Coast, 159, 42 Howarth I

Total Page:16

File Type:pdf, Size:1020Kb

Coast, 159, 42 Howarth I Communications in Asteroseismology Volume 159 March, 2009 Proceedings of the JENAM 2008 Symposium No 4: Asteroseismology and Stellar Evolution Vienna, 8 – 12 September, 2008 edited by Sonja Schuh & Gerald Handler Communications in Asteroseismology Editor-in-Chief: Michel Breger, [email protected] Editorial Assistant: Daniela Klotz, [email protected] Layout & Production Manager: Paul Beck, [email protected] CoAst Editorial and Production Office T¨urkenschanzstraße 17, A - 1180 Wien, Austria http://www.univie.ac.at/tops/CoAst/ [email protected] Editorial Board: Conny Aerts, Gerald Handler, Don Kurtz, Jaymie Matthews, Ennio Poretti Cover Illustration Conference poster of the Joint European and National Astronomy Meeting 2008 showing the Maria-Theresien-Statue in front of the Kunsthistorisches Museum in Vienna, against a background of a galaxy field in Fornax as seen by HST’s Advanced Camera for Surveys. (Poster created by Stefan Hirche, and adapted for CoAst by Katrien Kolenberg.) British Library Cataloguing in Publication data. A Catalogue record for this book is available from the British Library. All rights reserved ISBN 978-3-7001-6625-2 ISSN 1021-2043 Copyright c 2009 by Austrian Academy of Sciences Vienna Austrian Academy of Sciences Press A-1011 Wien, Postfach 471, Postgasse 7/4 Tel. +43-1-515 81/DW 3402-3406, +43-1-512 9050 Fax +43-1-515 81/DW 3400 http://verlag.oeaw.ac.at, e-mail: [email protected] Comm. in Asteroseismology, Vol. 159, 2009, JENAM 2008 Symposium No 4: Asteroseismology and Stellar Evolution S. Schuh & G. Handler Preface The Joint European and National Astronomy Meeting 2008 (JENAM 2008) was held from September 8-12, 2008 in Vienna, Austria, as the joint meeting of the Austrian Society of Astronomy and Astrophysics (OGAA),¨ the Astronomische Gesellschaft (AG), and the Eu- ropean Astronomical Society (EAS). It hosted nine symposia under the overall topic ”New Challenges To European Astronomy”. This special volume of Communications in Asteroseis- mology holds the proceedings of the JENAM 2008 Symposium No 4: ”Asteroseismology and Stellar Evolution”. The Asteroseismology and Stellar Evolution Symposium has been gen- erously sponsored by the OGAA,¨ by the HELAS Forum (an activity of the European Helio- and Asteroseismology Network, initiative funded by the European Commission since April 1st, 2006, as a Co-ordination Action under its Sixth Framework Programme, FP6), and by the Kulturabteilung der Stadt Wien (Magistratsabteilung 7). The Symposium program was put together by the Scientific Organizing Committee con- sisting of Conny Aerts (University of Leuven, Belgium), Annie Baglin (Observatoire de Paris, France), Wolfgang Glatzel (University of G¨ottingen, Germany), Gerald Handler (University of Vienna, Austria, Co-convener), Uli Heber (University of Erlangen-N¨urnberg, Germany), Katrien Kolenberg (University of Vienna, Austria), Suzanna Randall (European Southern Ob- servatory) and Sonja Schuh (University of G¨ottingen, Germany, Convener). Out of a total of 60 oral and poster contributions, 15 contributed talks were selected for presentation during the three half-day session program, with ample time for questions and discussion. There also was an opportunity to introduce the poster contributions during 2-min oral presentations. The scientific topics covered diverse object classes divided into Stochastically excited pulsators (main sequence, red giants, AGB supergiants), Heat-driven pulsators along the main sequence, and Compact pulsators, as well as additional topics that we have summarized as contributions on Eruptive variable and binary stars, and contributions presenting Methods and tools. The three session topics were introduced by two invited review speakers per field. In the first session, Jadwiga Daszynska-Daszkiewicz summarized current ”Challenges for stellar pulsation and evolution theory”, and Konstanze Zwintz reported ”A preliminary glimpse on CoRoT results and expectations” (for Eric Michel), together giving an overview of the observational and theoretical status of the field. Anne Thoul and Oleg Kochukhov presented the state of the art in ”Asteroseismology of B stars” and ”Asteroseismology of chemically peculiar stars”, respectively, in the second session, highlighting the hot issues in understanding and interpreting the pulsational behaviour of these groups. The stellar evolution aspect was given special consideration in ”Asteroseismology and evolution of EHB stars” by Roy Østensen and ”Asteroseismology and evolution of GW Vir stars” by Pierre-Oliver Quirion in the concluding third session. A dedicated audience (on average 45 participants in each session), the excellent speakers, and our colleague Patrick Lenz who acted as the friendly and competent technician made this Symposium a highly interesting, enjoyable and successful event. We would like to thank all speakers, poster authors, and participants for coming to Vienna, the SOC and the referees for their work, the local organizers at Vienna for providing all the necessary infrastructure, and all sponsors for having made possible this event and the proceedings at hand. Sonja Schuh and Gerald Handler Proceedings Editors Preface by S. Schuh and G. Handler, Proceedings Editors 3 Stochastically excited pulsators (main sequence, red giants, AGB) Challenges for stellar pulsation and evolution theory by J. Daszy´nska-Daszkiewicz 7 µ Herculis: Analysis of EW time series of a solar-type pulsator by E. Carolo, R. Claudi, S. Benatti, and A. Bonanno 19 Asteroseismology of solar–type stars with SARG@TNG by R. Claudi, S. Benatti, A. Bonanno, M. Bonavita, S. Desidera, et al. 21 Using p-mode excitation rates for probing convection in solar-like stars by F. Kupka, K. Belkacem, M.-J. Goupil, and R. Samadi 24 Further progress on solar age calibration by G.Houdek and D.O.Gough 27 Parametric interaction of coronal loops with p modes by A.V.Stepanov, V.V.Zaitsev, A.G.Kisliakov, and S.Urpo 30 A preliminary glimpse on CoRoT results and expectations by E. Michel, K. Zwintz, and the CoRoT team 33 Heat-driven pulsators along the main sequence Asteroseismology of B stars by A.Thoul 35 ”Hybrid” pulsators - fact or fiction? by G. Handler 42 TW Dra: NRP mode identification with FAMIAS by H. Lehmann, A. Tkachenko, and D. E. Mkrtichian 45 Preliminary results of V440 Per and α UMi observations with the Poznan Spectroscopic Telescope by M. Fagas, R. Baranowski, P. Bartczak, W. Borczyk, W. Dimitrow, et al. 48 2D modeling of a Cepheid, moving grid approach by E. Mundprecht 51 Blazhko variables – recent results by J. Jurcsik 53 CZ Lacertae – a Blazhko RR Lyrae star with multiperiodic modulation by A.´ S´odor 55 The true Blazhko behaviour of DM Cyg by Zs. Hurta 57 Asteroseismology of pre-main sequence stars by K.Zwintz, D.B.Guenther, and T.Kallinger 59 Asteroseismology of chemically peculiar stars by O.Kochukhov 61 The pulsating component of the B[e]/X-Ray transient and multiple system CI Cam by E.A.Barsukova and V.P.Goranskij 71 Compact pulsators Asteroseismology and evolution of EHB stars by R.H. Østensen 77 A search for Extreme Horizontal Branch pulsators in ω Cen by S. K. Randall, A. Calamida, and G. Bono 90 Time-resolved spectroscopy of the planet-hosting sdB pulsator V391 Pegasi by S. Schuh, R. Kruspe, R. Lutz, and R. Silvotti 93 Long-term EXOTIME photometry and follow-up spectroscopy of the sdB pulsator HS 0702+6043 by R. Lutz, S. Schuh, R. Silvotti, R. Kruspe, and S. Dreizler 96 Search for sdB/WD pulsators in the Kepler FOV by R. Silvotti, G. Handler, S. Schuh, B. Castanheira, and H. Kjeldsen 99 Asteroseismology and evolution of GW Vir stars by P.-O. Quirion 101 UV spectroscopy of the hybrid PG 1159-type central stars of the planetary nebulae NGC7094 and Abell43 by M. Ziegler, T. Rauch, K. Werner, L. Koesterke, and J. W. Kruk 109 Eruptive variable and binary stars Towards a dynamical mass of a PG 1159 star: radial velocities and spectral analysis of SDSS J212531−010745 by B. Beeck, S. Schuh, T. Nagel, and I. Traulsen 113 TT Arietis – observations of a Cataclysmic Variable Star with the MOST Space Tele- scope by J. Weingrill, G. Kleinschuster, R. Kuschnig, J. M. Matthews, A. Moffat, et al. 116 A progress report on the study of the optical variability of the old nova HR Del by I. Voloshina, M. Friedjung, M. Dennefeld, and V. Sementsov 119 A study of the atmospheric structure of AX Mon (HD 45910) by A.Antoniou, E.Danezis, E.Lyratzi, L.C.ˇ Popovi´c, M. S. Dimitrijevi´c, et al. 121 η Carinae - The outer ejecta by K. Weis 123 Methods and tools Time series analysis with the VSAA method by S. Tsantilas, K. Kolenberg, and H. Rovithis-Livaniou 127 Mapping pulsations on rapidly rotating components of eclipsing binaries by B. I. B´ır´oand O. Latkovi´c 129 Physical parameters of contact binaries through 2-D and 3-D correlation diagrams by K. D. Gazeas 131 Musical scale estimation for some multiperiodic pulsating stars by B. Ula¸s 133 Cocktail reception at Vienna City Hall. Comm. in Asteroseismology, Vol. 159, 2009, JENAM 2008 Symposium No 4: Asteroseismology and Stellar Evolution S. Schuh & G. Handler Challenges for stellar pulsation and evolution theory J. Daszy´nska-Daszkiewicz Instytut Astronomiczny, Uniwersytet Wroc lawski, Kopernika 11, 51-622 Wroclaw, Poland Abstract During the last few decades, great effort has been made towards understanding hydrodynam- ical processes which determine the structure and evolution of stars. Up to now, the most stringent constraints have been provided by helioseismology and stellar cluster studies. How- ever, the contribution of asteroseismology becomes more and more important, giving us an opportunity to probe the interiors and atmospheres of very different stellar objects. A vari- ety of pulsating variables allows us to test various parameters of micro- and macrophysics by means of oscillation data. I will review the most outstanding key problems, both observational and theoretical, of which our knowledge can be improved by means of asteroseismology.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Stellar Pulsation Meeting Program with Timeline
    Stellar Pulsation Meeting Program with Timeline Monday, June 1 Schedule 8:00-8:45 Put up posters 8:45-9:00 Welcome Session I. Cepheids and the Distance Scale Chair: W. Gieren 9:00-9:30 Thomas Barnes, Cepheid Distance Scale (Invited) 9:30-9:45 Wolfgang Gieren, A direct distance to the LMC from Cepheid variables 9:45-10:00 Giuseppe Bono, The Cepheid period-luminosity relation and the extragalactic distance scale 10:00-10:15 Lucas Macri, The SH0ES project: HST observations of Cepheids in NGC 4258 and type Ia SN hosts and implications for the Hubble Constant 10:15-10:45 Coffee break and Poster viewing 10:45-11:00 Nicolas Nardetto, From the dynamics of Cepheids to the Milky Way rotation, and the distance scale calibration 11:00-11:15 Shashi Kanbur, Multiphase PC/PL relations: Comparison between theory and observations Session II. Cepheid Theory and Observations Chair: Stephen Becker 11:15-11:45 J. Robert Buchler, Cepheid Pulsation Theory (Invited) 11:45-noon Victoria Scowcroft, The effect of metallicity on Cepheid magnitudes and the distance to M33 Noon-1:15 Lunch 1:15-1:45 David Turner, Polaris and its Kin (Invited) 1:45-2:00 Nancy Evans, Fundamental Parameters of Cepheids: Masses and Multiplicity 2:00-2:15 Radek Smolec, On resonant and non-resonant origin of double-mode Cepheid pulsation 2:15-2:30 Antoine Merand, What we learned from interferometric observations of Cepheids 2:30-2:45 Igor Soszynski, OGLE Data (short invited talk) 2:45-3:00 Edward Schmidt, Mining sky surveys for astrophysically interesting variable stars: The Cepheid period range 3:00-3:30 Coffee Break and Poster Viewing Session III.
    [Show full text]
  • Type Ia Supernovae, Massive White Dwarfs, and Ap Stars
    Merging of Components in Close Binaries: Type Ia Supernovae, Massive White Dwarfs, and Ap stars A. I. Bogomazov1, A. V. Tutukov2 1 Sternberg Astronomical Institute, Moscow State University, Universitetski pr. 13, Moscow, 119992, Russia, 2 Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, Moscow, 109017, Russia Astronomy Reports, volume 53, no. 3, pp. 214-222 (2009) The “Scenario Machine” (a computer code designed for studies of the evolution of close bina- ries) was used to carry out a population synthesis for a wide range of merging astrophysical objects: main-sequence stars with main-sequence stars; white dwarfs with white dwarfs, neu- tron stars, and black holes; neutron stars with neutron stars and black holes; and black holes with black holes.We calculate the rates of such events, and plot the mass distributions for merging white dwarfs and main-sequence stars. It is shown that Type Ia supernovae can be used as standard candles only after approximately one billion years of evolution of galaxies. In the course of this evolution, the average energy of Type Ia supernovae should decrease by roughly 10%; the maximum and minimum energies of Type Ia supernovae may differ by no less than by a factor of 1.5. This circumstance should be taken into account in estimations of parameters of acceleration of the Universe. According to theoretical estimates, the most massive – as a rule, magnetic – white dwarfs probably originate from mergers of white dwarfs of lower mass. At least some magnetic Ap and Bp stars may form in mergers of low-mass main-sequence stars (M .
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • NASA's Goddard Space Flight Center Laboratory for High Energy
    1 NASA’s Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 @S0002-7537~99!00301-7# This report covers the period from July 1, 1997 to June 30, Toshiaki Takeshima, Jane Turner, Ken Watanabe, Laura 1998. Whitlock, and Tahir Yaqoob. This Laboratory’s scientific research is directed toward The following investigators are University of Maryland experimental and theoretical research in the areas of X-ray, Scientists: Drs. Keith Arnaud, Manuel Bautista, Wan Chen, gamma-ray, and cosmic-ray astrophysics. The range of inter- Fred Finkbeiner, Keith Gendreau, Una Hwang, Michael Loe- ests of the scientists includes the Sun and the solar system, wenstein, Greg Madejski, F. Scott Porter, Ian Richardson, stellar objects, binary systems, neutron stars, black holes, the Caleb Scharf, Michael Stark, and Azita Valinia. interstellar medium, normal and active galaxies, galaxy clus- Visiting scientists from other institutions: Drs. Vadim ters, cosmic-ray particles, and the extragalactic background Arefiev ~IKI!, Hilary Cane ~U. Tasmania!, Peter Gonthier radiation. Scientists and engineers in the Laboratory also ~Hope College!, Thomas Hams ~U. Seigen!, Donald Kniffen serve the scientific community, including project support ~Hampden-Sydney College!, Benzion Kozlovsky ~U. Tel such as acting as project scientists and providing technical Aviv!, Richard Kroeger ~NRL!, Hideyo Kunieda ~Nagoya assistance to various space missions. Also at any one time, U.!, Eugene Loh ~U. Utah!, Masaki Mori ~Miyagi U.!, Rob- there are typically between twelve and eighteen graduate stu- ert Nemiroff ~Mich. Tech. U.!, Hagai Netzer ~U. Tel Aviv!, dents involved in Ph.D. research work in this Laboratory. Yasushi Ogasaka ~JSPS!, Lev Titarchuk ~George Mason U.!, Currently these are graduate students from Catholic U., Stan- Alan Tylka ~NRL!, Robert Warwick ~U.
    [Show full text]
  • Download This Article in PDF Format
    A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60).
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Planetary Nebulae
    Southern Planetaries 6/27/04 9:20 PM Observatory Tents Nebula Filters by Andover Ngc 60 Meade NGC60 Premier online astronomy For viewing emission and Find, compare and buy Refractor Telescope $181 shop has a selection of planetary nebulae. Telescopes! Simply Fast Free Shipping. Affiliate. observatory dome tents Narrowband and O-III types Savings www.amazon.com www.telescopes.net www.andcorp.com www.Shopping.com Observing Down Under: Part II - Planetary Nebulae by Steve Gottlieb Shapley 1 - AAO This is the second part in a series based on my trip to Australia last summer, covering observations of a few southern showpiece objects. The other parts in the series are: Southern Globular Clusters Southern Galaxies Two Southern Galaxy Groups During the stay at the Magellan Observatory I had full access to an 18" f/4.5 JMI NGT-18, an innovative split-ring truss- tube equatorial with a rotating upper cage assembly. The scope was housed in a 4.5 meter dome (which came in very handy on windy nights) and outfitted with DSC's and it could be converted to use with a bino-viewer. Because I was trying to survey the full gamut of DSO's mostly below -50° (I easily could have spent the entire time just on the Large Magellanic Cloud!), I generally stuck to eye-candy -- and there was plenty to feast on! - and was really loafing it with an 18" on these brighter planetaries (everything below was immediately visible once in the field). Some of these were reobservations for me but from northern California I never had a really good look.
    [Show full text]
  • Stats2010 E Final.Pdf
    Imprint Publisher: Max-Planck-Institut für extraterrestrische Physik Editors and Layout: W. Collmar und J. Zanker-Smith Personnel 1 PERSONNEL 2010 Directors Min. Dir. J. Meyer, Section Head, Federal Ministry of Prof. Dr. R. Bender, Optical and Interpretative Astronomy, Economics and Technology also Professorship for Astronomy/Astrophysics at the Prof. Dr. E. Rohkamm, Thyssen Krupp AG, Düsseldorf Ludwig-Maximilians-University Munich Prof. Dr. R. Genzel, Infrared- and Submillimeter- Scientifi c Advisory Board Astronomy, also Prof. of Physics, University of California, Prof. Dr. R. Davies, Oxford University (UK) Berkeley (USA) (Managing Director) Prof. Dr. R. Ellis, CALTECH (USA) Prof. Dr. Kirpal Nandra, High-Energy Astrophysics Dr. N. Gehrels, NASA/GSFC (USA) Prof. Dr. G. Morfi ll, Theory, Non-linear Dynamics, Complex Prof. Dr. F. Harrison, CALTECH (USA) Plasmas Prof. Dr. O. Havnes, University of Tromsø (Norway) Prof. Dr. G. Haerendel (emeritus) Prof. Dr. P. Léna, Université Paris VII (France) Prof. Dr. R. Lüst (emeritus) Prof. Dr. R. McCray, University of Colorado (USA), Prof. Dr. K. Pinkau (emeritus) Chair of Board Prof. Dr. J. Trümper (emeritus) Prof. Dr. M. Salvati, Osservatorio Astrofi sico di Arcetri (Italy) Junior Research Groups and Minerva Fellows Dr. N.M. Förster Schreiber Humboldt Awardee Dr. S. Khochfar Prof. Dr. P. Henry, University of Hawaii (USA) Prof. Dr. H. Netzer, Tel Aviv University (Israel) MPG Fellow Prof. Dr. V. Tsytovich, Russian Academy of Sciences, Prof. Dr. A. Burkert (LMU) Moscow (Russia) Manager’s Assistant Prof. S. Veilleux, University of Maryland (USA) Dr. H. Scheingraber A. v. Humboldt Fellows Scientifi c Secretary Prof. Dr. D. Jaffe, University of Texas (USA) Dr.
    [Show full text]
  • A New Magnetic White Dwarf: PG 2329+267
    Mon. Not. R. Astron. Soc. 299, 218–222 (1998) A new magnetic white dwarf: PG 2329+267 C. Moran,1 T. R. Marsh1 and V. S. Dhillon2 1University of Southampton, Department of Physics, Highfield, Southampton SO17 1BJ 2University of Sheffield, Department of Physics, Hounsfield Road, Sheffield S3 7RH Accepted 1998 April 27. Received 1998 April 3; in original form 1997 December 15 ABSTRACT We have discovered that the white dwarf PG 2329+267 is magnetic, and, assuming a centred dipole structure, has a dipole magnetic field strength of approximately 2.3 MG. This makes it one of only approximately 4 per cent of isolated white dwarfs with a detectable magnetic field. Linear Zeeman splitting, as well as quadratic Zeeman shifts, is evident in the hydrogen Balmer sequence and circular spectropolarimetry reveals ,10 per cent circular polarization in the two displaced j components of Ha. We suggest from comparison with spectra of white dwarfs of known mass that PG 2329+267 is more massive than typical isolated white dwarfs, in agreement with the hypothesis that magnetic white dwarfs evolve from magnetic chemically peculiar Ap and Bp type main-sequence stars. Key words: magnetic fields – polarization – stars: individual: PG 2329+267 – white dwarfs. remnants of magnetic main-sequence stars (Sion et al. 1988), as 1 INTRODUCTION well as the observed tendency for magnetic white dwarfs to be more The possibility that white dwarfs may possess large magnetic fields massive than non-magnetic white dwarfs because of their proposed was first suggested in 1947 (Blackett 1947); however, it was not evolution from more massive progenitors.
    [Show full text]
  • Opacity Effects on Pulsations of Main-Sequence A-Type Stars
    atoms Article Opacity Effects on Pulsations of Main-Sequence A-Type Stars Joyce A. Guzik * ID , Christopher J. Fontes and Chris Fryer ID Los Alamos National Laboratory, Los Alamos, NM 87545, USA; [email protected] (C.J.F.); [email protected] (C.F.) * Correspondence: [email protected] Received: 10 April 2018; Accepted: 11 May 2018 ; Published: 4 June 2018 Abstract: Opacity enhancements for stellar interior conditions have been explored to explain observed pulsation frequencies and to extend the pulsation instability region for B-type main-sequence variable stars. For these stars, the pulsations are driven in the region of the opacity bump of Fe-group elements at ∼200,000 K in the stellar envelope. Here we explore effects of opacity enhancements for the somewhat cooler main-sequence A-type stars, in which p-mode pulsations are driven instead in the second helium ionization region at ∼50,000 K. We compare models using the new LANL OPLIB vs. LLNL OPAL opacities for the AGSS09 solar mixture. For models of two solar masses and effective temperature 7600 K, opacity enhancements have only a mild effect on pulsations, shifting mode frequencies and/or slightly changing kinetic-energy growth rates. Increased opacity near the bump at 200,000 K can induce convection that may alter composition gradients created by diffusive settling and radiative levitation. Opacity increases around the hydrogen and 1st He ionization region (∼13,000 K) can cause additional higher-frequency p modes to be excited, raising the possibility that improved treatment of these layers may result in prediction of new modes that could be tested by observations.
    [Show full text]
  • Arxiv:2001.10147V1
    Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis.
    [Show full text]