Investigación Y Ciencia

Total Page:16

File Type:pdf, Size:1020Kb

Investigación Y Ciencia CIEN AÑOS DEL DIAGRAMA DE HERTZSPRUng-RUssell LA TABLA PERIÓDICA 0 B A F G K M 10.000.000 TIPO ESPECTRAL DE LAS ESTRELLAS –12 TIPO Y COLOR ESTELAR –11 De manera parecida a lo que ocurre cuando calentamos un metal, el color de una estrella es indicativo de la temperatura de su superficie: desde un rojo tibio derecha( ) 1.000.000 –10 hasta un azul candente (izquierda). Ello permite dividir a las estrellas en siete tipos ETA CARINAE espectrales, denotados O, B, A, F, G, K y M. Estos se basan en los elementos químicos –9 que absorben luz en las capas externas, lo que a su vez depende de la temperatura. En castellano, una regla mnemotécnica para recordarlos es: «Otros Buenos DENEB Astrónomos Fueron Galileo, Kepler y Messier». –8 ) Sol 100.000 RIGEL MU CEPHEI O ( R136A1 SECUENCIA PRINCIPAL h ALPHA CAMELOPARDALIS –7 La mayoría de las estrellas se extienden a lo largo de la diagonal que cruza el ALNILAM diagrama de la parte superior izquierda a la esquina inferior derecha. Ello se debe a que tanto la luminosidad como la temperatura de la mayor parte de las estrellas BETELGEUSE –6 CANOPUS ANTARES ); ESA/NASA/SO VV CEPHEI vienen determinadas por un tercer parámetro: la masa. Las estrellas más calientes ZETA PUPPIS IOTA ORIONIS ETA LEONIS y brillantes (izquierda) poseen una masa mayor. Una vez que una estrella comienza 10.000 SAIPH –5 89 HERCULIS THETA1 ORIONIS C BETA CANIS MAJORIS PI PUPPIS a producir energía gracias a las reacciones nucleares de fusión del hidrógeno, MIRFAK ENIF BETA CENTAURI EPSILON GEMINORUM se alcanza un estado de equilibrio y el astro se mantiene en la misma posición ZETA OPHIUCHI ZETA GEMINORUM ADHARA BETA LYRAE A POLARIS LAMBDA VELORUM –4 AE AURIGAE 1 ETA AQUILAE del diagrama durante la mayor parte de su vida. de la Hélice nebulosa ALPHA CRUCIS BETA CAMELOPARDALIS BETA CRUCIS SPICA ALPHA AQUARII ZETA AURIGAE AO ( AO 2 DELTA CEPHEI BETA AQUARII S r ALPHA CRUCIS SHAULA A ALMACH –3 GIGANTES/SUPERGIGANTES MU COLUMBAE BELLATRIX ALCYONE E r, N r, ACHERNAR BETA DRACONIS Estas estrellas abandonaron la secuencia 1000 SHAULA B T ALBIREO A principal cuando agotaron el hidrógeno del Recto ATLAS N ELECTRA MIRACH MENKAR ALPHA HERCULIS –2 MEROPE A ALPHARD núcleo y comenzaron a quemar otras A. T. BETA PEGASI BETA GRUIS Y EL NATH Ci THUBAN G reservas de combustible, como el helio. Las ZUBENESCHAMALI S I DUBHE ETAMIN MU GEMINORUM más masivas se convierten en supergigantes; PLEIONE U P E R G KOCHAB –1 r, STS r, ALKAID ALHENA ALDEBARAN REGULUS BETA CORVI ALGEIBA A GAMMA CRUCIS las menores, en gigantes. Si una supergigante ne ALBIREO B DENEB KAITOS ix ALIOTH ARCTURUS E 100 0 ocupase el lugar del Sol, su tamaño abarcaría ALGOL A COR CAROLI MIZAR A DELTA SCUTI CAPELLA Ab CAPELLA Aa hasta la órbita de Júpiter. Estas estrellas no se M /M. PHECDA MERAK ALGEIBA B HAMAL GEMMA MENKALINAN RR LYRAE ETA DRACONIS mantienen fijas en el diagrama, sino que se EAM VEGA ZUBENELGENUBI Betelgeuse T POLLUX +1 RASALHAGUE BETA CASSIOPEIAE MIRA desplazan a medida que evolucionan. SIRIUS A MEGREZ G A N ALDERAMIN I T ebula FOMALHAUT G E DENEBOLA S ix N ix ALCOR +2 HIPERGIGANTES ALTAIR RS CANUM VENATICORUM hEL ETA BOÖTIS Las estrellas más masivas de todas se hallan 10 BETA PICTORIS S GAMMA DORADUS PROCYON A en la parte superior izquierda. El récord lo BETA HYDRI +3 hUBBLE E GAMMA VIRGINIS XI OPHIUCHI A posee R136a1, que nació con una masa 320 UPSILON ANDROMEDAE KAPPA FORNACIS PI3 ORIONIS veces superior a la del Sol, si bien desde C NU PHOENICIS BETA COMAE BERENICES IOTA HOROLOGII +4 entonces ha perdido parte de su material en CHI DRACONIS A MU ARAE U 16 CYGNI B forma de vientos estelares. Otra estrella muy ZETA TUCANAE ETA CASSIOPEIAE A DELTA PAVONIS YN/NOAO/ESA/ 14 HERCULIS 1 1 wi E SOL 54 PISCIUM +5 masiva e inestable es Eta Carinae, la cual se CHI ORIONIS A 61 VIRGINIS ALPHA MENSAE N ZETA2 RETICULI 82 ERIDANI 70 OPHIUCHI A halla envuelta en una nebulosa de gas como XI BOOTIS A 12 OPHIUCHI 47 URSAE MAJORIS 1 ALPHA CENTAURI B NASA/ ; ZETA RETICULI ) TAU CETI 107 PISCIUM C 16 CYGNI A 2 eta carinae resultado de una violenta eyección de SIGMA DRACONIS OMICRON ERIDANI A +6 material que ocurrió hace 170 años. I ALPHA CENTAURI A MU CASSIOPEIAE A 36 OPHIUCHI A EPSILON ERIDANI A 51 PEGASI 36 OPHIUCHI B 18 SCORPII GROOMBRIDGE 1830 Eta Carinae Eta CHI DRACONIS B P EPSILON INDI +7 ENANAS BLANCAS 36 OPHIUCHI C 1⁄10 R BY DRACONIS A 70 OPHIUCHI B Son el remanente que deja la inmensa ( /NASA 61 CYGNI A O XI BOOTIS B d I LUMINOSIDAD (UNIDADES SOLARES) (UNIDADES LUMINOSIDAD mayoría de las estrellas una vez que han A +8 LUMINOSIDAD (MAGNITUD ASOLUTA) (MAGNITUD LUMINOSIDAD r N GROOMBRIDGE 1618 61 CYGNI B agotado todo el combustible nuclear. Ya no BY DRACONIS B olo C ETA CASSIOPEIAE B LACAILLE 8760 C HZ 43 A pueden generar energía, por lo que se E GLIESE 890 YY GEMINORUM +9 comprimen por su propio peso hasta alcanzar d I A GLIESE 229 A id P un tamaño similar al de la Tierra. A pesar de S r LACAILLE 9352 E 1⁄100 +10 iv A su nombre, brillan en un amplio abanico de GROOMBRIDGE 34 A N LALANDE 21258 A LALANDE 21185 colores. Con el tiempo, se van desplazando U , WOLF 630 A SE LB 1497 L r 2 KAPTEYN’S STAR AD LEONIS nebulosa DE la HÉLICE hacia la derecha del gráfico hasta que dejan O OMICRON ERIDANI B +11 STRUVE 2398 A M SIRIUS B EQ PEGASI A de ser visibles. EV LACERTAE ON ZZ CETI GLIESE 581 KRÜGER 60 A GLIESE 876 ); J ); GD 165 G 29-38 WOLF 1061 +12 LUYTEN’S STAR STRUVE 2398 B YZ CANIS MINORIS EL SOL 1⁄1000 El Sol es una estrella de la secuencia principal. STEIN 2051 A OMICRON2 ERIDANI C Betelgeuse ( WOLF 629 +13 Nació en forma de una protoestrella fría; una EG 82 PROCYON B ROSS 154 ROSS 614 A GROOMBRIDGE 34 B BARNARD’S STAR vez que agote su hidrógeno se convertirá en ESO , EQ PEGASI B STEIN 2051 B KRÜGER 60 B ROSS 128 una gigante roja y, después, en una enana ella +14 rv YZ CETI blanca. El Sol no es tan común como suele E E VAN MAANEN’S STAR N ROSS 248 GICLAS 208–44 A afirmarse: alrededor del 95 por ciento de las K ); P. 1⁄10.000 A WOLF 424 A N LUYTEN 726–8 A +15 estrellas ocupan posiciones inferiores en el A S GICLAS 240–72 GJ 1061 GICLAS 9–38 A B L LP 658–2 LHS 288 diagrama. A LUYTEN 789–6 A GICLAS 208–45 N PROXIMA CENTAURI LUYTEN 726–8 B +16 datos estelares datos C ( A ROSS 614 B ell S WOLF 359 w os GICLAS 51-15 +17 r ENANAS MARRONES C TEEGARDEN’S STAR 1⁄100.000 LHS 292 Uno de los retos de la astrofísica actual consiste en detectar y estudiar enanas ESO 439–26 KEN VB 8 marrones, estrellas tan ligeras que no logran mantener los procesos de fusión ); LHS 3003 +18 nuclear. En el diagrama se solapan con las estrellas más débiles y rojas de la esquina gráfico ( VAN BIESBROECK’S STAR E inferior derecha (por ejemplo, LP 944-20 es una de ellas) y se extenderían más allá iv LHS 2065 +19 del diagrama en esa dirección. A fin de clasificarlas, hace una década se añadieron act DENIS 1048–3956 r TEMPERATURA SUPERFICIAL LHS 2924 los tipos espectrales L y T (no mostrados en la figura). SCR 1845–6357 A nte 1⁄1.000.000 (GRADOS KELVIN) LP 944–20 +20 h i tc i P 50.000 K 31.000 K 10.000 K 7500 K 6000 K 5300 K 3900 K 2200 K.
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • The Agb Newsletter
    THE AGB NEWSLETTER An electronic publication dedicated to Asymptotic Giant Branch stars and related phenomena Official publication of the IAU Working Group on Red Giants and Supergiants No. 276 — 1 July 2020 https://www.astro.keele.ac.uk/AGBnews Editors: Jacco van Loon, Ambra Nanni and Albert Zijlstra Editorial Board (Working Group Organising Committee): Marcelo Miguel Miller Bertolami, Carolyn Doherty, JJ Eldridge, Anibal Garc´ıa-Hern´andez, Josef Hron, Biwei Jiang, Tomasz Kami´nski, John Lattanzio, Emily Levesque, Maria Lugaro, Keiichi Ohnaka, Gioia Rau, Jacco van Loon (Chair) Figure 1: The Cat’s Eye Planetary Nebula imaged by Mark Hanson at Stan Watson Observatory with a 24′′ f6.7 teelescope. It includes 23 hours worth of [O iii]. The best known part, the “eye” is just the small object in the middle, while the messy halo extends much further. Notice also the bowshock on the right. (Suggestion by Sakib Rasool.) 1 Editorial Dear Colleagues, It is a pleasure to present you the 276th issue of the AGB Newsletter. Note that IAU Symposium 366 (”The Origin of Outflows in Evolved Stars”) has been postponed until November next year, while in June 2021 there will be a 4-week programme of workshops on stellar astrophysics in the Gaia era, in Munich (Germany). See the announcements for both meetings at the end of the newsletter. Unfortunately our proposal for a Focus Meeting at next year’s IAU General Assembly was not successful. One of the reasons given was: ”Some evaluators commented that Most of the topics in this proposal could have been made 10 or 20 years ago.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Download the Search for New Planets
    “VITAL ARTICLES ON SCIENCE/CREATION” September 1999 Impact #315 THE SEARCH FOR NEW PLANETS by Don DeYoung, Ph.D.* The nine solar system planets, from Mercury to Pluto, have been much-studied targets of the space age. In general, a planet is any massive object which orbits a star, in our case, the Sun. Some have questioned the status of Pluto, mainly because of its small size, but it remains a full-fledged planet. There is little evidence for additional solar planets beyond Pluto. Instead, attention has turned to extrasolar planets which may circle other stars. Intense competition has arisen among astronomers to detect such objects. Success insures media attention, journal publication, and continued research funding. The Interest in Planets Just one word explains the intense interest in new planets—life. Many scientists are convinced that we are not alone in space. Since life evolved on Earth, it must likewise have happened elsewhere, either on planets or their moons. The naïve assumption is that life will arise if we “just add water”: Earth-like planet + water → spontaneous life This equation is falsified by over a century of biological research showing the deep complexity of life. Scarcely is there a fact more certain than that matter does not spring into life on its own. Drake Equation Astronomer Frank Drake pioneered the Search for ExtraTerrestrial Intelligence project, or SETI, in the 1960s. He also attempted to calculate the total number of planets with life. The Drake Equation in simplified form is: Total livable Probability of Planets with planets x evolution = evolved life *Don DeYoung, Ph.D., is an Adjunct Professor of Physics at ICR.
    [Show full text]
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • Detecting Reflected Light from Close-In Extrasolar Giant Planets with the Kepler Photometer
    Accepted for publication by the Astrophysical Journal 05/2003 Detecting Reflected Light from Close-In Extrasolar Giant Planets with the Kepler Photometer Jon M. Jenkins SETI Institute/NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 [email protected] and Laurance R. Doyle SETI Institute, 2035 Landings Drive, Mountain View, CA 94043 [email protected] ABSTRACT NASA’s Kepler Mission promises to detect transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler’s ability to detect arXiv:astro-ph/0305473v1 24 May 2003 such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. Subject headings: planetary systems — techniques: photometry — methods: data analysis –2– 1.
    [Show full text]
  • The Denver Observer July 2018
    The Denver JULY 2018 OBSERVER The globular cluster, Messier 19, one of this month’s targets in “July Skies,” in a Hubble Space Telescope image. Credit: NASA, ESA, STScI and I. King (Univer- sity of California – Berkeley) JULY SKIES by Zachary Singer The Solar System ’scopes towards the planets when they’re Sky Calendar The big news for July is that Mars comes highest in the sky on a given night, to get the 6 Last-Quarter Moon to opposition on the 27th, meaning that it sharpest image—but Mars is worth viewing 12 New Moon will be at its highest in the south on that date naked-eye when it’s rising. Surprised? The 19 First-Quarter Moon around 1 AM, and also more or less at its red (well, orange) planet appears even redder 27 Full Moon largest as seen from Earth. Now, don’t let that when rising, making for much deeper color. fool you—Mars is already very good as July It’s a guilty pleasure on an aesthetic level, if begins, showing a disk 21” across, which is not a scientific one. If you want to indulge better than we got two years ago, and only yourself, Mars rises around 10:30 PM at In the Observer slightly smaller than the 24” expected at the beginning of July, an hour earlier mid- the end of the month. (Observations in my month, and about 8:20 PM at month’s end. President’s Message . .2 6-inch reflector at the end of June showed an Meanwhile, Mercury is an evening Society Directory.
    [Show full text]
  • Double Star Measurements at the Southern Sky with a 50 Cm Reflector in 2016
    Vol. 13 No. 4 October 1, 2017 Journal of Double Star Observations Page 495 Double Star Measurements at the Southern Sky with a 50 cm Reflector in 2016 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: A 50 cm Ritchey-Chrétien reflector was used for recordings of double stars with a CCD webcam, and measurements of 95 pairs were mostly obtained from “lucky images”, and in some cases by speckle interferometry. The image scale was calibrated with reference systems from the recently published Gaia catalogue of precise position data. For several pairs, deviations from currently assumed orbits were found. Some images of noteworthy systems are also pre- sented. “Chameleon” (PointGrey) with exposure times ranging Introduction from less than a millisecond to several tens of msec, Recordings of double star images were mostly eval- depending on the star brightness, on the filter being uated with “lucky imaging”: Seeing effects are effec- used, and on the seeing. Recordings were usually made tively reduced by using short exposure times, and selec- with a red or near infrared filter, in order to reduce ef- tion of only the best images for stacking, which results fects from chromatic aberrations of the Barlow lens, as in virtually diffraction limited images. In addition, well as from the seeing. Only the best frames, typically speckle interferometry was applied in some cases, as several tens and up to more than 100, were selected, large numbers of speckle images were found in several registered, and stacked. The pixel size of 3.75 µm recordings, caused by rather variable seeing conditions square results in a nominal resolution of 0.096 arcsec/ during this observing campaign.
    [Show full text]
  • The Transfiguration in the Theology of Gregory Palamas And
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Spring 2015 Deus in se et Deus pro nobis: The rT ansfiguration in the Theology of Gregory Palamas and Its Importance for Catholic Theology Cory Hayes Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Hayes, C. (2015). Deus in se et Deus pro nobis: The rT ansfiguration in the Theology of Gregory Palamas and Its Importance for Catholic Theology (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/640 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. DEUS IN SE ET DEUS PRO NOBIS: THE TRANSFIGURATION IN THE THEOLOGY OF GREGORY PALAMAS AND ITS IMPORTANCE FOR CATHOLIC THEOLOGY A Dissertation Submitted to the McAnulty Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Cory J. Hayes May 2015 Copyright by Cory J. Hayes 2015 DEUS IN SE ET DEUS PRO NOBIS: THE TRANSFIGURATION IN THE THEOLOGY OF GREGORY PALAMAS AND ITS IMPORTANCE FOR CATHOLIC THEOLOGY By Cory J. Hayes Approved March 31, 2015 _______________________________ ______________________________ Dr. Bogdan Bucur Dr. Radu Bordeianu Associate Professor of Theology Associate Professor of Theology (Committee Chair) (Committee Member) _______________________________ Dr. Christiaan Kappes Professor of Liturgy and Patristics Saints Cyril and Methodius Byzantine Catholic Seminary (Committee Member) ________________________________ ______________________________ Dr. James Swindal Dr.
    [Show full text]
  • Ground-Based High Sensitivity Radio Astronomy at Decameter Wavelengths
    "Planetary Radio Emissions IV" (Graz, 9/1996), H.O. Rucker et al. Eds., Austrian Acad. Sci. press, Vienna, p. 101-127, 1997 GROUND-BASED HIGH SENSITIVITY RADIO ASTRONOMY AT DECAMETER WAVELENGTHS Philippe Zarka1, Julien Queinnec1, Boris P. Ryabov2, Vladimir B. Ryabov2, Vyacheslav A. Shevchenko2, Alexei V. Arkhipov2, Helmut O. Rucker3 Laurent Denis4, Alain Gerbault4, Patrick Dierich5 and Carlo Rosolen5 1DESPA, CNRS/Observatoire de Paris, F-92195 Meudon, France 2Institute of RadioAstronomy, Krasnoznamennaya 4, Kharkov 310002, Ukraine 3Space Research Institute, Halbaerthgasse 1, Graz A-8010, Austria 4Station de RadioAstronomie de Nancay, USR B704, Observatoire de Paris, 18 Nançay, France 5ARPEGES, CNRS/Observatoire de Paris, F-92195 Meudon, France Abstract The decameter wave radio spectrum (~10-50 MHz) suffers a very high pollution by man- made interference. However, it is a range well-suited to the search for exoplanets and the study of planetary (especially Saturnian) lightning, provided that very high sensitivity (~1 Jansky) is available at high time resolution (0.1-1 second). Such conditions require a very large decameter radiotelescope and a broad, clean frequency band of observation. The latter can be achieved only through the use of a broadband multichannel-type receiving system, efficient data processing techniques for eliminating interference, and selection and integration of non-polluted frequency channels. This processing is then followed by an algorithm performing bursts detection and measuring their significance. These requirements have been met with the installation of an Acousto-Optical Spectrograph at the giant Ukrainian radiotelescope UTR-2, and four observations campaigns of Jupiter, Saturn, and the environment of nearby stars (including 51 Peg and 47 UMa) have been performed in 1995-96.
    [Show full text]
  • Technical Activities 1983 Center for Basic Standards
    Technical Activities 1983 Center for Basic Standards U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1983 Final Issued January 1984 Prepared for: U S. DEPARTMENT OF COMMERCE National Bureau of Standards Qc /ashington, DC 20234 1 00 -USk p p p I p p V i I » i » i i » i [i fi n NBSIR 83-2793 TECHNICAL ACTIVITIES 1983 CENTER FOR BASIC STANDARDS Karl G. Kessler, Director U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1 983 Final Issued January 1984 Prepared for: U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234 U.S. DEPARTMENT OF COMMERCE, Malcolm Baidrige. Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director TABLE OF CONTENTS Part II Page Technical Activities: Introduction 1 Quantum Metrology Group 2 Electricity Division 21 Temperature and Pressure Division 81 Length and Mass Division 123 Time and Frequency Division 135 Quantum Physics Division 187 i i I 1 I II II i li 1 1 INTRODUCTION This book is Part II of the 1983 Annual Report of the Center for Basic Standards and contains a summary of the technical activities of the Center for the period October 1, 1982 to September 30, 1983. The Center is one of the five resources and operating units in the National Measurement Laboratory. The summary of activities is organized in six sections, one for the technical activities of the Quantum Metrology Group, and one each for the five divisions of the Center.
    [Show full text]
  • El Dragon De Gaudi En Barcelona
    NETWORK FOR ASTRONOMY SCHOOL EDUCATION EL DRAGON DE GAUDI EN BARCELONA Rosa M. Ros – NASE Introducción En 1884 Gaudí proyecta los pabellones de entrada y los jardines de la finca que tiene Eusebi Güell Bacigalupi en la zona de Pedralbes en Barcelona como un homenaje póstumo al suegro del Sr. Güell que pasaba temporadas en dicha finca. El martes 16 de enero de 1883 falleció en Barcelona el primer Marqués de Comillas, Antonio López López y los Pabellones Güell se realizan del 1884 al 1887. Para ello Gaudí se inspira en el Jardín de las Hespérides tal y como Jacinto Verdaguer lo describía en su poema La Atlántida. Verdaguer dedicó este poema en 1877 al Marqués de Comillas, y curiosamente el autor lo termino de escribir en esta misma finca. La finca Güell El conjunto se compone de la casa de los guardias y las caballerizas. Dos casas unidas por una puerta monumental (figura 1). En la entrada destaca la gran escultura de hierro forjado de Ladón, el dragón mitológico adversario de Hércules en su undécimo trabajo. Después de la muerte de Eusebio Güell, en 1918, sus descendientes ceden la casa y parte de los terrenos de la finca para construcción del Palacio Real de Pedralbes. Las antiguas caballerizas, el picador y la casa del guardia forman parte actualmente de la Universidad de Barcelona. Las caballerizas son la sede actual de la Real Cátedra Gaudí de la Universidad Politécnica de Cataluña. Figura 1: Pabellones de la Finca Güell: Casa del Guardia, puerta y Caballerizas. NETWORK FOR ASTRONOMY SCHOOL EDUCATION Este precioso conjunto modernista, tiene una de las puertas de hierro forjado mas fotografiadas de Barcelona (figura 1).
    [Show full text]