # > 3 0;G #0<1G F$ # HC/K> ! (histology) I3# 3 < H H9 / /  1 0K<.P/ A#3 >/o  8 # >J"C D  <>/K> ! B # H1J1 3 > j/ >J"BG0 H9 / / 40 # I /K9 >KA 3>#WP/  5 (spermatozoas) 23 G<P/>/# 2 2549 ( 0  54.70) A  #9 P/>/=/ 2 2547 ( 0  34.23) VC<23 23/E0 <G<# K< t . 3 < 0  34.23-54.70 (# < 4) A< 3  >J"BG0  ;HBJ/=$0# K< t

6*  4 JS/ >H !J/=$E<  >J"BG0P/J I#QA< H<. / =!  I # H1 <>/K> !

23 >h  ( 0 ) + SD >/ spermatogonia 1° spermatocyte 2° spermatocyte spermatid spermatozoas J.. 48 3.71+1.62 12.55+5.10 36.14+4.15 11.32+7.31 36.28+10.45 =.2. 48 2.84+1.20 9.57+12.01 43.79+4.73 9.57+9.59 34.23+5.96 .2. 49 4.25+2.95 10.54+5.65 36.24+2.15 8.78+2.11 40.19+13.20 .J. 49 4.79+2.34 14.27+3.44 28.75+11.01 10.24+6.29 41.95+6.12 .2. 49 3.00+1.65 10.79+4.12 33.41+5.67 14.25+4.55 38.55+5.83 >.. 49 3.84+6.34 8.62+3.95 26.78+10.45 17.51+3.91 43.25+4.39 J.2. 49 3.92+11.07 7.94+4.92 19.54+2.35 15.47+2.65 53.13+3.50 !.. 49 4.36+6.69 9.57+6.10 25.48+6.12 9.49+11.20 51.10+3.15 .2. 49 5.70+3.89 11.78+5.22 23.82+4.87 10.44+4.60 48.26+2.89 .2. 49 4.77+3.75 14.25+4.36 18.56+5.67 12.36+3.19 50.06+2.63 .. 49 4.15+10.02 8.78+4.14 21.21+8.24 15.48+7.91 50.38+2.99 #.2. 49 3.17+1.35 9.82+2.63 17.59+4.10 14.72+1.89 54.70+3.51

21

spermatogonia 1°spermatocyte 2°spermatocyte spermatid spermatozoa 100

80

60

40

20 0 J..48 .2.49 .2.49 J.2.49 .2.49 ..49 i4  8 JS/ >H !J/=$E<  >J"BG0P/J I#QA< H<. / =!  I # H1 <>/K> !

"C D  DFI2 < 0 < <>/K> ! E<  >J"BG0  JS/ E<   1J/=$ (# < 4 A U J 8) A13<  JS/ > j/ 5 #  !=E< Lehri (1967); J F"  A 2F (2538) J1 3  JS/  j/ germ cell > !ECK/P/ gonadal lamella VI#J VCH#!I V!/ (eosin) /! >2 23/E0 / Š 2 2549 23 >h  0  5.70+3.89 A J1#9 P/>/=/ 2 2548 23 >h  0  2.84+1.20  2 primary spermatocytes E/ > W 3 spermatogonia I> !H A13<>V $E< spermatogonia #!JG>E0 3 spermatogonia /! >2 #!>E0VC<> j/ 3E< chromatin J1G<P/ >/ U J/=$ 2549 23 >h  0  14.27+3.44 A #9 P/>/>/JMDU 2 2549 23 >h  0  7.94+4.92  3 secondary spermatocytes H9 / / 3 A E/ > W 3 primary spermatocytes I > !H A13<>V $E< primary spermatocytes /! >2 <#!JG>E0 J1G<P/>/=/ 2 2548 23 >h  0  43.79+4.73 A #9 P/>/# 2 2549 23 >h  0  17.59+4.10  4 spermatids E/ > W  > !H A13<>V $E< secondary spermatocytes /! >2  > !#!9 J1G<P/>/>D / 2549 23 >h  0  17.51+3.91 A #9 P/>/ 2 2549 23 >h  0  8.78+2.11

22

 5 spermatozoas > !H > / G 3 V $ A#3> / G 3 < I. <> !ECK/ H#!9 >E0ECK/ J1G<P/>/# 2 2549 23 >h  0 54.70+3.51 A #9 P/ >/=/ 2 2548 23 >h  0  34.23+5.96

(3)

(5)

(2)

(4)

(1)

i4  9  JS/ E<  1J/=$>J"BG0 : spermatogonia (1), primary spermatocytes (2), secondary spermatocytes (3), spermatids (4) A  spermatozoas (5)

6.2  >H !J/=$ E<  1J/=$  >J">

B # H1  >H !J/=$E<  1J/=$  >J"> I"C D  <>/K> ! J1 3  >J"> J 0BJ/=$> 1# K< t IJ1# 3 <  >H ! J/=$P/  3 mature 23 G

/>D / 2549 ;C<>/# 2 2549 ( 0  37.15-46.86) A  23 #9 P/3 <>/JM"H! / 2548 ;C</ 2 2549 ( 0  21.10-23.59) (# < 5 A U J 10)

23

6*  5 JS/ >H !J/=$E<  >J">P/J I#QA< H<. / =!  I # H1 <>/K> !

23 >h  ( 0 ) + SD >/ immature maturing mature artetic J.. 48 37.41 +6.75 22.92 +1.35 21.10 +12.01 19.57 +12.73 =.2. 48 38.21 +6.34 32.19 +0.39 18.95 +12.01 10.64 +11.70 .2. 49 31.43 +2.73 38.39 +2.35 17.27 +17.54 12.41 +17.54 .J. 49 28.11 +1.20 33.89 +3.75 25.80 +5.89 12.20 +5.89 .2. 49 20.00 +0.50 41.03 +1.45 23.59 +12.77 15.38 +12.32 >.. 49 21.97 +3.42 31.03 +1.85 37.15 +6.69 9.85 +9.88 J.2.49 24.41 +1.65 35.59 +4.73 32.63 +5.77 7.37 +5.77 !..49 18.97 +1.46 31.03 +5.65 33.14 +3.40 16.86 +3.40 .2.49 11.60 +4.92 25.95 +3.20 49.49 +8.93 12.95 +11.07 .2.49 13.92 +2.95 26.31 +1.72 45.34 +10.02 14.43 +10.02 ..49 14.21+1.40 25.89 +2.85 49.88 +9.50 10.02 +9.50 #.2.49 17.21 +2.10 23.10 +4.10 46.86 +1.62 12.91 +1.62

immature maturing mature artetic

100 80

60

40 20

0 J..48 .2.49 .2.49 J.2.49 .2.49 ..49 i4  10 JS/ >H !J/=$E<  >J">P/J I#QA< H<. / =! I # H1 <>/K> !

24

"C D  DFI2 < 0 < <>/K> ! A 3 /E< oocyte E<  >J">P/ #3 /A 2  > j/ 4  (# < 5)  j/ oocyte E/ > W <3  0 j/>.  oocyte  follicle 1 E0 /! >2 . >  3 germinal vesicle G3 C< <>V $ E/ P.3>> 1>1 1E/  E<>V $ 0#!3 <3/ U P//! >2   nucleolus E/ > W . / (U J 11) A > ! H   G3E1/! >2 (U J 12) J123 G<P/>/=/ 2 2548 23 0  38.21+6.34 A 23 #9  P/>/ Š 2 2549 23 0 11.60+4.92

(1)

(NL ) (N)

(C)

i4  11  DFE<  immature oocyte (1) A< cytoplasm (C), nucleus (N) A  nucleoli (NL)

(N) (NL ) (NL ) (N) (C) (1) i4  12  DFE<  immature oocyte (1) A< cytoplasm (C), nucleus (N) A  nucleoli (NL) > ! H G3E1/! >2 

25

 2 maturing oocytes > j/ oocyte > ! 1 /  0 V $ 9 P.0 oocyte E/ P.3ECK/ G 3 /> j/23/E0 <  3 oocyte A !<<> #>.W/ 0>H/2> !  yolk vesicle (cortical alveoli)   DF P P/ cytoplasm I> ! P 0o E1E< cytoplasm A 0 HC<23o AB3  cytoplasm (U J 13) P/  3>  //K/ oocyte WH> ! yolk granule 1 !> F 1o germinal vesicle 0#!JGA<  DF> j/ j/JG>E0 (U J 13) P/ #3 yolk granule  >J! ECK/ H/>#W cytoplasm A /P.0 yolk vesicle  G3E1>V $ H/<3>.W/P/ germinal vesicle E/ P.3 G3# < C< <>V $ 0#!JG>E0 K/ follicle 2 ./  ECK/>// / 2 2549 23 0  41.03+1.45 A 23 #9 P/>/JM"H! / 2548 23 0  22.92+1.35

(2)

(YG)

(YV)

i4  13  DFE<  maturing oocyte (2) A< yolk granule (YG) A  yolk vesicle (YV)

(2) (GV)

(F)

i4  14  DFE<  maturing oocyte (2) A< germinal vesicle (GV) A B/<K/ follicle (F) 26

 3 mature oocytes > j/  nuclear membrane >  germinal vesicle  >2 /H # < < G3EK animal pole A P/H  V $ oocyte 1 </3J1 germinal vesicle G 3 < oocyte 23/E0 <  K/ granulosa H./ 3>3 /#  3 /2 ./  2 0 / pole A  yolk granules >2  DF> j/>WJGA< H # /> j/>/K> />.W/B/<K/P/ >H/ zona radiata (ZR) (U J 15) J1 /K0 >/ IJ1G<P/>/ / / 2549 23 0  49.88+9.50 A J1#9 P/>/ 2 2549 23 0  17.27+17.54

(YG )

(3)

i4  15  DFE<  mature oocyte (3) A< yolk granula (YG) H G33 <./ A/3/

 4 artetic oocytes   DF G 3 <> 0 o A. 3< o 3A/3// 00  H&E H#!JG >E0. JG3 < oocyte P/ /KA# #3 .W/0>H/H  DFE< granulose IK/ granulosa P/  mature H./ >hJ 0 / animal pole A#3P/  artetic phase K/ granulosa 2 ./ 9 ># K< oocyte (U J16) J1 /K0 >/ IJ1G<P/ >/JM"H! / 2548 23 0 19.57+12.73 A #9 P/>/JMDU 2 2549 23 0  7.37+5.77

(YG)

(4)

i4  16  DFE<  artetic oocytes (4) A< yolk granula (YG) H G33 <./ A/3/ 27

6.3 >!/ !=!T2 1G F$ (coefficient of condition, K)

B >!/23  !=!T2 1G F$ H # 3 <  >J"BG0H9 / / 99 # A   >J"> H9 / / 100 # J1 3 23  >J"BG023  !=!T2 1G F$ G3 . 3 < 0.98-1.16 IJ1G<P/>// 2 2549 23  !=!T2 1G F$ >3 1 1.16 A  J1#9 P/>/!;/ / 2549 23  !=!T2 1G F$ >3 1 0.98 3 /  >J"> 23  !=!T2 1G F$ G3 . 3 < 1.07-1.19 IJ1G<P/>/ 2 2549 23  !=!T2 1G F$ >3 1 1.19 A J1#9  2 >/ 2 P/>/>D / 2549 A  Š 2 2549 23  !=!T2 1G F$ >3 1 1.07 VC< > /A J"BG0 A >J">P/ 1 tJ1 > /A </0 A 3A/ I/0A< 2 J/=$E< > /A /K> ! E0 <#0/ (# < 6 A U J 17)

6*  6 23  !=!T2 1G F$E<  P/J I#QA< H<. / =! 

>J"BG0 >J">  !=!T2 1G F$ >/ H9 / / 2  /K9 ./ H9 / / 2  /K9 ./ >J"BG0 >J"> J.. 48 12 8.68 7.20 17 8.47 6.89 1.09 1.11 =.2. 48 4 8.48 6.13 4 8.13 6.19 1.01 1.11 .2. 49 29 8.51 7.11 25 8.02 6.19 1.15 1.19 .J. 49 9 8.34 6.78 8 8.49 6.76 1.15 1.09 .2. 49 4 8.60 7.40 4 7.98 5.96 1.16 1.16 >.. 49 4 8.65 6.67 4 8.10 5.66 1.03 1.07 J.2. 49 3 9.33 8.01 5 8.38 6.80 0.99 1.16 !.. 49 8 8.09 5.25 8 8.61 7.32 0.98 1.14 .2. 49 9 8.59 6.91 9 8.34 6.33 1.09 1.07 .2. 49 9 8.79 7.23 8 8.68 7.22 1.06 1.10 .. 49 4 8.95 8.16 4 8.83 7.72 1.14 1.11

28

1.30

1.25 >J"BG0

1.20 >J"> 1.15

1.10

1.05

23  !=!T2 1G F$ 23  !=!T2 (K) 1.00

0.95

0.90 J.. 48 =.2. 48 .2. 49 .J. 49 .2. 49 >.. 49 J.2. 49 !.. 49 .2. 49 .2. 49 .. 49 #.2. 49 i4  17 23  !=!T2 1G F$E<  P/J I#QA< H<. / =! 

7. n0/O-o 8.,n0 04 3;U,:o*n0/O-o6o3Y[:3 8.,n0)+.

H "C D  >J"> H9 / / 25 # 3 < VC<2  # . 3 < 7.5-9.8 >V/#!># A /K9 ./ # . 3 < 5.22-12.06  <E33 /1/#! / A 3 / A > j/JG> W o 2 JG E3  DF> j/>W  >.  j/E3  /K9 ./ E3G3 . 3 < 0.0162-0.2199  23 >h  0.1208+0.0455  A 2  E3G3 . 3 < 327-1,912 k< 23 >h  893+491 k< (# < 7 A  U J 18)

6*  7 2  E3E<  P/J I#QA< H<. / =! 

2  # /K9 ./ /K9 ./ E3 2  E3 9 1 (>V/#!># ) ( ) ( ) (k<) 1 8.0 5.53 0.1489 451 2 8.0 6.06 0.0162 505 3 8.8 7.02 0.0945 395 4 7.5 5.22 0.1617 549 5 8.3 5.90 0.1796 520 6 9.7 11.26 0.1578 1,746 7 9.8 12.06 0.2061 1,912 8 8.8 8.32 0.0954 1,237 29

6*  7 (#3) 2  # /K9 ./ /K9 ./ E3 2  E3 9 1 (>V/#!># ) ( ) ( ) (k<) 9 9.3 10.20 0.1043 1,578 10 8.7 8.69 0.1008 1,342 11 9.1 8.66 0.1008 972 12 8.8 9.23 0.2199 696 13 9.1 8.45 0.1478 1,003 14 8.1 6.68 0.1679 657 15 8.6 8.27 0.0867 327 16 9.0 8.18 0.1665 1,098 17 8.5 6.80 0.1100 423 18 8.4 6.23 0.0900 367 19 8.5 6.62 0.0900 389 20 9.3 9.80 0.1021 1,498 21 8.7 8.24 0.0934 1,201 22 9.2 10.00 0.0987 1405 23 8.6 8.16 0.0921 1,131 24 9.0 7.55 0.0900 441 25 8.4 7.47 0.1000 482 >h  8.7+0.54 8.02+1.75 0.1208+0.0455 893+491

i4  18  DFE3E<  P/J I#QA< H<. / =!  30

I2 J/=$ . 3 <2  E3 1/K9 ./ # (U J 19) 

2500 F = 10.9053W2.0650 2000 R2= 0.6221 1500 n = 25 1000

(k<)  E3 2 500

0

3 4 5 6 7 8 9 10 11 12 13 14 /K9 ./ ( )

A 2 J/=$ . 3 <2  E3 12  # (U J 20) 

2500 F = 0.0011 L6.2366 2000 R2 = 0.4587 1500 n = 25 1000

(k<)  E3 2 500

0

6 7 8 9 10 11 2  (>V/#!># ) i4  20 2 J/=$ . 3 <2  E3 12  #  P/J I#QA< H<. / =! 

31

H B "C D  2 J/=$ . 3 < 2  E3#32  A /K9 ./ 29 / F0 23  !=!T# 9 ./ (R2) >3 1 0.4587 A  0.6221 A.W/ 3 ! F2  E3E<  2 B/A #  > /A J29 / F ! F2  E3/K/ P023 /K9 ./   ;P.0 12 ><# /E< J1 3 >/9 23  !=!T# 9 ./E<2 J/=$ . 3 < 2  E3#32  A /K9 ./  29 / F23 t 23 4.41 A  6.15 A > 1>1 123 t > v

0H # < t-distribution  t 0.05 (n-2) VC<23 2.07 J1 3 23 t 29 / F023  3 23 t > vH # < A< 3 >0/ 2 J/=$29 / F0K< 2  2 >/P/ =!1 2 B/A E<# A # 3 </9 2 <;!#! (p<0.05)

1+ 8.,9cUt.

"C D  ! 1 <  E<  P/J I#QA< H<. / =!  . 3 <>/ JM"H! / 2548 ;C<>/# 2 2549 I 1 # 3

1. . bc, O+ 8.,310;3

H "C D  DF  A /  != /E<  J1P/J I#QA< H<. / =!  J1 3  /9  "C D > j/ HG3P/ Family Belontiidae ># H1  DF </  != / J1 ! " # $ 3 Trichogaster leerii (Bleeker, 1852) IJ0< 2 Trichopodus leeri (Bleeker, 1852) A  Trichopus leerii (Bleeker, 1852)  B! 2 Trichogaster leeri (Bleeker, 1852) A  Trichogaster leerri (Bleeker, 1852) (Fishbase, 2009)  2 Pearl guorami H  DF G 3 P0.  > 1>13 / . 3 <2  A 2  C E< 9 # J1 3 2   # m /> j/ 3.20-3.27 >3 E<2  C 9 # HC< G 3 13 / (morphometry) . 3 <2  A 2  C E<# P/A11 oblong /K/ > j/  DFE< G  <2  #32  C E<#  3 2 >3 A#33> !/ 4 >3 A >J!H F G 3 < A11U J#E < J1 3  > j/  G  E0 . / H  DFE<2 13 /P.3  ;13<1 ;C<  DF/!A  JM#! E<  3 > j/ >2 /0   ;J <# 0>J H >. 1 H  # A 1 !> F2 1 /> j/ E<  (Th.wikipedia, 2009) 2 10<> j/ 0. >.  j/BG0 3 <>.W/. <> #0 H  DFE< J1 3 E/ > W G30 /./0 E<3 /. VC<13<K;C< >  !/ . E/ > W / H /K/<  ; "G3P/1 !> F2F1#!E FU J/K9 > j/  .  ! F V!>H/23/E0 <#9 >/  3 Labyrinth organ   E0<03 </9 2 (Moyle, 1993; Wootton, 1998)

2. 8:.o* )foQ )

A. 3<G3 "A  AJ 3 H E<  P/J I#QA< H<. / =! "C D 2 K j/‘G<. > j/2G3P/1 !> F A/K9 . >o A 1 !> FA3 j/!/I2 /V J. P101;  DFE j/ /K9 ‘ 0H  # E j/ G< 2 2 > j/ > j/3 <G3 . 3 < 4.45-5.80 ! F V!>H/  /K9 G3 . 3 < 3.55-5.30 ! ! / !# A 23 2 > j/3 j/  DF>hJ E<2FU J/K9 P/J  ( !$ A 2F, 2533; J!=!T, 2534) 3 / AJ 3 H /K/  !# (2545) A  En. wikipedia (2009) J1 3   AJ 3 H P/A/ >E# >0/"G/$G# ( > >V !<2I $ A >  # >"!/I/>V) P/ >">2J1P/U 2 < #/ 3 < A#3P/ gHH1/J10P/U 2P#0 I>hJ J I#QA< H<. / =!  VC<<U J> j/ ‰ J  K<>!1G F$>J P/ >" HC< 3 0 3 P/ >"/K/ /!/K  ; 1#  "G30U P#0U J/K9 2 > j/ G< 2 > j/3 < A 2  0 <23/E0 <#9 ( !$ A 2F, 2533; J!=!T, 2534)

3. ,9)5n*P*-3/+, +.

"C D H E/!/ 0 G A11> 2 H # 3 <> #3 < /P/ 1 t J1 3  3 /P.3 2  . 3 < 8.01-8.50 >V/#!># 2!> j/ 0  33.17 J1 P/>/ 2 2549 < < 2 E/ 2   . 3 < 5.51-6.00 >V/#!># J1 P/>/ 2 2549 A >/ Š 2 2549 IP/>/  2 2549 J1> 1 E/ 3 <2  ( > 0/3 V/#!># ) A< 3 P/>/ 2 H E

I2 < 0 <2  P/3 <>// 2 2549 ;C<>/JMDU 2 2549 J1 3  G A112 0 2 C< / 3 /P/>/!;/ / 2549 J1 H E<  E/ > W 2 3 V/#!># IA/ I/0 3 I2 < 0 <   J1P/3 <>/JM"H! / 2548 ;C<>/JMDU 2 2549  1 0     /G3 2 3/ A A/ I/0 3 I2 < 0 <    1 3/P/>/!;/ / 2549 VC<2 0< 1 Pauly and Navaluna (1983, 0 <#   A >H !, 2544)  3 3 # $/K9 3/P.3P/>E# 0//K/ 3 /P.3 A/H> !ECK/3 <#3>/< ( . /0) #  t A#3 HA B/# MG >3/ 3 <  

4. n0 04 3;U,:o*3Y[:3 6on0)6 +.

4.1 2 J/=$ . 3 J"

H "C D # 3 <  A113A >J"P/ 1 tH9 / / 199 # 3 < J1 3 2 J/=$ . 3 /A 3 1 2.5880 A >1 G A11

>#!1I# I123 b = 3 (isometric growth) . 3 J1 3 23 t0 0H 29 / F (-6.491) 23 /0

3 23 t0.025, 120 H # < (2.358) A 23 23 t0.025, H # < (2.326) A< 3  P/3 <"C D /K/ >#!1I#A11 isometric growth (23 b = 3) VC<2 0< 1 Wootton (1990) A =/!Dm (2543)  < / 3 I  23 b HG3 . 3 < 2-4 >H !>#!1I#E< . 23 >3 1 3 A< 3 >H !>#!1I#>3//K> j/A11 # (isometrically) 2/K9 ./ E< J/=$I# < 12  VC#!1I#E< von Bertalanffy (1938, 0 <#  =/!Dm , 2543) A 23 b . 23 /0 3 3 A< 3  >H !>#!1I#A11 negative allometrically H G 3 <23/E0 H !>#!1I#A11 positive allometrically 2 H G 3 <23/ E0 <0 /

4.2 2 J/=$ . 3 J">

H "C D # 3 <  >J">P/ 1 tH9 / / 100 # 3 < J1 3 2 J/=$ . 3

VC /A 3 1 2.5880 A >1 G A11

>#!1I# J1 3 23 t0 0H 29 / F (-242.947) 23 /0 3 23 t0.025, 120 H # < (2.358) A 23 t0.025,  H # < (2.326) A< 3  >J">P/3 <"C D /K/ >#!1I#A11 isometric growth (23 b = 3)

4.3 2 J/=$ . 3 J"BG0

H "C D # 3 <  >J"BG0P/ 1 tH9 / / 99 # 3 < J1 3 2 J/=$ . 3 < /K9 ./ #32  # E<    ;A<2 J/=$0#   /A 3 1 2.5313 A >1 G A11

>H !>#!1I# J1 3 23 t0 0H 29 / F (-4.856) 23 /0 3 23 t0.025, 120 H # < (2.358) A 23 t0.025,

 H # < (2.326) A< 3  >J">P/3 <"C D /K/ >#!1I#A11 isometric growth (23 b = 3)

5. n0866o*,:o*4Q 8., /o34Q

H "C D  DF2 A# #3 < . 3 <>J"U / J1 3  >J"BG0  DFE< 9 # >   3 >J"> 2 1. J"BG0 3 H/;C<1 !> F2. < 2 10<0A >E0 3 >J">I>hJ P/MGBJ/=$ VC<2 0< 1 En.wikipedia (2009)  3  0 3  >J"BG0E/ P.3 3 P0E<2 1P/ A >J" I>hJ P/3 FP#02 <A;10 >E0 >JP0> K >J">  >J">  DFE< 9 # l 3 >J"BG02 1. <  DF 2 1. </ P/MGBJ/=$  >J">H  DFE<0<G> ‰J"BG03 <>.W/0 H "C D # 3 />J"3# 3

J"E< >J"BG0#3 >J"> 23 >3 1 1:0.99 IJ1 K< 2 >J"H9 / /P 0>2< /  > 0/P/>/ 2 U J/=$ A  !<. 2J1 >J"BG0 3 >J"> P/EF>/JM"H! / A >/JMDU 2J1 >J">  3 >J"BG0 9 . 13 />J"J132 A# #3 < /K

/"C D A< 3  P/=  #!3 > /A J"> # K< t VC<3 /< 3 0A<;C<   > j/  BJ/=$I# 3 /P0 >J"BG0

35

1 # #3 >J"> 1 # VC<2 0< 1 En.wikipedia (2009)  < / 3 P/ >J J/=$  /K/HP0 > j/2G3 . # 3 />J"BG0#3>J">>3 1 1:1

6. w/f*O-o

>/H !J/=$0 # > 3 0 ;G #0<1G F$ # 2  F$MG <E3P/ "C D 2 K/K> ! (histology) 13<K 3  >J">2 J 0B J/=$G< (  mature 23 G< 3 0  20) P/>/JM"H! / A P/3 <>/ U J/=$-# 2 3 />J"BG02 J 0BJ/=$G< (  spermatozoas 23 G< 3 0  40) P/3 <>/ 2- U J/=$A 3 <>/>D /-# 2 3 / >!/ !=!T2 1G F$ H # 3 <  >J">A >J"BG0 J123 G<P/>/ 2 A !;/ />3 1 1.19 A  1.16 #  9 1 VC<23 P 0>2< /# K< t >3/> 1 "C D 2 J/=$< 3 P/ < ( ! A 2F, 2545) I > /A J"P/ 1 t J1 > /A < 3  . P/=  #!1G F$ A    .  0P/# . 2 1G F$ HC<3  ;/9  13<1 . =!1 ;CH/0 VC< 2 0< 1 Nikolsky (1963) A Wootton (1990)  < / 3 23  !=!T2 1G F$>J"E< H0/;C<2 1G F$E<# > /A <# MG IHECK/G3 1 E/   >J" 1 2 1G F$E< . A 2FU J!E# 0/H BJ/=$ <E3P/MG‘/ A  H2 1G F$ >/3/> / K /A </ H> !H 2 0 /BA  ! F/K9 ./   1J/=$0 >/9 B "C D I2 < 0 <  A/ I/0  1 /G3 3 3/ (U J 3)  3 J!H F P/ =!1  MG <E3P/ 2 K3/> 1 B "C D P/ V! E0 / / /

7. n0/O-o 8.,n0 04 3;U,:o*n0/O-o6o3Y[:3 8.,n0)+.

H "C D # 3 <  H9 / / 25 # 3 < J1 3  ! F2  E3 . 3 < 395-1,912 k< 23 >h  893+491 k< E/ > W J12  7.5 >V/#!># /K9 ./ 5.22  A  ! F2  E3 549 k< 3 / E/ P.3J12  9.8 >V/#!># /K9 ./ 12.06  A  ! F2  E3 1,912 k< E3  DF> j/>W  >. . <>E0 > j/E3  > j/  3.  <E3 VC<2 0< 1 En.wikipedia (2009)  < / 3 36

 3.  <E3#! 1J F0/K9 >"C D 2 J/=$ . 3 < ! F2  E3#3 /K9 ./ A 2  J1 3 2 J/=$ . 3 <2  E3#3/K9 ./ (F = 10.9053 W 2.0650, R2 = 0.6221, n = 25, p<0.05) 2 J/=$ / 3 2 J/=$ . 3 <2  E3#32  (F = 0.0011 L 6.2366 , R2 = 0.4587, n = 25, p<0.05) H  H>.W/ 3 ! F2  E3B/A #  > /A !/ 2  E3E<  P/ 1 t"C D /K P0E/ E3/> 1 "C D 2 J/=$< 3 P/ .0 (H!# A 2F, 2545) / < (H!# A 2F, 2546) A  A (//#$ A  ! , 2543) VC< 2 0< 1 Wooton (1990)  3 3 ! F2  E3 HB/A # E/    A 2  1G F$E j/9 2I3 /./C

-P383,

>/ j/   DFU /  <  A > j//PHP/ < = !H  <   3 /P.30 H 1 H =  #! 3 >J > K< HC<A/ I/0   P/=  #!H  < A#3H "C D P/2 K ! >J E J/=$  >J 3 12/G3A. 3J > K<>J> j/= !H  < A/ 1 =  #!>J< 3 <>

37

P**

JS/ !/. 2537. < / H !/ 3!/ 10. JS/ !/,  <> D# A  . F$. 63 ./0 .  !# ! //$. 2545. J F P/JK/J E< >". 9 / < //I1 A AB/!J ˜. 136 ./0 . 9 /  J  ! h11 9/2551.  1 !. 3 / <,  <. 39 ./0 . =/!Dm  J///$. 2543. !1#!  ! <. J!J$2 K< 2. 1 !D "G/$ J!J$!H!# H9 , <>J ˜. 77 ./0 . J!=!T !H  F$. 2534. " U J P0!/ 3P/ >". < /2 1 1 10 t  2!/A  ™ A.3< >". ./0 157-168 . J>  "= F$ A "J H3 < . 2544. 2G3 "C D A  !>2 .$E0G 9 . 1< / !H0 /   #!# $> . "G/$JS/ <> ‘gš</ / H<. UG> W#, < <> ,  <,  <> D# A . F$. 45 ./0 . J F"  H !IU , U F > #/$F  ,  F !/1# A  ;J <"$M#. 2538. JS/ 111J/=$E<  . >  ! h11 170. ; 1/ !H J˜. 42 ./0 .  JH ! /!#!= <. 2544. >!/U  J # $/K9 P/>E# 0/ > 3 1: 2G3. >  ! < 306/1. FAO, <2$  . A > D# A.3<.   #!, 9 / < / H9 UG!U 2>>A V!kv . 517 ./0 . 1F›!#; /. 2546. JH/ / h11 1F›!#; / J.". 2542. 1 !D / /1Q2$J1 !>2/$ H9 , <>J ˜. 1488 ./0 . !$ =  / !H, H!# <"$ #/$, E > 0 PH,  D$ # 1!J$ F A   <"$ #/$. 2533. "C D 2FU J/K9 A  J # $/K9 P/J I#QA< H<. / =! . 2F <, . ! > D# " # $. 111 ./0 . ! >.H/ . 2524.  ! . U 2 ! ! " # $ <> , Hœ < F$. ! . 226 ./0 . H!#  !=!T,  !$ 1# , MDF < H,  < H A Fm= /$  E2/=$. 2546.  ! 1 <  E< .0P/1C<k H<. J!H!# . >  ! h11 14/ 2546 "G/$ !HA JS/ 

38

H!#  !=!T,  !$ 1# , MDF < H,  < H A Fm= /$  E2/=$. 2546.  ! 1 <  E< /

  ! h11 15/2546. "G/$ !HA JS/   ! h11 18/2545. 9 / !HA JS/ J 3< E<.  <. 214 ./0 . //#$ .!  <"$ A  ! .!  <"$. 2547.  ! 1 <  E< AP/J I#QA< H<.  / =! . >  ! h11 54/2547. 9 / !HA JS/ 

environmental temperature in 175 fish stocks. Cons. CIEM . 39(2): 175-192. Pope, J. G. 1972. An investigation of the accuracy of virtual population analysis using cohort analysis. Res. Bull. ICNAF . 9: 65-74. Rainboth, W. J. 1996. FAO Species Identification Field for Fishery Purposes. Fishes of the Cambodian Mekong. Food and Agriculture Organization of the United Nations, Rome. 265 pp. Rounsefell, G. A. and W. H. Everhart. 1953. Fishery Science. John Wiley and Sonc Inc., New Yolk. 444 pp. Shepherd, J. G. 1987. A weekly parametric method for estimating growth parameters from length composition data. In: Pauly, D. and G. R. Morgan (eds). Length-based methods in fisheries research. ICLARM Conf. Proc . 13: 113-119. Siddigui, A. Q., A. Chatterjee and A. A. Khan. 1976. Reproductive biology of the Carp, Labeo bata (Ham.), from the River Kali, India. Aquaculture 7(2):181-191. Smith, H. M. 1945. The Fresh-water Fishes of Siam, or Thailand. Smithsonian Institute United States National Museum. 622 pp. Snedecor, G. W. and W. G. Cockran. 1973. Statistical Method. 6th ed. Iowa, USA. 593 pp. Sparre, P. and S. C. Venema. 1992. Introduction to Tropical Fish Stock Assessment Part I-Manual. FAO Fish. Tech. Paper 306.1 Rev.1. FAO, Rome. 376 pp. Th.wikipedia. 2009. Pearl_gourami. Available at http://th.wikipedia.org . Accesed on August 18, 2009. von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology 10(2): 81-213. Wetherall, J. A., J. J. Pololvina and S. Ralston. 1987. Estimating growth and mortality in steady-state fish stocks from length-frequencies data. In: Pauly, D. and G. R. Morgan (eds). Length-based methods in fisheries research. ICLARM Conf. Proc . 13: 53-74. Wootton, R.J. 1990. Ecology of Teleost Fish. Chapman Hall, London. 404 pp. Wootton, R. J. 1998. Ecology of Teleost Fishes. 2nd edition. Kluwer Academic Publishers, London. 386 pp.